PCI-1713 快速安装使用手册

PCI-1713 快速安装使用手册	1
第一章 产品介绍	2
1.1 概述	2
1.1.1 灵活的输入类型及范围	2
1.1.2 高速数据采集	2
1.1.3 支持软件,内部定时器及外部定时器触发	2
1.1.4 满足隔离保护的要求	2
1.2 特点	2
1.3 规格	3
1.4 一般特性	3
第二章 安装与测试	4
2.1 初始检查	4
2.2 Windows2K/XP/9X下板卡的安装	4
2.2.1 软件的安装:	4
2.2.2 硬件的安装:	6
2.3 测试	11
2.3.1 模拟输入功能测试	11
第三章 信号连接	12
3.1 模拟信号输入连接:	13
3.1.1 单端模拟输入连接	13
3.1.2 差分式模拟输入连接	14
3.2 外部触发源连接	15
第四章 例程使用详解	15
<u>4.1</u> 板卡支持例程列表	
4.2 常用例子使用说明	16
4.2.1 ADSOFT/ADTRIG(软件触发方式例程)	16
4.2.2 ADint(中断方式进行数据采集的例程)	17
4.2.3 MADint(多通道中断采集例程)	18
4.2.4 AIEXP(使用扩展板进行模拟量输入的例程):	20
第五章 遇到问题,如何解决?	

第一章 产品介绍

1.1 概述

PCI-1713 是一款 PCI 总线的隔离高速模拟量输入卡。它提供了 32 个模拟量输入通道,采样频率可达 100KS/s、12 位分辨率及 2500V(DC) 的直流隔离保护。

1.1.1 灵活的输入类型及范围

PCI-1713 有一个自动通道/增益扫描电路。在采样时,这个电路可以自己完成对多路选通开关的控制。卡上的 SRAM 存储了每个通道不同的增益值及配置。这种设计能让您对不同通道使用不同的增益,并采用单端和差分输入的不同组合方式来完成多通道采样。

1.1.2 高速数据采集

PCI-1713 的采样速率可达 100KS/s。卡上带有一个 FIFO 缓冲器,它能存储 4K 的采样值。当 FIFO 半满时, PCI-1713 会产生一个中断。该特性提供了连续高速的数据传输及 Windows 下更可靠的性能。

1.1.3 支持软件, 内部定时器及外部定时器触发

对于 A/D 转换, PCI-1713 支持三种触发模式:软件触发、内部触发和外部 触发。软件触发能允许用户在需要的时候可以获得一个采样值;内部定时器触发 用于连续、高速的数据采集。PCI-1713 还可以接受外部触发,允许与外部设备 进行同步采样。

1.1.4 满足隔离保护的要求

PCI-1713 在输入和PCI总线之间提供了 2500V_{DC}的直流光隔离保护,用于保护PC及外设免受输入线上高压电的损害。对于那些预算比较紧张而又要求数据采集系统灵活、稳定并带高级隔离保护的用户来说,PCI-1713 是一个理想的选择。

1.2 特点

- 1. 2500V_{DC}隔离保护
- 2. 32 路单端或 16 路差分模拟量输入,或组合输入方式
- 3. 12 位 A/D 转换
- 4. A/D 转换器的采样速率可达 100KS/s
- 5. 每个输入通道的增益可编程
- 6. 卡上 4K 采样 FIFO 缓冲器
- 7. 支持软件、内部定时器触发或外部触发

8. 自动通道/增益扫描

1.3 规格 1. 模拟量输入 通道:32 路单端或 16 路差分 分辨率:12 位 卡上 FIFO:4K 采样 转换时间:2.5µS 输入范围: 双极性: ±0.625V, ±1.25V, ±2.5, ±5V, ±10V 单极性: 0~1.25V, 0~2.5V, 0~5V, 0~10V 最大输入过载电压: ±30V 共模抑制比 (CMMRR) 增益 共模抑制比 0.5, 175dB 2 80dB 4 84dB 8 84dB 最高采样速率:100KS/s 精度:(取决于增益) 增益 精度 0.01% of FSR±1LSB 0.5.1 2 0.02% of FSR±1LSB 0.02% of FSR±1LSB 4 0.04% of FSR±1LSB 8 线性误差: ±1LSB

漂移:30PPM/°C(0~60°C)典型值 输入阻抗:1GΩ 触发模式:软件触发、可编程定时器触发或外部触发(TTL电平) 2. 可编程定时/计数器

定时器芯片:82C54 计数器:3 通道,16 位 两个通道永久设置为可变成定时器,一个通道没有用。 时间基准:通道1:10MHz,通道2的时基来自通道1的输出,通道0没 有用到

1.4 一般特性

1. I/O 接口: 37 芯 D 型孔式接口

2. 尺寸:175mm(L)*100mm(H)(6.9 *3.9)

- 3. 功耗:+5V @ 850 mA (典型) +5V @ 1.0 A (最大)
- 4. 工作温度: 0°~60°(32°~140°F)(参见 IEC 68-2-1,2)
- 5. 储存温度: -20°~70° (-4°~158°F)
- 6. 工作温度: 5%~95% RH,无凝结 (参见 IEC 68-2-3)

第二章 安装与测试

2.1 初始检查

研华 PCI-1713,包含如下三部分:一块 PCI-1713 PCI 总线的隔离高速模 拟量输入采集卡,一本使用手册和一个内含板卡驱动的光盘。打开包装后,请您 查看这三件是否齐全,请仔细检查有没有在运送过程中对板卡造成的损坏,如果 有损坏或者规格不符,请立即告知我们的服务部门或是本地经销代理商,我们将 会负责维修或者更换。取出板卡后,请保留它的防震包装,以便在您不使用时将 采集卡保护存放。在您用手持板卡之前,请先释放手上的静电(例如,通过触摸 您电脑机箱的金属底盘释放静电),不要接触易带静电的材料,比如塑料材料等。 手持板卡时只能握它的边沿,以免您手上的静电损坏面板上的集成电路或组件。

2.2 Windows2K/XP/9X 下板卡的安装

安装流程图,如下:

5

2.3.1 软件的安装:

2.3.1.1 安装 Device Manager 和 32bitDLL 驱动

注意:测试板卡和使用研华驱动编程必须首先安装安装 Device Manager 和 32bitDLL 驱动。

第一步:将启动光盘插入光驱;

第二步:安装执行程序将会自动启动安装 ,这时您会看到下面的安装界面:

图 2-1

注意:如果您的计算机没有启用自动安装,可在光盘文件中点击 autorun.exe 文件启动安装程

第三步:点击 CONTINUE,出现下图界面(见图 2-2) 首先安装 Device Manager。也可以在光盘中执行\tools\DevMgr.exe 直接安装。

AD\ANTECH	DA&C Device Driver CD V2.2
Please install "Advantech before installing other ite	i Device Manager" ins.
	Device Manager
Addie	Example & Utility
Advance Op	tions
	Back Exit Your ePlatform Parane

图 2-2

第四步:点击 IndividualDriver, 然后选择您所安装的板卡的类型和型号,

AD\ANTEC	H D	A&C Device D	river CD V2.3
Beininge Pol-1710 Pol-1711 Pol-1713 Pol-1720 Pol-1730 Pol-1736 Pol-1756 Pol-1755 Pol-1755 Pol-1750 Pol-1750 Pol-1750 Pol-1760 Pol-1760	PCI-1241 PCI-1710L PCI-1711L PCI-1714 PCI-1721 PCI-1721 PCI-1723 PCI-1752 PCI-1755 PCI-1761 PCI-1764	P011915 P01-710 P01-710 P01-716 P01-720 P01-733 P01-737 P01-7537 P01-7537 P01-7537 P01-7537 P01-7537	EGL:1251 PGL:1710H0L PGL:1710L PGL:1710L PGL:1720 PGL:172
	Ba	ck Exit	eAutomation

然后按照提示就可一步一步完成驱动程序的安装。

图 2-3

2.3.1.2 32bitDLL 驱动手册 (软件手册) 说明

安装完Device Manager后相应的驱动手册Device Driver's Manual也会自动安装。有关研华 32bitDLL驱动程序的函数说明,例程说明等资料在此获取。 快捷方式位置为: 开始/程序/Advantech Automation/Device Manager/ DeviceDriver's Manual 。 也 可 以 直 接 执 行 C:\ProgramFiles\ADVANTECH\ADSAP1\Manual\General.chm。

2.3.1.3 32bitDLL 驱动编程示例程序说明

点击自动安装界面的 Example&Utility 出现以下界面(见图四)选择对应的语言安装示例程序。例程默认安装在 C:\Program Files\ADVANTECH\ADSAPI\Examples下。可以在这里找到 32bitDLL 驱动函数使用的示例程序供编程时参考。示例程序的说明在驱动手册 Device Driver's Manual 中有说明,见下图 2-5。

图 2-5

2.3.1.4 labview 驱动程序安装使用说明

研华提供 labview 驱动程序。注意:安装完前面步骤的 Device Manager 和 32bit DLL 驱动后 labview 驱动程序才可以正常工作。光盘自动运行点击 Installation 再点击 Advance Options 出现以下界面(见图 2-6)。点击: LavView Drivers 来安装 labview 驱动程序和 labview 驱动手册和示例程序。 也可以在光盘中直接执行:光盘\labview\ labview.exe 来安装。

图 2-6

安装完后 labview 驱动帮助手册快捷方式为:开始/程序/ Advantech Automation/LabView/XXXX.chm 。 默认安装下也可以在 C:\Program Files\National Instruments\LabVIEW 7.0\help\Advantech 中直接打开 labview 驱动帮助手册。

labview 驱动示例程序默认安装在 C:\Program Files\National Instruments\LabVIEW 7.0\examples\Advantech DAQ 目录下。

2.3.1.5 Active Daq 控件安装使用说明

研华提供 Active Daq 控件,供可视化编程使用。注意:安装完前面 步骤的 Device Manager 和 32bitDLL 驱动后安装 Active Daq 控件,才能正常工 作。光盘自动运行点击 Installation 再点击 Advance Options 出现安装界面(见 图 2-6)。点击:ActiveDaq Installation 来安装 Active Daq 控件和示例程序。也 可以在光盘中直接执行:光盘\ActiveDAQ\ActiveDAQ.exe 来安装。

Active Daq 控件使用手册快捷方式为开始/程序/Advantech Automation/ActiveDaq Pro/ActiveDAQPro.chm。 默认安装下也可以在 C:\Program Files\ADVANTECH\ActiveDAQ Pro 中直接打开 Active Daq 驱动手 册:ActiveDAQPro.chm。

ActiveDaq 控件示例程序安装在 C:\Program Files\ADVANTECH\ActiveDAQ Pro\Examples 目录下

2.2.2 硬件的安装:

第一步:关掉计算机,将您的板卡插入到计算机后面空闲的 PCI 插槽中

(注意:在您手持板卡之前触摸一下计算机的金属机箱壳以免手上的静 电损坏板卡。)

第二步:检查板卡是否安装正确,可以通过右击"我的电脑",点击"属性", 弹出"系统属性"框;选中"硬件"页面,点击"设备管理器";将弹出画面, 如下图所示:从图中可以看到板卡已经成功安装。

🔜 Device Manager	
$]$ Action View $]$ \leftarrow \rightarrow $ $ \blacksquare \blacksquare $ $ \blacksquare $ $ $\textcircled{2}$ $ $ $\textcircled{2}$ $[$ $\textcircled{2}$ $\textcircled{2}$ $\textcircled{2}$	
E-A LLX-2K-TEST	
📄 🕮 Advantech DA&C I/O cards	
Advantech PCI17135 Device	
]
Standard PC	
E Disk drives	
🗈 🖳 Display adapters	
DVD/CD-ROM drives	•

第三步:从开始菜单/程序/Advantech Device Driver V2.1/ Advantech Device Manager,打开 Advantech Device Manager,如下图:

Advantech Device Manager	_ 🗆 X
Your ePlatform Partner	
AD\ANTECH Device Mana	iger
Installed Devices:	
	Setup
	Test
	Remove
	Close
Supported Devices:	
Advantech PCI-1710/L/HG/HGL	
Advantech PCI-1711	Add
Advantech PCI-1711L(PCI-1731)	
Advantech PCI-1712	About
Advantech PCI-1713	
Advantech PCI-1714	Import
Advantech PCI-1716	Europe 1
Advantech PCI-1720	Export
Advantech PCI-1721	
J · Me Adupatash PCI 1722	

当您的计算机上已经安装好某个产品的驱动程序后,它前面将没有红色叉号, 说明驱动程序已经安装成功。比如下图中的 PCI-1713 前面就没有红色叉号。PCI 总线的板卡插好后计算机操作系统会自动识别, Device Manager 在 Installed Devices 栏中 My Computer 下也会自动显示出所插入的器件,这一点和 ISA 总 线的板卡不同,如上图所示。

到此, PCI-1713 数据采集卡的软件和硬件已经安装完毕, 可进行板卡测试。

2.3 测试

	, , , , , , , , , , , , , , , , , , , ,
🎜 Advantech Device Test	: • ulingalis, gunnalis, 💽 🗖 🔀
Analog input Analog outpu	ut Digital input Digital output Cou <u>n</u> ter
Channel No. Input range:	Analog input reading:
0 +/-5V 💌	0.0000000 Channel mode
1 +/-5V 💌	0.0000000 32 single ended channels
2 +/-5V 💌	0.0000000 Sampling period: 1000 ms
3 +/-5V 💌	0.0000000
4 +/-5V 💌	0.0000000
5 +/-5/ 💌	0.0000000
6 +/-5V v	0.0000000
7 +/-5V 💌	0.0000000
	Change device E <u>x</u> it

在上图的界面中点击"Test",弹出下图:

2.3.1 模拟输入功能测试

测试界面说明:(因为 PCI-1713 是模拟输入卡,所以需测模拟输入功能) Channe1 No:模拟量输入通道号(0-32);

Input range:输入范围选择;

Analog input reading : 模拟量输入通道读取的数值;

Channel mode:通道设定模式;

sampling period :采样时间间隔;

测试时可用 PCL-10137-1/2/3 (37 芯 D 型电缆,1、2 或 3 米)将 PCI-1713 与 ADAM-3937 (可 DIN 导轨安装的 37 芯接线端子板)连接,这样 PCI-1713 的 37 个针脚和 ADAM-3937 的 37 个接线端子一一对应,可通过将输入信号连 接到接线端子来测试 PCI-1713 管脚。

例如:在单端输入模式下,测试通道0,需将待测信号接至通道0所对应接 线端子的1与GND管脚,在通道0对应的"Analog input reading"框中将显示输 入信号的电压值。

🖉 Advant eo	h Device	Test 🗧		
<u>A</u> nalog input	t Analog	output	Digital <u>i</u> nput	Digital output Cou <u>n</u> ter
Channel No.	Input range: +/-5V	Ŧ	Analog input readi 0.0000000	ng: Channel mode
1	+/-5V	•	0.0000000	32 single ended channels
2	+/-5V	•	0.0000000	Sampling period: 1000 ms
3	+/-5V	•	0.0000000	•
4	+/-5/	•	0.0000000	
5	+/-5V	•	0.0000000	
6	+/-5V	•	0.0000000	
7	+/-5V	•	0.0000000	
				Change device Exit

第三章 信号连接

在数据采集应用中,模拟量输入基本上都是以电压信号输入。为了达到准确 测量并防止损坏您的应用系统,正确的信号连接是非常重要的。这一章我们将向 您介绍如何来正确连接模拟信号的输入、输出以及计数器的连接。

管脚图:

3.1 模拟信号输入连接:

3.1.1 单端模拟输入连接

PCI-1713 提供 16 路模拟量输入通道,当测量一个单端信号时,只需一根导 线将信号连接到输入端口,被测的输入电压以公共地为参考。没有地端的信号源 称为"浮动"信号源,在这种模式下,PCI-1713 为外部浮动信号源提供一个参考 地。测量单端模拟信号输入,标准连接方法,如下图所示:

3.1.2 差分式模拟输入连接

PCI-1713 有 32 个模拟输入通道,可以设置成 16 对差分式输入通道。差分 输入需要两根线分别接到两个输入通道上,测量的是两个输入端的电压差。如果 信号源连有参考地,则 PCI-1713 的地端和信号源的地端之间会存在电压差,这 个电压差会随信号源输入到输入端,这个电压差就是共模干扰。为了避免共模干 扰,您可以将信号地连到低电压输入端。连接方式如下图所示:

通过这种连接方式,可以消除在信号源和板卡地之间的共模干扰电压 V (CM)。

如果是一个浮动信号源连接到差分输入端,信号源可能会超过 PGIA 的共模 输入范围, PGIA 过饱和将不能正确读出输入电压值,因此您必须将浮动信号源 的两端连接到 AIGND。如下图所示,将浮动信号源的两端分别通过一个电阻连

接到 AIGND。这种连接可以消除信号源同板卡地之间的共模电压。

但是,这样做的一个缺点就是串联的两个电阻增大了信号源负载。例如,输入阻抗 Rs 是 1KΩ,两个电阻 Ra 和 Rb 分别是 100KΩ,电阻负载增加的 200KΩ 就会导致-0.5%的增益误差。电路图和计算过程如下图所示:

Gain error =
$$\frac{V_{I}-V_{s}}{V_{s}} = -\frac{1}{201} = -0.5\%$$

3.2 外部触发源连接

PCI-1713 既支持内部定时器触发也支持外部触发源触发 A/D 转换,当 EXT-TRG 有一个上升沿时触发一次 A/D 转换。

注意:1. 在没有使用外部触发功能时不要在 EXT-TRG 脚连接任何信号。

 当使用外部触发源触发 A/D 转换时,模拟输入方式最好能够采用 差分式输入,以减小由于外部触发源引起的串扰噪音。

第四章 例程使用详解

研华也为客户提供了支持不同语言(VC,VB, C++ Builder,...等)的例子程序, 来示例研华所提供的动态连接库的用法;本章将介绍这些例子程序的使用。

Example Name	Description	VC	VB	Console	Delphi	BCB
AD INT	用中断方式单通道采集					
	允许用户使用 FIFO					
AD_SOFT	用软件触发方式采集单通道数据					
	用中断方式多通道采集					
	允许用户使用 FIFO					
MAD_SOFT 用软件触发方式采集多通道数据						
PORT RW	演示端口位/字节 输出函数					

4.1 板卡支持列表

4.2 常用例子使用说明

4.2.1 ADSOFT/ADTRIG (软件触发方式例程)

单通道模拟量数据采集例程(软件触发模式):该例程主要使用 DRV_AIConfig 配置模拟量输入通道等信息,使用模拟量输入函数 (DRV_AIVoltageIn),通过软件触发方式(使用 Windows Timer)实现数据 采集。

1) 单击 Setting 菜单弹出下面的对话框:

Parameter Settings	×
Device: PCL-818HD I/O=300	-
Module:	V
Range: <mark>+/-10∨ ▼</mark>	Channel: 0
ОК	Cancel

Device:显示出所安装的设备,如果你安装了多块板卡可以在这里选择支持 该例程的板卡;

Range:选择输入范围; Channel:选择输入通道; 2)单击 Scan,弹出下面的对话框:					
Scan Time	×				
Scan Time: 1000 ms Cancel					

可以设置计数的时间间隔,默认值为1000毫秒

3) 单击 Run 菜单项中的 Start 菜单就可以开始软件触发模式数据采集,单击 Stop 项停止。

4.2.2 ADint (中断方式进行数据采集的例程)

单通道模拟量数据采集例程(中断模式):该例程通过 DRV_FAIIntStart 函数启动了中断功能,该功能运行于后台,可以使用 DRV_FAICheck 函数检查工作状态,同时可以使用 DRV_FAITransfer 函数传输数据,当工作结束,或者任何时刻,你都可以采用 DRV_FAIStop 来停止工作,另外:该例程支持用户设定FIFO 大小。

1) 单击 Setting, 弹出设备选择窗口如下所示:

ADSDAQ Devices	×
E-ADSDAQ	Select
└- 000 : {PCL-1800 I/O=300H}	Cancel

2) 选择设备点击 Select 按钮后的对话框如下图所示,

openevent				
Select Device	e from Device I	Sca Ist. 0	in Channel - FII	TO Setting Enable Size :
Gain Option C Overall C Gain List	Input Ran	ge Pac	er Rate	Inv. #
Single/Auto-	- Triggering	Buffer	Data Type	Event
C Cyclic	Internal	C Single	C Raw Data	Enable
Noncyclic	O External	C Double	Voltage	O Disable
OK		Gain List	Cancel	

对话框重的参数含义如下:

Select Device from Device List 按钮可以弹出板卡选择的对话框。 Scan Channel:可以输入要采集的通道数据号,其范围由板卡的通道数目确 FIFO Setting:设置是否使用 FIFO 及其大小。

Gain Option:选择增益,这里只能选择 Overall 选项,因为是单通道中断采 集不用选择 GainList.

Input Range:为所有的通道选择相同的量程范围。

Pacer Rate:设置采样频率

Conv.#: A/D 转化的数目,注意:这个数字必须是半 FIFO 大小的整数倍。 Single/Auto:两个选项 Cyclic:循环模式; Noncyclic:非循环模式;

Triggering: 触发方式, Internal 内部触发; External 外部触发;

Buffer:使用单个 buffer(single),双 buffer(double),1713 不用设置此项。

Data Type:数据类型;Raw Data 原始数据——二进制/十六进制——未经 过 DA 转换的数据:

Voltage:真实的电压数据。

Event:事件;是否允许设置事件来编程(只是对中断和 DMA 方式来讲), 如果选择 Enable,则当程序完成 Conv.#设定的转换次数之后自动弹出数据显示 对话框;若选择的是 Disable,则当用户单击 Stop 按钮的时候,才会弹出数据显示对话框。

3) 设置完成后单击 Display,弹出下面的对话框:

,		
Display		×
Start Pt.	0	OK
Stop Pt.	99	Cancel

设置将要现实的数据的范围,默认(0~99)注:Stop Pt 不能大于 Conv.# 设置的数值。

4) 单击 Run 菜单项开始采集数据,当采集完成 Conv.#设置的那么多次的 A/D 转换之后,就会显示(假设没有修改 Display 菜单中的默认值)0~99 点的 数据。显示窗口如下所示:

Fast A/D Data	×
Data	
Buf[0] = 1.389160 Buf[1] = 1.389160 Buf[2] = 1.389160 Buf[2] = 1.389160 Buf[3] = 1.386719	OK
Buf[4] = 1.389160 Buf[5] = 1.389160 Buf[5] = 1.391602 Buf[6] = 1.39160	Cancel
Buf[8] = 1.386719 Buf[9] = 1.389160 Buf[10] = 1.389160	
Buf[11] = 1.389160 Buf[12] = 1.389160	•

4.2.3 MADint(多通道中断采集例程)

多通道模拟量数据采集例程(中断模式):该例程通过 PT_FAlIntScanStart 函数启动了中断功能,该功能运行于后台,可以使用 DRV_FAlCheck 函数检查

工作状态,同时可以使用 DRV_FAITransfer 函数传输数据.另外:该例程支持用 户设定 FIFO 大小。

1) 单击 Setting 菜单弹出如下对话框:

openevent	×
Device List Device : PCL-711 I/0=220H Module :	▼ Scan Channel FIFO Setting Start 0 ✓ ▼ Enable NumChan 2 FIFO Size : 0
Gain Option Input Range C Overall C Gain List	Pacer Rate Conv. # 100 Hz 100
Single/Auto Cyclic Noncyclic Note : Conv.# must be Multiple of Nu	Buffer Data Type Event C Single Raw Data C Double Voltage Disable umChan
ОК	Giain List Cancel

对话框重的参数含义如下:

Device List 列表框,可以选择已安装的设备。

Scan Channel 中: Start::设置要扫描的起始通道号, NumChan:设置从起始开始往后要扫描的通道的数目。

FIFO Setting:设置是否使用 FIFO ,选中 Enable 后选中 Enable 后 ,FifoSize 自动设置为 FIFO 大小的一半。

Gain Option:选择增益,这里选择 Overall 选项, Input Range:为所有的通 道选择相同的量程。

若选择 GainList 选项,则可以看到下面的 Gain List 按钮被激活,单击该按钮就可以对各个通道分别进行设置,设置的对话框如下所示:

Gain List Setting				x
Channel 0	Channel 1	Channel 2	Channel 3	
Channel 4	Channel 5	Channel 6	Channel 7	
Channel 8	Channel 9	Channel 10	Channel 11	
Channel 12	Channel 13	Channel 14	Channel 15	
	OK	C	ancel	

Pacer Rate:设置采样频率

Conv.#: A/D 转化的数目,注意:Conv.#设置的数值必须是 FIFO 大小一半的整数倍,同时还必须是设定的通道数(NumChan)的整数倍。

Single/Auto:两个选项 Cyclic:循环模式;Noncyclic:非循环模式; Triggering:触发方式,Internal 内部触发;External 外部触发; Buffer:使用单个 buffer(single),双 buffer(double)

Data Type:数据类型;Raw Data 原始数据——二进制/十六进制——转化为浮点数的数据。 Voltage:真实的电压数据。

Event:事件;是否允许设置事件来编程(只是对中断和 DMA 方式来讲)。 3)设置完成后单击 Display,弹出下面的对话框:

Display		×
Start Pt.	0	OK)
Stop Pt.	99	Cancel

设置将要现实的数据的范围,默认(0~99)注:Stop Pt 不能大于 Conv.# 设置的数值。

1)单击 Run 菜单项开始采集数据,当采集完成 Conv.#设置的 A/D 转换次数之后,就会显示(假设没有修改 Display 菜单中的默认值)0~99 点的数据。数据显示窗口如下所示:

注:采集数据的时候我们在通道0上接了一个干电池,通道1上面没有接任何信号,采集到的数据为随机的量。

Fast A/D Data	×
Data Buf[0] = 1.386719 Buf[1] = -0.114746 Buf[2] = 1.389160 Buf[3] = 0.058594 Buf[4] = 1.386719 Buf[5] = 0.178223 Buf[6] = 1.389160 Buf[7] = 0.263672 Buf[8] = 1.389160 Buf[9] = 0.327148 Buf[10] = 1.389160 Buf[11] = 0.371094 Buf[12] = 1.386719	Cancel

4.2.4 AD_EXP (使用扩展板进行模拟量输入的例程):

使用扩展板进行单通道模拟量输入采集例程:该例程主要使用 PT_AlVoltageInExp 配置模拟量输入通道等信息,使用模拟量输入函数 (DRV_AIVoltageInExp),通过软件触发方式(使用 Windows Timer)实现数 据采集。

単击	Setting	菜单弹出	下面的对	话框	:
					-

Parameter 8	Settings	×
Device:	PCL-818HD With Exp. I/O=300H	•
Module:		~
Channel:	0 (PCLD-789/889)	
Range:	_	
Exp Chan:		
Board ID:		
	OK Cancel	

Device:显示出所安装的设备,如果你安装了多块板卡可以在这里进行选择; Range:选择输入输入范围;

Channel:选择通道号;

Exp Chan:选择外部通道

Board ID:板卡的 ID 号

注:在使用扩展板之前必须先通过 Device Manger 对数据采集板卡及其所带的扩展板进行设置,如本例在 Device Manger 的 Option 选项中就先进行了如下的设置:

Options			x
Expansion Board Settings		CJC Channel	
Board Type: PCLD-789/8	89	X (Disabled)	
Gain Setting	A/D Channel		
Gain: 1	0 # of PCLD-788's		
ADD/CHANGE	DELETE	ОК	
Channel Board Type	Gain		
0 PCLD-789/889 1 2 3 4	1	Cancel	
5 6 7	•	Help	

2) 单击 Scan,弹出下面的对话框:

Scan Time				×
Scan Time:	1000	ms	OK Cancel	

可以设置计数的时间间隔,默认值为1000毫秒

3) 单击 Run 菜单项中的 Start 菜单就可以开始采集并显示模拟量(实验中在 PCLD-789D 的 CH0 的 HI 和 GND 之间跨接一电池,测的数据如下图所示),

单击 Stop 项停止。

Setting	ntech Scan	Priver Demo : Software Data	Transfer	
Second	3%411	Ban		
			data - 1 206710	
			uata - 1.300715	

第五章 遇到问题,如何解决?

当您在使用时遇到问题,可以通过下述途径来解决:

- 1. 请详细阅读随板卡送的硬件 Manual (PDF 格式的文档) 安装在光盘 \Documents\Hardware Manuals 目录下。
- 2、详细阅读安装驱动后的软件手册。快捷方式位置为:开始/程序/Advantech Automation/ Device Manager/ DeviceDriver's Manual。也可以直接执行 C:\ProgramFiles\ADVANTECH\ADSAPI\Manual\Examplemanual.chm。
- 3. 登陆下述网页 ,<u>http://www.advantech.com.cn/support/</u> ,搜索相应的产品型号。 得到一些常见问题解答以及相应的驱动程序和工具、中文手册、快速指南。

4.登陆中国区主页<u>http://www.advantech.com.cn/support/</u>点击左上角中国区 FTP下载资源,会得到中国区支持的一些最新资源。也可以直接访问 ftp://ftp.advantech.com.cn/来进入FTP网站。