SIEMENS

ULTRAMAT 23

用于测量IR-吸收气体和氧含量的气体分析仪7MB2335,7MB2337,7MB2338

操作说明 02/01

ULTRAMAT 23气体分析仪,便携式

ULTRAMAT 23气体分析仪, 19"机架式

目录

1	用户需知	J	5
	1.1	信息概述	6
	1.2	使用本手册的注释	7
	1.3	危险信息	
	1.4	认可使用	8
	1.5	合格人员	8
	1.6	授权信息	9
	1.7	供货和运输	9
	1.8	标准和规定	9
	1.9	共同宣言	10
2	安装指南	•••••	11
	2.1	安全信息	12
	2.2	安装	12
	2.3	气连接和内部气路	13
	2.4	气处理	13
	2.5	电气连接	14
	2.5.1	电源连接	15
	2.5.2	信号电缆的连接	15
3	技术描述		17
	3.1	应用	18
	3.2	设计,特性	19
	3.3	特殊特性	20
	3.4	测量原理	21
	3.5	连接	22
		. —	22
	3.5.1	针脚分配	22
	3.5.1 3.5.2	针脚分配 内部气路,气体流程图	22
		内部气路,气体流程图 安装图和连接图	22 24 26
	3.5.2	内部气路,气体流程图 安装图和连接图 通讯	22 24 26 28
	3.5.2 3.5.3 3.5.4 3.6	内部气路,气体流程图安装图和连接图	22 24 26 28
	3.5.2 3.5.3 3.5.4 3.6 3.7	内部气路,气体流程图	22 24 26 28 30
	3.5.2 3.5.3 3.5.4 3.6 3.7 3.8	内部气路,气体流程图	22 24 26 30 31
	3.5.2 3.5.3 3.5.4 3.6 3.7 3.8 3.9	内部气路,气体流程图	22 24 26 30 31 33
	3.5.2 3.5.3 3.5.4 3.6 3.7 3.8	内部气路,气体流程图	22 24 26 30 31 33
4	3.5.2 3.5.3 3.5.4 3.6 3.7 3.8 3.9	内部气路,气体流程图	22 24 26 30 31 33 39 40
4	3.5.2 3.5.3 3.5.4 3.6 3.7 3.8 3.9 3.10	内部气路,气体流程图	22 24 26 30 31 33 39 40
4	3.5.2 3.5.3 3.5.4 3.6 3.7 3.8 3.9 3.10	内部气路,气体流程图	22 24 26 30 31 33 39 40 41 42
4	3.5.2 3.5.3 3.5.4 3.6 3.7 3.8 3.9 3.10 启动 4.1	内部气路,气体流程图	22 24 26 30 31 39 40 42 42 42
4	3.5.2 3.5.3 3.5.4 3.6 3.7 3.8 3.9 3.10 启动 4.1 4.2 4.3 4.3.1	内部气路,气体流程图	22 24 26 30 31 39 40 42 42 42 43
4	3.5.2 3.5.3 3.5.4 3.6 3.7 3.8 3.9 3.10 启动 4.1 4.2 4.3	内部气路,气体流程图	22 24 26 30 31 39 40 42 42 43 43

5	操作	••••••	48
	5.1	概述	
	5.2	显示屏和输入面板	51
	5.3	预热模式	54
	5.4	测量模式	55
	5.5	输入模式	55
	5.5.1	密码等级	56
	5.5.2	键操作步骤	57
	5.5.3	使用 ESC 键	59
	5.6	将分析仪重新编码	60
	5.7	分析仪状态	62
	5.7.1	分析仪状态:状态	62
	5.7.1.1	分析仪状态:状态:日志/故障	62
	5.7.1.2	分析仪状态:状态:维护请求	63
	5.7.1.3	分析仪状态:状态:自动标定偏差	63
	5.7.1.4	分析仪状态:状态:0₂传感器状态	63
	5.7.2	分析仪状态:诊断值	
	5.7.2.1	分析仪状态:诊断值:IR 诊断值	64
	5.7.2.2	分析仪状态:诊断值:0₂诊断值	64
	5.7.2.3	分析仪状态:诊断值:压力传感器诊断	65
	5.7.2.4	分析仪状态:诊断值:其它诊断值	65
	5.7.3	分析仪状态:工厂设置硬件	66
	5.7.4	分析仪状态:工厂设置软件	66
	5.8	标定	
	5.8.1	标定:标定 IR 通道	
	5.8.1.1	标定:标定 IR 通道:设定量程间距气体值	
	5.8.1.2	标定:标定 IR 通道:开始于量程 MR1/2	
	5.8.2	标定:标定 0₂传感器	
	5.8.2.1	标定: 标定 0₂传感器:安装之后的 0₂标定	
	5.8.2.2	标定:标定 0₂ 传感器:标定 0₂ 零点	
	5.8.3	标定:标定压力传感器	
	5.8.4	标定:自标定	
	5.9	参数	
	5.9.1	参数:量程	
	5.9.1.1	2	
	5.9.1.2		
	5.9.1.3	参数:量程:滞后	
	5.9.2	参数:极限值	
	5.9.3	参数:时间常数	
	5.9.4	参数:泵/LCD 对比度	
	5.9.4.1		
	5.9.4.2		
	5.10	配置	
	5.10.1	配置:输入/输出/泵	80

	5.10.1.1	配置:输出/同步/泵:模拟输出	80
	5.10.1.2	配置:输出/同步/泵:分配继电器	81
	5.10.1.3	配置:输入/输出/泵:二进制/同步输入	84
	5.10.1.4	配置:输出/同步/泵:标定/测量时的泵	85
	5.10.2	— · 1071 70150	
	5.10.2.1	1071 1371 1310	
		配置:特殊功能:自标定漂移	
		配置:特殊功能: ELAN 参数	
		配置:特殊功能:工厂数据/复位/单位	
	5.10.3	配置:测试	
	5.10.3.1	HO	
		配置:测试:输入/输出	
	5.10.3.3		
	5.10.3.4 5.10.4	配置:测试:RAM 监视器 配置:工厂配置	
	5.10.4 5.11	其它输入	
	5.11.1	泵键	
	5.11.1	标定键	
	-		
6			
	6.1	信息	
	6.1.1	维护请求	
	6.1.2	故障信息	
	6.2	维护工作	
	6.2.1	替换 O ₂ 传感器	
	6.2.2	替换保险丝	
	6.2.3	替换安全过滤器	
	6.2.4 6.2.5	清空凝液罐(只针对便携单元) 替换粗过滤器(只针对便携单元)	
	6.3	气路的维护	
	6.4	清洗分析仪	
_	_		
1	备件列表.		103
8	附录	•••••	135
	8.1	返修	136
	8.1.1	返修的地址	136
	8.2	说明	138
	8.2.1	缩略词	138
	8.2.2	符号的说明	138
	8.3	软件发布版本	139

用户需知 1

1.1	信息概述	6
1.2	使用本手册的注释	7
1.3	危险信息	7
1.4	认可使用	8
1.5	合格人员	8
1.6	授权信息	9
1.7	供货和运输	. 9
1.8	标准和规定	9
1.9	共同宣言	10

亲爱的客户,

在您开始工作之前请阅读这本手册!

本手册包含有重要的信息和数据,它们的规定将会确保分析仪功能的正确发挥,同时也可节省您的维修费用。当您使用分析仪时,这些信息将会给您重大的帮助并会引导可信赖结果的形成。

注意

我们建议您把您的应用和我们专家部门讨论一下,尤其是在您使用这个分析仪来进行一些诸如研究和开发这些新应用之前。

1.1 信息概述

本手册所描述的产品是在一个极好和测试过的并被认为是安全的状态下出厂的。为了保持这种状态并获得对本分析仪正确和安全的操作,则该分析仪就只能以制造商所描述的方式使用。另外,本分析仪正确和安全的操作是由它合适的运输、存储和安装方式以及谨慎的操作和维护所共同决定的。

当对本手册中所描述分析仪进行认可操作时,就需要本手册所包含的信息。这本手册是为技术上合格的人员所准备的,他们受过专业性的培训或者在仪器和控制领域,也可以称为自动化技术领域拥有相应的知识。

了解本手册中所出现的安全信息与警告信息以及它们技术上的正确实现是获得所描述分析仪的无危险安装和的 先决条件,同时也是在分析仪运行和维修过程中保证安全的先决条件。只有一个拥有所需专业知识的合格人才 才可以正确地理解本手册中出现的安全信息和警告,并可把这些信息应用于特定的情形中。

这本手册包含在分析仪的供货中,尽管由于售后服务方面的原因,分开定购也是可能的。一些很显然的事实,这本手册不可能涵盖所述分析仪的所有型号的所有可能细节,同时在分析仪的安装、操作和维护过程中或者是系统使用时,也不可能描述出所有的可能情况。如果您需要其它的的信息,或者是遇到一些在本手册没有给出足够深度解释的特殊问题时,您可以通过联系本地的Siemens 办事处或代理商来获得帮助。请参阅本手册的第3章以获得Siemens 办事处和代理商的列表。

1.2 使用本手册的注释

这本手册介绍了分析仪的应用与您该如何启动、操作和维 修该分析仪。

特别重要的是警告文本和信息文本。这些内容是和其他内容相分开的,它们通过恰当的象形符号特别地标识出来(见1.3节)。

1.3 危险信息

在本手册中,关于如何避免对仪器使用者或维护人员造成生命危险和健康伤害以及如何避免对财产造成损失的安全信息和警告是通过在以下定义相关术语来强调的。另外,它们也用警告符号(象形符号)来标识。这本手册中所使用的术语和分析仪上的信息具有以下的含义:

危险

意味着如果没有遵守相应的安全预防措施,那么将会发生工作人员的死亡、严重受伤和(或者)财产的巨大损失。

警告

意味着如果没有遵守相应的安全防范措施,那么将会发生 工作人员的死亡,严重受伤和/或者是财产的巨大损失。

小心

带有一个三角形外框的图标意味着如果没有遵守相应的安全防范措施,那么将会出现工作人员受到轻微伤害的危险。

小心

没有一个三角形外框的图标意味着如果没有遵守相应的安全防范措施,那么将会出现财产损失的危险。

注意

意味着如果没有遵守相应的信息规定,那么将会出现一个 不合需要的结果或者状态。

注

是分析仪自身上所注明的非常重要信息,它们意味着应该对分析仪的操作或手册各部分出现该类信息的地方给予特别的注意。

1.4 认可使用

在这本手册中,认可使用的含义就是该分析仪只能用在目录和技术描述中(可见本手册第3章)所描述的应用范围内,并只能和Siemens推荐或认可的设备和部件连接使用。

本手册中所述的分析仪是在考虑适当的安全标准情况下而设计、制造、测试和备文档的。因此,如果遵守产品配置、装配、认可使用和维护方面的操作指南和安全信息,那么通常情况下,就不会出现财产损失和人员健康伤害方面的危险。这台分析仪是这样设计的,例如确保在主电路和二级电路之间有安全隔离。连接的低电压也必须要使用安全隔离的方法来产生。

警告

在拆除机架或防护装置或在打开系统机柜后,可以接触到 这些部件(系统)中的某些可能带有危险电压的组件。因此,只有合适的合格人才才可以操作本分析仪。这些人必 须对本手册中所叙述的所有危险来源和维护方法了如指 掌。

1.5 合格人员

在对分析仪(系统)进行错误的操作或没有遵守手册中或分析仪上(系统机柜上)所阐述的警告信息后,可能就会导致工作人员受到严重的伤害和(或者)是大范围的财产损失。因此,只有合适的合格人员才可以操作本分析仪(系统)。

理解本手册中所出现的安全信息或者仪器自身所注明的安全信息的合格人员是这样一类人,他们

- 要么是像配置工程师那样熟悉自动化技术的安全概念
- 或者是在使用自动化技术设备方面接受过作为操作员的培训并完全掌握本手册中关于操作方面的内容
- 或是在诸如自动化技术设备或在根据已制定的安全措施下认证为激励电路、接地电路和特征电路与分析仪(系统)方面接受过作为试运转人员和(或者)维护人员的适当培训。

1.6 授权信息

你要注意这样一个事实,那就是这个分析仪的文本内容并不是之前存在或者已经存在的某个协议、承诺或者法定条例中的一部分,请不要更改这些文本内容。Siemens 方面的所有承诺都包含在各自的销售合同中,这个合同也包含了全部的和单独的可授权条件。合同中的授权条件不会因为这本说明手册的内容而扩展或减少。

1.8 供货和运输

运输各部分的范围是根据运输所附带的海运文件中所列的有效合同而定的。

当打开包装箱时,请遵守包装材料上的相应规定。核查运输的设备应该是完整和无损坏的。特别提醒的是请比较标签上的订货号(如果标签上注明)与订购数据。

如果可能,请保留封装材料,这样您就可以在需要返修设备时再次使用它。用于这种目的的表格可以在第8.1节中找到。

1.8 标准和规定

这台分析仪的规格和生产应尽可能多地使用欧洲协调标准。如果没有使用欧洲协调标准,那么就使用联邦德国共和国(也可见第3章中的技术数据)的标准和规定。

当该分析仪在这些标准和规定的适用范围之外使用时,分 析仪使用者所在国的相关标准和规定就一定要被遵守。

1.9 共同宣言

CE 符号

ULTRAMAT 23 气体分析仪遵守了 EU 指南中所列的规定。

EMC指南

ULTRAMAT 23 气体分析仪遵守了 EU 指南 89/336/EEC "电磁兼容性"中的规定。

ULTRAMAT 23 气体分析仪可以使用在工业应用领域。

使用的领域	要求:	
	发射干扰	抗干扰
工业	EN 50081-2:1993	EN 50081-2:1993

低电压指南

ULTRAMAT 23 气体分析仪遵守了 EU 指南 72/23/EEC "低电压指南"中的规定。可根据 DIN EN 61010-1(相 当于 IEC 61010-1)来对 EU 指南的遵守情况进行核查。

共同宣言

应遵守以上所提及的各 EU 指南,并且为了便于相关权威机构进行检查,EU 共同宣言可以在下列地址处获得:

西门子(中国)有限公司 自动化与驱动集团 A&D PI 21/22 安装指南 2

2.1	安全信息	12
2.2	安装	12
2.3	气连接和内部气路	13
2.4	气处理	13
2.5	电气连接	14
2.5.1	电源连接	15
2.5.2	信号电缆的连接	15

2.1 安全信息

警告

此分析仪的内部特定部件带有危险电压,所以在分析仪 开启之前,外壳必须要被关好和接地。

警告

此分析仪不可在潜在爆炸环境中使用。不可以测量爆炸性气体混合物(例如:与空气或氧气以潜在爆炸比率混合的可燃性气体)

如果样气中含有比较低爆炸极限低的可燃组分,则所要求的防暴措施必须要得到授权检验员的批准。

警告

气路必需要根据样气的腐蚀性、有毒性和可燃性情况来进行定期的泄漏检测。当测量有毒气体或腐蚀性气体时,分析仪中所积累的气体可能就是气体管路泄漏出的样气。为了避免中毒危险的发生和避免对分析仪组件的损坏,分析仪或者系统必须要用惰性气体(例如氮气)进行吹扫。被吹扫出的气体必须要用合适的设备收集,并要通过一个排气管道以对环境无污染的形式排出。

2.2 安装

- 选择一个尽可能没有振动的安装地点。在操作过程中,必须要确保分析仪的环境温度保持在允许环境温度 范围内。
- 如果要将ULTRAMAT 23安装在一个机柜内或台式机架上,那么它就必须要放在支撑滑轨上。只将分析仪前面的安装螺丝锁住是不够的,因为分析仪的重量可能会让底架承受过量的负荷。
- 仪器后面面板上的散热片必须要放置在一个有适度空气对流存在的地方。

2.3 气连接和内部气路

样气路

一个外直径为 6mm 或者 1/4"的管会作为连接设备存 在。

管所用的材料:PE,FPM或者PTFE。

如果样气将会流入到一个排气管路中,请遵守以下几 点:

- 排气管路的压力必需要是稳定的。如果不这样,则需 使用另外一个独立的排气管路或者是
- 在分析仪和排气路之间安装一个衰减容器 (>1L)
- 排气管路始终都要以下降梯度方式放置,这样做是因 为水会在它里面产生冷凝。

自标定气/零气路径

相对应的气体必需要通过一个细过滤器来吸入。在自标 定气(零气)中,测量气体组分的总量必需要小到可以 忽略不计。特别地,当为CO2量程<3%的仪器进行一个 自标定时,空气必需要通过一个CO2吸收器(例如:碱 石灰)来供给。

祒

斩波器部分吹扫的路 对于一些特定的 CO2量程(见第3节), 斩波器部分要 用入口压力为 3~3.5 bar 的干净氮气或者无 CO₂的合成 空气来进行吹扫。

气连接和气路

参阅本手册中的技术描述(第3章)

2.4 气处理

样气必须要经过足够的处理以避免对它流经部件造成污 染。ULTRAMAT 23 通常在下述几种设备之后:

- 一个带有过滤器的气体取样装置
- 一个样气冷却器
- 一个分析过滤器(1-2um)
- 一个外部抽气泵(样气路>20m)(见图2-1)。

根据样气组分的不同,可能需要一些额外的设备,例如:一个清洗瓶,额外的过滤器和一个减压器。

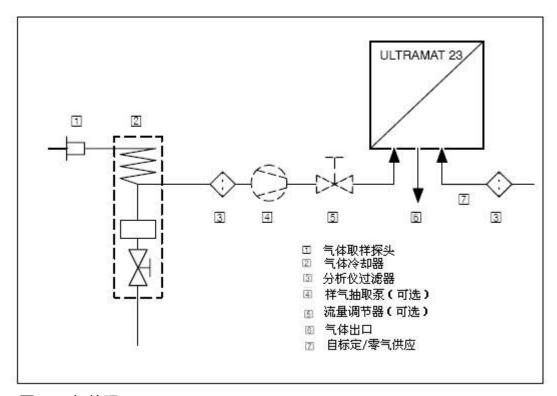


图 2-1 气处理

2.5 电气连接

警告

在电气安装过程中必须要遵守以下规定:

各个国家-特定的电源系统安装标准中所规定的额定电压低于 1000 V (在德国:VDE 0100)。

如果不遵守这些规定,就可能会导致工作人员的死亡、 受伤和(或)财产的损失。

2.5.1 电源连接

分析仪上有一个电源插头,它只能由合格人员来连接到电源上(见 1.5 节)。连接电缆的横截面面积必需要≥1 mm²,并且这里所用的保护性接地导线至少要具有与 L 和 N 相等的横截面面积。

如果主电缆不是双重绝缘的,则它就必需要和信号电缆分开放置。

在分析仪的附近,必需要提供一个很容易接入并且很容易识别出是属于分析仪的主断路开关。

机架型分析仪已经在仪器的后面面板上安装有一个主断路开关,这个开关始终都要被确保是容易接入的。

检查当地的主电压是否与分析仪标签上所规定的电压一 致。

2.5.2 信号电缆的连接

RC 元件必须要按照图 2-2 所示那样连接以作为一个抑制在继电器连接处(例如极限继电器)产生火花的方法。注意:RC 元件会因某感应组件而导致响应滞后(例如:电磁阀)。因此 RC 元件应该根据以下的经验公式来定大小:

 $R=R_{L}/2$; $C=4L/R^{2}_{L_{o}}$

下面的值通常就是足够的了: $R=100\Omega$ 和 C=200nF 此外,确保你只使用了一个非极化的电容器 C。

当使用直流电时,可能用一个火花抑制二极管来取代 RC 元件。

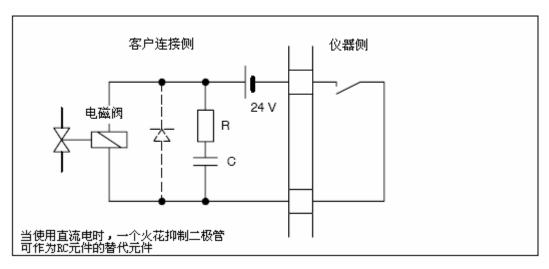


图 2-2 抑制在继电器触点处产生火花的方法

模拟量输入的参考接地电势是机壳电势。

模拟量的输出是波动的,但是却有一个共同的负极。

输入/输出电缆必需要根据针脚分配图(见第三章,技术描述,图 3-5)的要求和相对应的梯形插头(D-SUB插头)连接。导线的横截面面积应该≥0.5mm2。接口电缆不可以长于500m。

注意

电缆(除了主电缆)必需要带屏蔽线,并且它们屏蔽物的两端也必需要接地。

注意

24V 的电源必需要带有安全电气隔离功能,并且可防止过低电压。

技术描述 3

3.1	应用	18
3.2	设计,特性	19
3.3	特殊特性	20
3.4	测量原理	21
3.5	连接	22
3.5.1	针脚分配	22
3.5.2	内部气路,气体流程图	24
3.5.3	安装和连接图	26
3.5.4	通讯	28
3.6	技术数据	30
3.7	尺寸	31
3.8	订购数据	33
3.9	文档	39
3.10	产品的销售和供货情况	40

3.1 应用

ULTRAMAT 23 气体分析仪一次能够测量四种气体组分:最多可测量三种红外敏感气体,例如:CO、CO₂、NO、SO₂、CH₄、R22(氟里昂CHCIF₂)以及采用电化学氧气测量单元测量 O₂。

ULTRAMAT 23 (基本类型)可:

- ●测量一种红外气体组分带(或不带)氧气测量
- ●测量二种红外气体组分带(或不带)氧气测量
- ●测量三种红外气体组分带(或不带)氧气测量

特殊应用

配置有两个IR 组分且不带泵的 ULTRAMAT 23 气体分析仪(带或不带有氧气测量)可配两个独立的气路。这样,它就可以同时测量两个采样点,这种测量方法可用来例如:测量 NOx 转化炉转化前后的 NOx 含量。

ULTRAMAT 23 气体分析仪可应用于烟气排放监测系统以及过程与安全监测。

通过 T W 认证的 ULTRAMAT 23 气体分析仪可按照 13.BImSchV 与 TA Luft 中的要求测量 CO、NO、SO₂ 和 O₂。

通过 T ü 认证的最小容许量程:

- 单组分和双组分分析仪
- CO : $0 \sim 150 \text{mg/m}^3$
- NO : $0 \sim 250 \text{mg/m}^3$
- $-SO_2:0\sim400 \text{mg/m}^3$
- 三组分分析仪
- $-CO : 0 \sim 150 \text{mg/m}^3$
- NO : $0 \sim 250 \text{mg/m}^3$
- $-SO_2:0\sim400 \text{mg/m}^3$

比上述量程大的所有量程也都是容许的。

ULTRAMAT 23 气体分析仪适用于无潜在爆炸危险的环境中。

应用实例

- 小型燃烧系统的操作优化
- 对于使用所有类型燃料(油,气体和煤)的燃烧系统,监测它们的废气排放浓度;也可监控热焚烧厂的运行检测
- ●监测室内空气
- 监测水果储藏室,温室,地窖及仓库的空气状况
- 监控过程控制各功能
- 在钢的热处理过程中,检测环境状况

特殊特性

- 稳固的 19" 钢板机壳,可安装于 铰链式框架上或 者滑轨上。可选:带有把手、凝液罐和粗过滤器的 便携式分析仪
- ●基于 NAMUR 推荐的操作
- 可对分析以进行简单快速地编程和调试
- 由于使用了环境空气(对于不带氧传感器,也可以用 N_2)进行自动标定,所以分析仪实际可做到免维护,且在自标定过程中,零点和线性度也都得到标定。
- 根据实际应用,每 6~12 个月才需用标定气标定一次
- 大屏幕且带有背光灯的 LCD 显示测量值;通过菜单操作实现编程输入、功能测试和标定
- 在规定的范围内,每种组分可有两个量程; 所有量程都是线性的。

自动切换量程带有量程识别功能

- 自动校正大气压力的波动
- 气体流量监测;当流量<1L/min 发出低流量报警信号
- 维护请求报警
- 可为每种组分的上下限报警任意设置上下限
- ●用于开启/停止样气泵、触发自标定和让几个设备 同步的三个二进制输入
- ●用于故障、维护请求、维护切换、设置极限、量程识别以及外部电磁阀的八个继电器输出可自由配置
- ●四个电气隔离的模拟量输入 RS 485 为基本配置

可选: RS232 转换器

- 通过 PROFIBUS-DP/PA 接口接入网络
- ●作为服务和维护工具的 SIPROM GA 软件
- 八个附加的继电器输出(可选)
- •八个附加的二进制输出(可选)

3.2 设计,特性

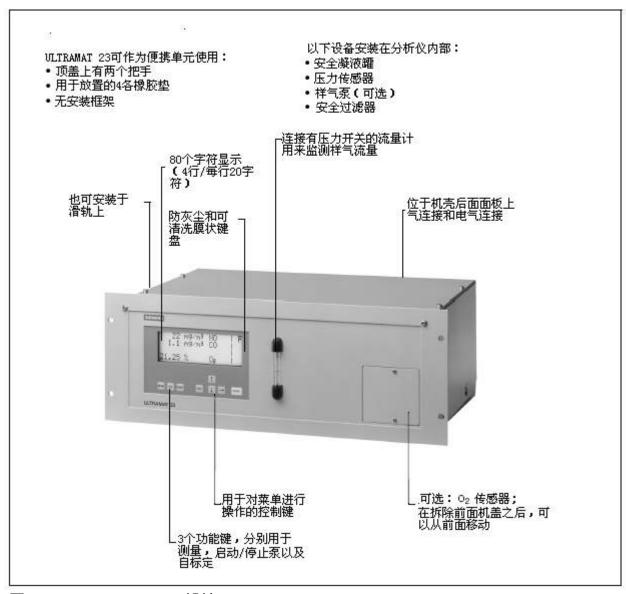


图 3.1 ULTRAMAT 23,设计

3.3 特殊特性

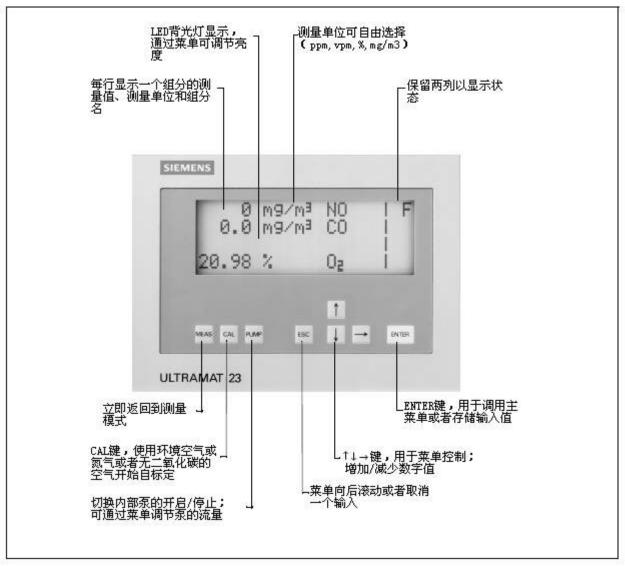


图 3-2 ULTRAMAT 23, 膜状小键盘和图形化显示

3.4 测量原理

ULTRAMAT 23 使用了两个相互独立并可选择的测量原理。

红外气体测量

这种光谱方法是以对非分散性 IR 辐射的吸收为基础的。测量相关波段红外线的衰减幅度即可测量相应气体的浓度。

氧含量测量

氧气传感器是根据一个燃料池的工作原理来工作的。氧气在阴极与电解液的分界面被转换成电流,并且所产生的电流与氧气的浓度成正比。

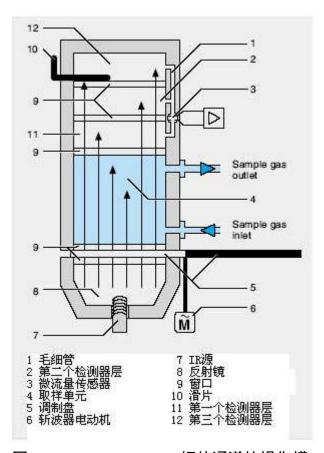


图 3.3 ULTRAMAT 23,红外通道的操作模式(本例中的红外通道带有三层检测器)

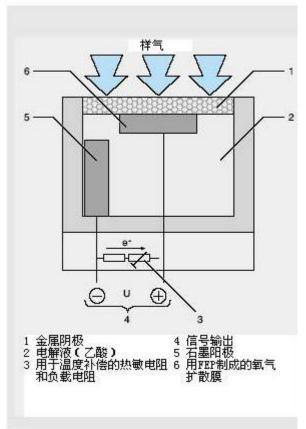


图 3.4 ULTRAMAT 23,氧气测量单元的操作模式

3.5 连接

3.5.1 针脚分配

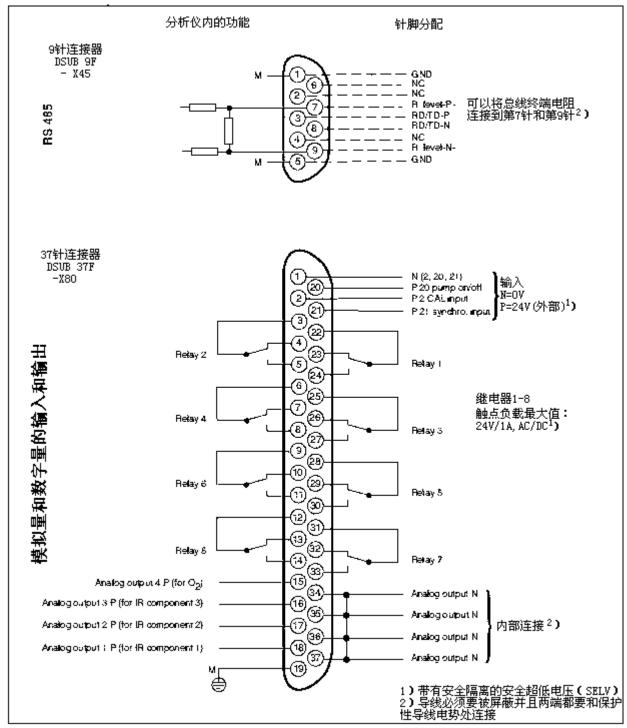


图 3-5 ULTRAMAT 23,针脚分配(标准型)

针脚分配

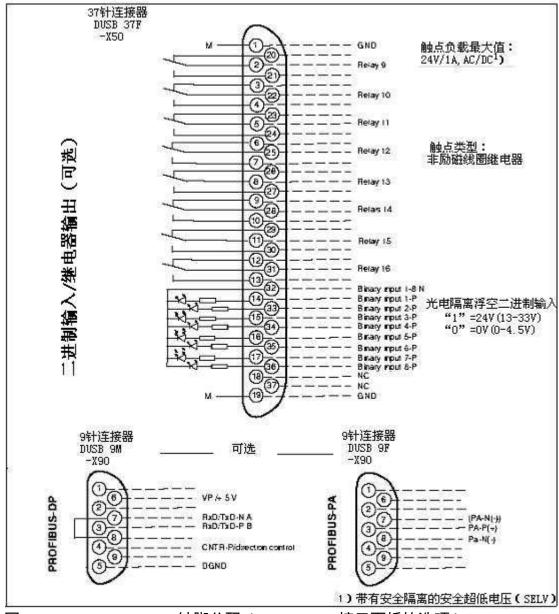


图 3-6 ULTRAMAT 23, 针脚分配 (PROFIBUS 接口面板的选项)

3.5.2 内部气路,气体流程图和基本布局

基本设计

- 气体入口/出口:
 - 外径6 mm的管
 - 外径1/4" 的管
- 内部气路:
 - Viton管
- 流量计
- 压力开关

图3-7 ULTRAMAT 23, 19"机架式如:测量一种红外组分和氧含量、内部样气泵和安全过滤器

图7-图11的注释

- 1 样气/标定气的入口
- 2 自标定气/零气的入口或 样气/标定气的入口(通道2)
- 3 机壳吹扫入口/斩波器吹扫
- 4 气体出口
- 5 膜式安全过滤器
- 6 电磁阀¹)
- 7 样气泵¹)
- 8 流量计

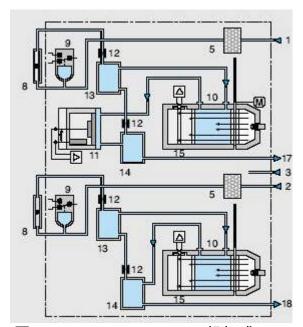


图3-8 ULTRAMAT 23, 19"机架式 两个都带有各自气路的通道,如: 测量两种红外组分和氧含量,带有内 部安全过滤器,但不带采样泵

- 9 压力开关
- 10 取样单元(见图3.3)
- 11 氧气测量单元¹)
- 12 限流器
- 13 凝液罐
- 14 凝液罐
- 15 红外测量单元
- 16 带过滤器的凝液罐
- 17 气体出口
- 18 气体出口(通道2)
- ¹) 由设计决定,参见订购数据,33-38页

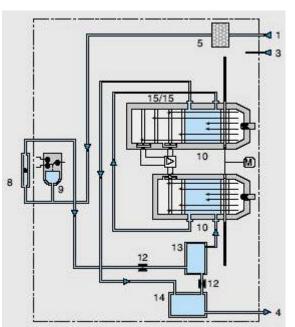


图 3.9 ULTRAMAT 23 , 19"机架单元如:测量三种 IR 组分并不带氧含量测量 , 不带样气泵但带内部安全过滤器

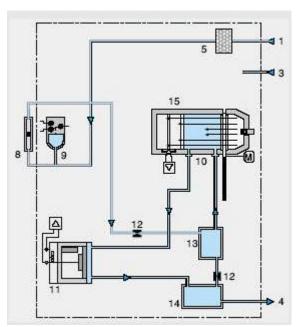


图 3.11 ULTRAMAT 23 19"机架单元如:测量一种 IR 组分并带氧含量测量,不带采样泵但带内部安全过滤器

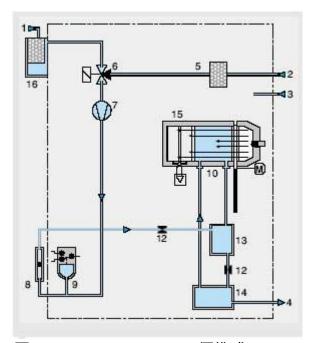


图3.10 ULTRAMAT 23,便携式如:测量一种IR组分并不带氧含量测量,带内部样气泵和安全过滤器,凝液罐位于前面面板上

3.5.3 安装和连接简图

19 " 机架单元

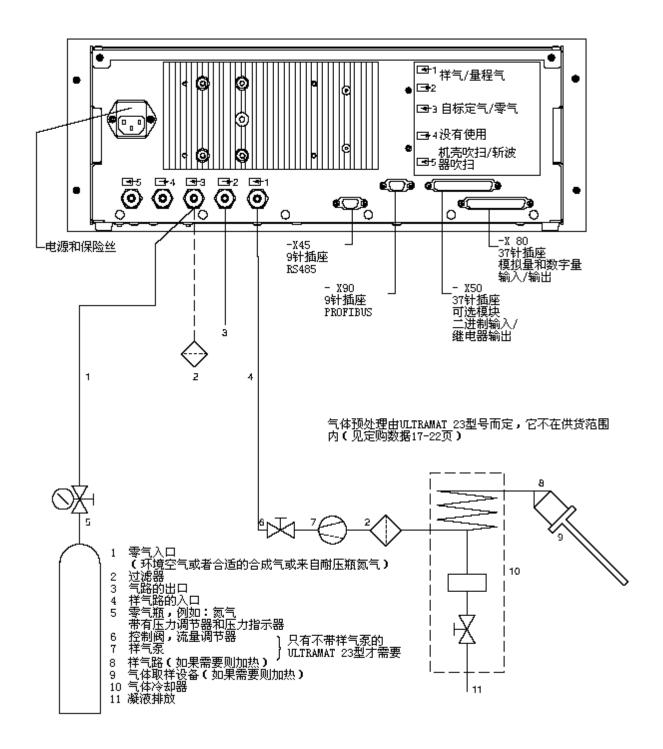


图 3-12 ULTRAMAT 23,19 "机架单元,测量一种 IR 组分并带氧含量测量,样品预处理作为一个实例存在

便携单元

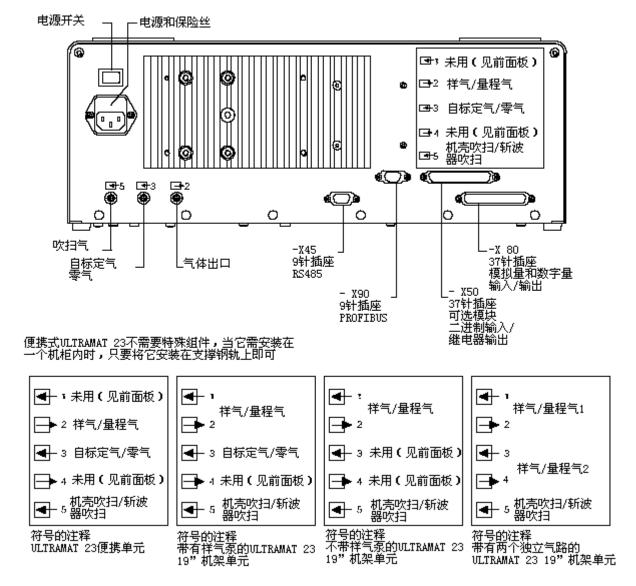


图 3.13 ULTRAMAT 23, 便携单元,气连接和电气连接(上图),各种标签(下图)

3.5.4 通讯

通讯设备

6系列的气体分析仪, ULTRAMAT 6, OXYMAT 6,以及 ULTRAMAT 23都提供了以下的通讯设备:

- 带有内部通讯总线(ELAN)的RS485串行接口作为标准配置存在,它允许两台分析仪之间进行通讯,在多通道分析仪之间,它也允许一条通道通过串行接口与另一条通道进行通讯,一些例如生产气体的压力和对干扰气影响补偿的信息甚至不通过PC就可实现通讯。
- SIPROM GA,专门为仪器维护维修任务所用的一套软件工具。分析仪的所有功能,不管是单台分析仪还是通过网络连在一起的多台分析仪,都可以通过SIPROM GA来实现遥控和监视。
- PROFIBUS DP/-PA是一种在市场中处于领先位置的现场总线。当装配有可选插卡(也可能进行式样翻新)并满足PNO(PROFIBUS 用户协会)对相关"分析仪的设备构架"的规定时,所有的Siemens气体分析仪都可以使用PROFIBUS进行通讯。用户可以使用SIMATIC PDM操作者输入软件直接访问系统中的各分析仪。

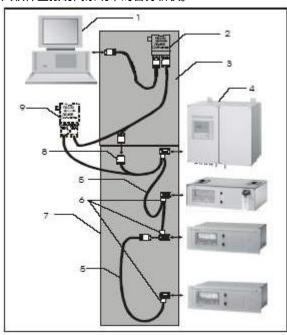


图3-14 一个RS485网络的典型设计

条款	名称
1	计算机
2	RS 485 <-> RS 232 转换器(带有
	RS232/RS485电缆)
3	带有跳线的RS 485总线接头
4	分析仪
5	RS 485电缆
6	RS 485总线连接器
7	RS 485网络
8	9针 DSUB 插头
9	可选:RS 485转发器

接口参数

级别	RS 485
波特率	9600
数据位	8
停止位	1
起始位	1
奇偶校验位	无
无回波模式	

订购信息	订货号
接口描述(德文)	C79000-B5200-C176
RS485-RS232转换器	C79451-Z1589-U1
SIMATIC电缆/总线电缆	6XV1 830-0EH10
SIMATIC总线连接器	6ES7 972-0BB11-0XA0
9针DSUB插头	6ES7 972-0BB11-0XA0
中继器(可见目录 CA	6ES7 972-0AA01-0XA0
01或者IK PI)	

SIPROM GA

应用:用于对Siemens生产气体分析仪进行遥控维护和维修的通讯软件;最多可以维护维修12台分析仪且每台分析仪可具有4种组分。

功能:显示和保存所有分析仪数据,遥控操作分析仪所有功能,参数和配置设置;综合诊断信息,遥控标定;在线帮助,在硬盘上可以循环存储测量值和状态,并可将它们导出到可用商业应用软件中,下载新软件。

硬件要求: PC/笔记本电脑;至少具有8 MB RAM的486DX—66,至少有10 MB空余空间的硬盘;闲置的COM端口: RS232或者RS485,最大传输距离可达500m,使用中继器可获得更远的传输距离。

软件要求: Windows 95/98 或者 NT (4.0版 或者更高级的版本)。

订购信息	订货号
SIPROM GA软件	S79610-B4014-A1
安装过程中可以选择德文/	
英文,包含3张磁盘	
(3.5"),里面存储有安装	
说明,软件产品证书和注册	
表	
为老式分析仪进行固件更新	
ULTRAMAT 23	C79451-A3494-S501
(SW2.06之前的版本)	
· 所有语种	

ULTRAMAT 6 (SW4.1版之前的版本)

德文版	C79451-A3478-S501	
英文版	C79451-A3478-S502	
法文版	C79451-A3478-S503	
西班牙文版	C79451-A3478-S504	
意大利文版	C79451-A3478-S505	

OXYMAT 6 (SW4.1版之前的版本)

31111111 0 (011 11 1 1 1 1 1 1 1 1 1 1 1		
德文版	C79451-A3480-S501	
英文版	C79451-A3480-S502	
法文版	C79451-A3480-S503	
西班牙文版	C79451-A3480-S504	
意大利文版	C79451-A3480-S505	

PROFIBUS-DP/-PA

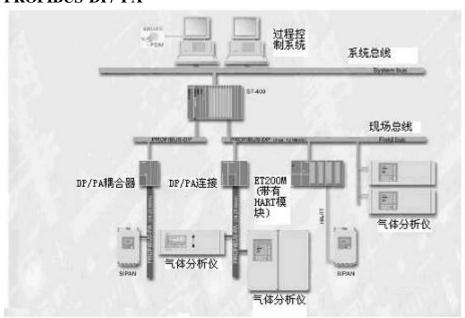


图 3.15 一个 PROFIBUS 系统的基本结构

"现场总线"实际上是一个数字通讯系统,它可以让工厂里分散的现场设备通过一根电缆连成一个网络,并同时接入可编程控制器或一个过程控制系统中。PROFIBUS是一种在市场中处于领先地位的现场总线。PROFIBUS-DP因其可让每台仪器实现相对较小数据量的高速传输而在生产自动化中被广泛使用,同时,PROFIBUS-PA特别考虑了工艺工程的要求,例如:可实现大数据量的传输以及应用在潜在爆炸危险中。

在工厂的任何领域中,使用现场总线都可让用户 极大地节省费用,包括配置和调试、操作和维护,以及以后的工厂扩建。

SIMATIC PDM (过程设备管理)操作者输入工具是一种运行于Windows 95/98/NT中的软件,某个控制系统或者单独的计算机可以使用它来操作气体分析仪,并且它也可集成在SIMATIC PCS 7过程控制系统中。这样可清晰地显示系统中接入的设备和分析仪的复杂参数结构,使操作仅需简单的点击即可进行。

PROFIBUS国际(PNO) 是一个独立的国际机构,它代表着很多分销商和用户的利益。除了提供一些诸如咨询、培训和设备证书之类的服务之外,它的首要任务就是负责PROFIBUS技术的进一步发展、标准化以及市场推广。在一个构架中,对一类仪器的某个绑定功能进行定义是让不同供应商所提供的设备有一个统一响应的前提条件。在1999年底,按照绑定的要求对分析仪的构架进

行了定义,这样就可确保在一个工厂中所有使用 PROFIBUS的设备都可以相互通讯。

如果装有可选插卡(可以进行式样翻新,参看订购信息),所有6系列的气体分析仪,ULTRAMAT 6,OXYMAT 6以及ULTRAMAT 23都可使用PROFIBUS进行通讯。

3.6 技术数据

	•••		
常用的技术数据		红外测量的技术数据	居
测量组分	最多4个组分,其中三种红外敏	量程	见订购数据
	感组分外加氧含量	最小量程	见订购数据
模拟量输出	最多4个,浮空,0/2/4-20mA,线	最大量程	见订购数据
	性化	干扰变量	
负载	≤750Ω	有自标定的迁移	可忽略
特点	线性化	• 无自标定的迁移	<最小量程的 2%/周
显示	带 LED 背光及对比度可调的	追由	自标定循环时间为 3h 时,每变化
-HE / J /	LCD,有各种功能键,80个字符	· /iii/X	10K时,最大误差为铭牌上最小量
	(4行/每行20个字符)		程的 2%
EMO#T#		• 大气压力	
EMC抗干扰	满足 NAMUR NE21(05/93)或者	• 人气压力	压力改变 1%时 , < 量程的 0.2%, 通
(电磁兼容性)	EN50081-1,EN50082-2 中的标准要	+ 'F	过内部压力传感器校正
/ /\	求	● 电源	变化±10%时,<输出信号范围的
使用位置	前面面板垂直	+ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.1%
继电器输出	8个,用于例如:故障,维护请	电源频率	频率变化±5%时,满量程值的±2%
	求,设置极限,功能检测,最大	电磁场 10V/m ,	48 J. 8 1066 107
	负载 AC/DC 24V/1A ¹),8个附加	80%振幅调节,	≤最小量程的 1%
	的输出(可选)	10kHz-500kHz	≤最小量程的 2%
二进制输入	3个,用于例如:开启/停止泵,	显示延迟(90%时	取决于死时间和所选择的衰减
	触发自标定和让几个设备同步,8	间)	
	个附加的输入 (可选)	衰减(电气时间常	可选范围: 0-99s
串行接口	RS485	数)	
预热时间	大约 5min ²)	输出信号的噪音	< 铭牌上最小量程的 1%
自标定功能	自动对分析仪进行标定,循环时	显示分辨率	取决于所选择的量程;小数点后的
	间可调(从0(1)-24小时)		数字位数可以选择
尺寸 (mm)	见图 16和图 3.17	输出信号的分辨率	< 输出信号范围的 0.1%
便携式分析仪	170mm x465mm x 392mm	特性	线性化
(HxWxD)		线性化误差	在最大量程中:<满量程值的1%
	10 " 4 人 仁) 朱 章 库 英 一 155		在最小量程中:<满量程值的2%
ᅏᄱ	19		
框架	19" , 4 个标准高度单元=177mm x 483mm	重复性	
	x 483mm	重复性	≤最小量程的 1%
重量	x 483mm 大约 10kg	氧气测量的技术数据	≤ 最小量程的 1% 据
重量 达到 EN 60529 要求	x 483mm		≤最小量程的 1%据0-5%或者 0-25% O₂,参数可以设
重量 达到 EN 60529 要求 的防护等级	x 483mm 大约 10kg	氧气测量的技术数 技 量程	≤ 最小量程的 1% 据
重量 达到 EN 60529 要求 的防护等级 19 " 机架单元和便	x 483mm 大约 10kg	氧气测量的技术数据量程 干扰变量	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定
重量 达到 EN 60529 要求 的防护等级 19 " 机架单元和便 携单元	x 483mm 大约 10kg	氧气测量的技术数据量程 干扰变量 有自标定的迁移	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略
重量 达到 EN 60529 要求 的防护等级 19 " 机架单元和便 携单元 电源	x 483mm 大约 10kg IP21	氧气测量的技术数据 量程 干扰变量 有自标定的迁移 无自标定的迁移	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中 ,典型值为 1% O ₂ /年
重量 达到 EN 60529 要求 的防护等级 19 " 机架单元和便 携单元	x 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz	氧气测量的技术数据量程 干扰变量 有自标定的迁移	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O ₂ /年 <0.5 % O ₂ /20K,以 20°C 的测量值
重量 达到 EN 60529 要求 的防护等级 19 " 机架单元和便 携单元 电源	x 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz	氧气测量的技术数据 量程 干扰变量 有自标定的迁移 无自标定的迁移 温度	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O ₂ /年 <0.5% O ₂ /20K,以 20°C 的测量值为基准
重量 达到 EN 60529 要求 的防护等级 19 " 机架单元和便 携单元 电源	x 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz	氧气测量的技术数据 量程 干扰变量 有自标定的迁移 无自标定的迁移 温度 大气压力	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O ₂ /年 < 0.5 % O ₂ /20K,以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%
重量 达到 EN 60529 要求 的防护等级 19 " 机架单元和便 携单元 电源	x 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz	氧气测量的技术数据 量程 干扰变量 有自标定的迁移 无自标定的迁移 温度	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O ₂ /年 < 0.5 % O ₂ /20K,以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%以%表示的 NH ₃ 量程会减少仪器寿
重量 达到 EN 60529 要求 的防护等级 19 " 机架单元和便 携单元 电源	x 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz	氧气测量的技术数据量程 干扰变量 有自标定的迁移 无自标定的迁移 温度 大气压力 辅助气	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O ₂ /年 < 0.5 % O ₂ /20K,以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%以%表示的 NH ₃ 量程会减少仪器寿命
重量 达到 EN 60529 要求 的防护等级 19 " 机架单元和便 携单元 电源	x 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz AC 100V, +10%/-15%, 60Hz	氧气测量的技术数据量程 干扰变量 有自标定的迁移 无自标定的迁移 温度 大气压力 辅助气 典型的燃烧废气	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O ₂ /年 <0.5% O ₂ /20K,以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%以%表示的 NH ₃ 量程会减少仪器寿命干扰<0.05% O ₂
重量 达到 EN 60529 要求 的防护等级 19 " 机架单元和便 携单元 电源	x 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz AC 100V, +10%/-15%, 60Hz AC 120V, +10%/-15%, 60Hz	氧气测量的技术数据量程 干扰变量 有自标定的迁移 无自标定的迁移 温度 大气压力 辅助气 典型的燃烧废气 输出信号的噪音	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中 , 典型值为 1% O ₂ /年 < 0.5 % O ₂ /20K, 以 20°C 的测量值为基准 压力改变 1%时 , <测量值的 0.2%以%表示的 NH ₃ 量程会减少仪器寿命干扰<0.05% O ₂ <满量程值的 0.05% O ₂ < 满量程值的 0.05% O ₂
重量 达到 EN 60529 要求 的防护等级 19 " 机架单元和便 携单元 电源 电源	x 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz AC 100V, +10%/-15%, 60Hz AC 120V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz	氧气测量的技术数据量程 干扰变量 有自标定的迁移 无自标定的迁移 温度 大气压力 辅助气 典型的燃烧废气 输出信号的噪音 显示延迟	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O ₂ /年 < 0.5 % O ₂ /20K,以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%以%表示的 NH ₃ 量程会减少仪器寿命 干扰<0.05% O ₂ < 满量程值的 0.05% O ₂ 取决于死时间和所选择的衰减,但
重量 达到 EN 60529 要求的防护等级 19 " 机架单元和便携单元 电源 电源	X 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 60Hz AC 120V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz	氧气测量的技术数据量程 干扰变量 有自标定的迁移 无自标定的迁移 温度 大气压力 辅助气 典型的燃烧废气 输出信号的噪音	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O ₂ /年 < 0.5 % O ₂ /20K,以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%以%表示的 NH ₃ 量程会减少仪器寿命干扰<0.05% O ₂ < 满量程值的 0.05% O ₂ < 满量程值的 0.05% O ₂ < 对法型大约为 1L/min时,不
重量 达到 EN 60529 要求的防护等级 19 " 机架单元和便携单元 电源 电源 电源	X 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz AC 100V, +10%/-15%, 60Hz AC 120V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz	氧气测量的技术数据量程 干扰变量 有自标定的迁移 无自标定的迁移 温度 大气压力 辅助气 典型的燃烧废气 输出信号的噪音 显示延迟	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O ₂ /年 <0.5 % O ₂ /20K, 以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%以%表示的 NH ₃ 量程会减少仪器寿命干扰<0.05% O ₂ <满量程值的 0.05% O ₂ 表示时间和所选择的衰减,但是,当流量大约为 1L/min时,不可以<30s
重量 达到 EN 60529 要求的防护等级 19 " 机架单元和便携单元 电源 电源 电源 柱流	X 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 60Hz AC 120V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz	氧气测量的技术数据量程 干扰变量 有自标定的迁移 无自标定的迁移 温度 大气压力 辅助气 典型的燃烧废气 输出信号的噪音 显示延迟	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O ₂ /年 < 0.5 % O ₂ /20K,以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%以%表示的 NH ₃ 量程会减少仪器寿命干扰<0.05% O ₂ < 满量程值的 0.05% O ₂ < 满量程值的 0.05% O ₂ < 对法型大约为 1L/min时,不
重量 达到 EN 60529 要求的防护等级 19 " 机架单元和便携单元 电源 电源 电源 「本入口条件 样气压力 样气流量 样气温度	X 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 60Hz AC 120V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz 大约 60VA 绝压 0.5-1.5bar³) 66-120L/h (1.2-2L/min) 0-50°C	氧气测量的技术数据量程 干扰变量 有自标定的迁移 无自标定的迁移 温度 大气压力 辅助气 典型的燃烧废气 输出信号的噪音 显示延迟 (90%时间)	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O ₂ /年 <0.5 % O ₂ /20K, 以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%以%表示的 NH ₃ 量程会减少仪器寿命干扰<0.05% O ₂ <满量程值的 0.05% O ₂ 表示时间和所选择的衰减,但是,当流量大约为 1L/min时,不可以<30s
重量 达到 EN 60529 要求的防护等级 19 " 机架单元和便携单元 电源 电源 「体入口条件 样气流量 样气温度	X 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 60Hz AC 120V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz	氧气测量的技术数据量程 干扰变量 有自标定的迁移 无自标定的迁移 温度 大气压力 辅助气 典型的燃烧废气 输出信号的噪音 显示延迟 (90%时间) 显示分辨率	 ≤最小量程的 1% 据 0-5%或者 0-25% O₂ , 参数可以设定 可忽略 暴露于空气中,典型值为 1% O₂/年 < 0.5 % O₂/20K, 以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%以%表示的 NH₃量程会减少仪器寿命 干扰<0.05% O₂ < 满量程值的 0.05% O₂ < 满量程值的 0.05% O₂ 以决于死时间和所选择的衰减,但是,当流量大约为 1L/min时,不可以<30s < 满量程值的 0.2%
重量 达到 EN 60529 要求的防护等级 19 " 机架单元和便携单元 电源 电源 柱气压力 样气流量 样气温度 环境条件	X 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 60Hz AC 120V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz 大约 60VA 绝压 0.5-1.5bar³) 66-120L/h (1.2-2L/min) 0-50°C	電气测量的技术数据量程 干扰变量 有自标定的迁移 无自标定的迁移 温度 大气压力 辅助气 典型的燃烧废气 输出信号的噪音 显示延迟 (90%时间) 显示分辨率 输出信号的分辨率	 ≤最小量程的 1% 据 0-5%或者 0-25% O₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O₂/年 < 0.5 % O₂/20K,以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%以%表示的 NH₃量程会减少仪器寿命干扰<0.05% O₂ < 满量程值的 0.05% O₂ < 满量程值的 0.05% O₂ 取决于死时间和所选择的衰减,但是,当流量大约为 1L/min时,不可以<30s < 满量程值的 0.2% < 输出信号范围的 0.2%
重量 达到 EN 60529 要求的防护等级 19 " 机架单元和便携单元 电源 电源 「体入口条件 样气流量 样气温度	X 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 60Hz AC 120V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz 大约 60VA 绝压 0.5-1.5bar³) 66-120L/h (1.2-2L/min) 0-50°C	氧气测量的技术数据量程 干扰变量 有自标定的迁移 无自度 大气期气 典型的燃烧废气 输助的号。以下, 中型的燃烧废气 输出。一种, 中型的燃烧吸流。(90%时间) 显示分辨率 输出, 使用, 中面,	≤最小量程的 1% IS O-5%或者 O-25% O ₂ , 参数可以设定 可忽略 暴露于空气中, 典型值为 1% O ₂ /年 < 0.5 % O ₂ /20K, 以 20°C 的测量值 为基准 压力改变 1%时, <测量值的 0.2% 以%表示的 NH ₃ 量程会减少仪器寿命 干扰<0.05% O ₂ < 满量程值的 0.05% O ₂ マ满量程值的 0.05% O ₂ マ满量程值的 0.2% < 满量程值的 0.2% < 满量程值的 0.2% < 输出信号范围的 0.2% 测量 21% O ₂ 时,大约为 2 年 < 0.05% O ₂
重量 达到 EN 60529 要求的防护等级 19 " 机架单元和便携单元 电源 电源 电流 柱气压力 样气流量 样气温度 环境条件	X 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz AC 100V, +10%/-15%, 60Hz AC 120V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz 大约 60VA 绝压 0.5-1.5bar³) 66-120L/h (1.2-2L/min) 0-50°C <90% RH⁴), 无凝液	氧气测量的技术数据量程 干扰变量 有自标定的迁移 无温度 大辅助的后、发展等 大辅助的信息 中型的燃烧除等 显示的影响。 如此是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	 ≤最小量程的 1% IR 0-5%或者 0-25% O₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O₂/年 < 0.5 % O₂/20K,以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%以%表示的 NH₃量程会减少仪器寿命干扰<0.05% O₂ < 满量程值的 0.05% O₂ < 满量程值的 0.05% O₂ < 满量程值的 0.2%以当流量大约为 1L/min时,不可以<30s < 满量程值的 0.2% < 输出信号范围的 0.2% < 输出信号范围的 0.2% < 通21% O₂时,大约为 2年 < 0.05% O₂ 全超低电压(SELV)
重量 达到 EN 60529 要求的防护等级 19 " 机架单元和便携单元 电源 电源 柱气压力 样气流量 样气温度 环境条件	X 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 60Hz AC 120V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz 大约 60VA 绝压 0.5-1.5bar³) 66-120L/h (1.2-2L/min) 0-50°C <90% RH⁴), 无凝液	氧气测量的技术数据量程 干扰变量 有自标定的迁移 无度 大領助气	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O ₂ /年 < 0.5 % O ₂ /20K, 以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%以%表示的 NH ₃ 量程会减少仪器寿命干扰<0.05% O ₂ <满量程值的 0.05% O ₂ <满量程值的 0.05% O ₂ 以满量大约为 1L/min时,不可以<30s < 输出信号范围的 0.2% < 输出信号范围的 0.2% < 输出信号范围的 0.2% < 输出信号范围的 0.2% < 20.05% O ₂ 全超低电压(SELV) 可以获得最大测量精度
重量 达列 EN 60529 要求的防护等级 19 " 机	X 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz AC 100V, +10%/-15%, 60Hz AC 120V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz 大约 60VA 绝压 0.5-1.5bar³) 66-120L/h (1.2-2L/min) 0-50°C <90% RH⁴), 无凝液	氧气测量的技术数据量程 干扰变量 有自标定的迁移 无温度 大气的气 典型的燃烧废气 输出可见的燃烧废气 输出可见的。 中型的燃烧废气 输出可见的。 中型的燃烧吸气 输出可见时间。 是不知识的。 是不知识的。 是不知识的。 是不知识的。 是不知识的。 是不知识的。 是不知识的。 是不知识的。 是不知识的。	 ≤最小量程的 1% IR 0-5%或者 0-25% O₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O₂/年 < 0.5 % O₂/20K,以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%以%表示的 NH₃量程会减少仪器寿命干扰<0.05% O₂ < 满量程值的 0.05% O₂ < 满量程值的 0.05% O₂ < 满量程值的 0.2%以当流量大约为 1L/min时,不可以<30s < 满量程值的 0.2% < 输出信号范围的 0.2% < 输出信号范围的 0.2% < 通21% O₂时,大约为 2年 < 0.05% O₂ 全超低电压(SELV)
重量 达到 EN 60529 要求的防护等级 19 " 机架单元和便携单元 电源 电源 电源 大气压力 样气流量 样气温度 样气温度 环境条件	X 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz AC 100V, +10%/-15%, 60Hz AC 120V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz 大约 60VA 绝压 0.5-1.5bar³) 66-120L/h (1.2-2L/min) 0-50°C <90% RH⁴), 无凝液 储存和运输过程中: -30 to +70 °C 操作时: +5 to +45 °C 储存和运输过程中: 年平均<90%	電气测量的技术数据量程 干扰变量 有自标 定的迁移 无温度 大辅助 中型的后, 中型的后, 中型的后, 中型的点。 中型的点。 中型的点。 中型的点。 中型的点。 中型的点。 中型的点。 中型的点。 中型的一个。 中型的一个一个。 中型的一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O ₂ /年 < 0.5 % O ₂ /20K, 以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%以%表示的 NH ₃ 量程会减少仪器寿命干扰<0.05% O ₂ <满量程值的 0.05% O ₂ <满量程值的 0.05% O ₂ 以满量大约为 1L/min时,不可以<30s < 输出信号范围的 0.2% < 输出信号范围的 0.2% < 输出信号范围的 0.2% < 输出信号范围的 0.2% < 20.05% O ₂ 全超低电压(SELV) 可以获得最大测量精度
重量 达的 60529 要求的防护等级 19 " 单元 推 第	x 483mm 大约 10kg IP21 AC 100V, +10%/-15%, 50Hz AC 120V, +10%/-15%, 50Hz AC 200V, +10%/-15%, 50Hz AC 230V, +10%/-15%, 50Hz AC 100V, +10%/-15%, 60Hz AC 120V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz AC 230V, +10%/-15%, 60Hz 大约 60VA 绝压 0.5-1.5bar³) 66-120L/h (1.2-2L/min) 0-50°C <90% RH⁴), 无凝液 储存和运输过程中: -30 to +70 °C 操作时: +5 to +45 °C 储存和运输过程中: 年平均<90% RH²)	氧气测量的技术数据量程 干扰变量 有自标定的迁移 无温度 大气的气 典型的燃烧废气 输出可见的燃烧废气 输出可见的。 中型的燃烧废气 输出可见的。 中型的燃烧吸气 输出可见时间。 是不知识的。 是不知识的。 是不知识的。 是不知识的。 是不知识的。 是不知识的。 是不知识的。 是不知识的。 是不知识的。	≤最小量程的 1% 据 0-5%或者 0-25% O ₂ ,参数可以设定 可忽略 暴露于空气中,典型值为 1% O ₂ /年 < 0.5 % O ₂ /20K, 以 20°C 的测量值为基准 压力改变 1%时,<测量值的 0.2%以%表示的 NH ₃ 量程会减少仪器寿命干扰<0.05% O ₂ <满量程值的 0.05% O ₂ <满量程值的 0.05% O ₂ 以满量大约为 1L/min时,不可以<30s < 输出信号范围的 0.2% < 输出信号范围的 0.2% < 输出信号范围的 0.2% < 输出信号范围的 0.2% < 20.05% O ₂ 全超低电压(SELV) 可以获得最大测量精度

3.7 尺寸

19 " 机架单元

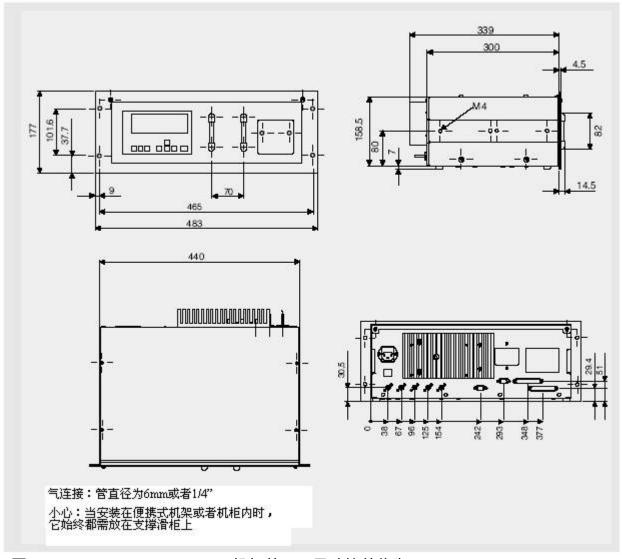


图 3-16, ULTRAMAT 23, 19 " 机架单元,尺寸的单位为 mm

便携单元

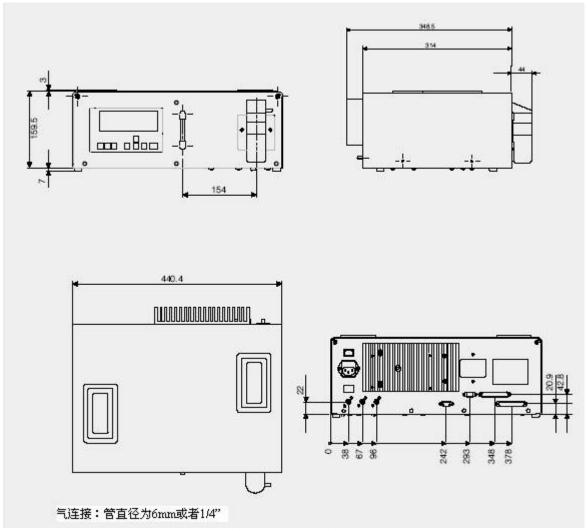


图 3-17 ULTRAMAT 23,便携单元,尺寸的单位为 mm

3.8 订购数据

		订货号
测量一种红外组分和氧含量的		7MB2335-
ULTRAMAT 23 气体分析仪		- FFFF 0- T AA T
机壳、版本及气路		
●安装在机柜内的 19 " 单元		
气连接	内部样气泵	
6mm 管		ó
1/4 " 管	不带有 ²)	1
6mm 管	带有	2
1/4 " 管	带有	3
安装在钢板机壳内的便携式分析仪,气泵、凝液罐和位于前面面板上的安全过滤		8
测量组分	·	. "
<u>州里坦力</u> CO	<u>PJ </u>	$egin{array}{c c c c c c c c c c c c c c c c c c c $
CO ₂ 1) 8)	D,G,JR	\ddot{c}
CH_4	H,L,N,P,R	D
C_2H_4	K	F
SO_2 NO	FL,W GJ,V,W	N P
R22	H	$\begin{array}{c c} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \end{array}$
最小量程	''	. "
<u>取小里往</u> 0 - 20 vpm	<u>取入里往</u> 0 - 100 vpm	c
0 - 50 vpm	0 - 250 vpm	D
0 - 100 vpm	0 - 500 vpm	E
0 - 150 vpm	0 - 750 vpm	F
0 - 200 vpm	0 - 1 000 vpm 0 - 2 500 vpm	G
0 - 500 vpm 0 - 1000 vpm	0 - 2 300 vpm 0 - 5 000 vpm	$egin{array}{c c} \mathbf{H} & & & \\ \mathbf{J} & & & & \\ \end{array}$
0 - 2000 vpm	0 - 10 000 vpm	K
0 - 0.5 %	0 - 2.5 %	L
0 - 1 %	0 - 5 %	M
0 - 2 % 0 - 5 %	0 - 10 % 0 - 25 %	N P
0 - 3 % 0 - 10 %	0 - 23 % 0 - 50 %	Q
0 - 20 %	0 - 100 %	R
$0 - 150 \text{ mg/m}^3$	0 - 750 mg/m ³	U
$0 - 250 \text{ mg/m}^3$	$0 - 1250 \text{ mg/m}^3$	v
0 - 400 mg/m ³ 0 - 50 vpm	0 - 2000 mg/m ³ 0 - 2500 vpm	W X
测量氧含量	0 - 2300 vpm	
● 不带O₂传感器		0
带有O₂传感器		1
电源		
AC 100 V, 50 Hz		0
AC 120 V, 50 Hz		1
AC 200 V, 50 Hz		2
AC 230 V, 50 Hz		3
AC 100 V, 60 Hz		4
AC 120 V, 60 Hz		5
AC 230 V, 60 Hz		. 6
操作软件 , 文档 ³)		
●徳文		0 1
● 英文 - 注 文		2
●法文		3
●西班牙文		3 4
●意大利文		4

脚注见 34 页

订购数据

测量一种红外组分和氧含量的ULTRAMAT 23气体分析仪(接上页)

其它型号	订购代码
请在定购号后加" – Z"并写明订购代码	
从RS 485转换到RS 232的接口转换器	A11
带八个二进制输入/继电器输出和PROFIBUS-PA接口的补充电子器件	A12
带八个二进制输入/继电器输出和PROFIBUS-DP接口的补充电子器件	A13
滑轨(双轨),可能只有19"机架式单元才用	A31
成套的梅花内六角工具	A32
TAG标签(标明客户规格)	B03
响应时间短的气路	C01
用于斩波器吹扫的气连接管径为6 mm	C02
用于斩波器吹扫的气连接管径为1/4"	C03
客户验收5)	Y01
量程以纯文本格式显示 ⁶)	Y11
附件	
CO₂吸收盒	7MB1933-8AA
接口转换器 (RS 485/RS 232)	C79451-Z1589-U1

- $^{-1}$) 对于量程低于1%的情况,可用 CO_2 吸收管进行零点设定(见订购数据:附件)
- 2) 无独立的零气输入, 无电磁阀
- 3) 用户语言可选
- ⁴) 可单独提供(包括接口描述C79000-E5264-C176)
- ⁵)客户验收:在仪器到达工厂后的1/2天内进行。验收时进行以下工作:比较分析仪与订单是否同一,线性化检查(零点、中间点值和满量程值)、用标定气进行重复性检查(在XT记录仪上记录上述每种核查的情况,并记录结果)
- 6) 标准设置:最小量程,最大量程
- ⁷) O₂传感器位于红外测量组分1的气路中
- 8) 斩波器吹扫(对于量程小于0.1%的 CO_2 测量,需要的 N_2 压力约为3bar), 需另外订购(参见订购代码CO2或CO3)

注:在通常状况下(θ C, 1013mbar),单位ppm(vpm)和mg/m³之间的换算因子如下:

SO₂: 0.35 ppm ~ 1 mg/m³ NO: 0.75 ppm ~ 1 mg/m³ CO: 0.80 ppm ~ 1 mg/m³

订购举例

ULTRAMAT 23气体分析仪 测量一种IR组分和氧含量 IR通道,测量组分:CO₂

量程1:0-1000 vpm,量程2:0-5000 vpm

通道2,组分:O₂ 量程:0-5%和0-25% 电源: 230V, 50Hz

安装在机柜中的19"机架单元

气路连接的管径为1/4",并带样气泵

软件和文档为西班牙文

双滑轨和客户验收

订货号:7MB2335-3CJ10-3AA3-Z

A31+Y01

3 3 3 3 3 3 4 3 3 4 3 3	 订购数据		 订货号
ULTRAMAT 23 与体分析仪			
・安装在机柜内的 19 * 単元 「连接 内部性气泵 独立的气路(双通道) ⁷)			
安装在机柜内的 19 " 单元 「连接			
恒注接			- -
不帯有			(77)794 \ 7 \
4 ** 管 不帯有・ 不帯有			
6mm 管 帯有 不帯有			
3		,	
6mm管 不帯有²) 帯有			
4 ** 管 不帯有²) 帯有 5	1/4"管		3
・安装在钢板机壳内的便携式分析仪,气连接的管径为 6mm,带有内部 样气泵、凝液罐和位于前面面板上的安全过滤器 8 第一种红外组分 测量组分 可能的量程级别代码 D,E,F,GR,U,X D,G,JR C,H, H,L.N,P,R NO G,J,V,W NO G,J,V,W NO G,J,V,W P,R22 H D B小量程 0-20 vpm 0-50 vpm 0-100 vpm 0-50 vpm 0-100 vpm 0-100 vpm 0-250 vpm 0-200 vpm 0-100 vpm 0-1000 vpm 0-1000 vpm 0-1000 vpm 0-1000 vpm 0-1000 vpm 0-1000 vpm 0-25 % 0-15 % 0-25 % 0-15 % 0-25 % 0-10 % 0-5 % 0-25 % 0-10 % 0-50 % 0-10 % 0-50 mg/m³ 0-100 % 0-100 % 0-100 % 0-250 mg/m³ 0-100 % 0-100 % 0-100 mg/m³ 0-250 mg/m³ 0-250 mg/m³ 0-250 mg/m³ 0-250 mg/m³ 0-250 vpm 0-100 % 0-100 % 0-100 % 0-100 % 0-100 % 0-100 % 0-250 mg/m³ 0-250 mg/m³ 0-250 mg/m³ 0-2500 vpm 0-200 mg/m³ 0-2500 vpm 0-200 mg/m³ 0-2500 vpm 0-250 vpm 0-250 vpm 0-200 mg/m³ 0-2500 vpm 0-2500			4
Page	1/4 " 管	不带有 ²)	5
第一种女兒	● 安装在钢板机员	内的便携式分析仪,气连接的管径为 6m	nm,带有内部
別量组分	样气泵、凝液罐	D位于前面面板上的安全过滤器	8
別量组分	第一种红外组分		
D.E.F.GR.U.X		可能的量程级别	代码
CO2 1 18 0 D,G,JR C CH4			
CH4 H,L,N,P,R D C2H4 K F SO2 FL,W N NO 6J,V,W P R22 H U 最小量程 最大量程 C 0 - 20 vpm 0 - 100 vpm D 0 - 100 vpm 0 - 500 vpm E 0 - 150 vpm 0 - 500 vpm F 0 - 1000 vpm 0 - 1000 vpm G 0 - 500 vpm 0 - 1000 vpm G 0 - 500 vpm 0 - 1000 vpm J 0 - 1000 vpm 0 - 500 vpm J 0 - 1000 vpm 0 - 1000 vpm K 0 - 1000 vpm 0 - 1000 vpm K 0 - 10 % N N 0 - 2 % 0 - 10 % N 0 - 2 % 0 - 10 % N 0 - 20 % 0 - 10 % N 0 - 10 % 0 - 50 % Q 0 - 20 mg/m³ 0 - 100 mg/m³ V 0 - 250 mg/m³ 0 - 1250 mg/m³ V 0 - 50 vpm 0 - 2500 vpm X m/m accola			
C2H4 K F N SO2 FL,W N NO GJ,V,W P R22 H U By 量程 Bx 量程 0 - 20 vpm 0 - 100 vpm C 0 - 50 vpm 0 - 250 vpm D 0 - 100 vpm 0 - 500 vpm F 0 - 200 vpm 0 - 1000 vpm G 0 - 500 vpm 0 - 2 500 vpm H 0 - 500 vpm 0 - 2 500 vpm J 0 - 500 vpm 0 - 1000 vpm K 0 - 500 vpm 0 - 1000 vpm K 0 - 100 vpm 0 - 500 vpm J 0 - 100 vpm 0 - 1000 vpm K 0 - 10 % 0 - 100 wpm K 0 - 2% 0 - 10 % N 0 - 5 % 0 - 25 % P 0 - 10 % 0 - 25 % P 0 - 10 % 0 R R 0 - 150 mg/m³ 0 - 750 mg/m³ U 0 - 250 mg/m³ 0 - 1250 mg/m³ V 0 - 400 mg/m³ 0 - 2500 vpm N 0 - 750 mg/m³ 0			D
NO R22	C_2H_4		F
R22	SO_2	FL,W	
最大量程	NO	GJ,V,W	-
0 - 20 vpm	R22	Н	U
0 - 50 vpm	最小量程	最大量程	
0 - 500 ypm	0 - 20 vpm	0 - 100 vpm	c
0 - 150 vpm	0 - 50 vpm	0 - 250 vpm	D
0 - 200 vpm			
0 - 500 vpm			
0 - 1000 vpm			
0 - 2000 vpm			
0 - 0.5 % 0 - 1 % 0 - 1 % 0 - 5 % 0 - 10 % N 0 - 5 % 0 - 10 % N 0 - 5 % 0 - 10 % 0 - 50 % P 0 - 10 % 0 - 50 % Q 0 - 20 % 0 - 100 % 0 - 150 mg/m³ 0 - 750 mg/m³ 0 - 1250 mg/m³ 0 - 1250 mg/m³ V 0 - 400 mg/m³ 0 - 2000 mg/m³ W 0 - 50 vpm 0 - 2500 vpm	-	•	
0 - 1 % 0 - 5 % M 0 - 2 % 0 - 10 % N N 0 - 5 % P P 0 - 10 % Q Q 0 - 25 % P P 0 - 10 % Q Q 0 - 20 % 0 - 100 % R Q Q 0 - 250 mg/m³ 0 - 750 mg/m³ U Q 0 - 250 mg/m³ 0 - 1250 mg/m³ V Q 0 - 400 mg/m³ 0 - 2000 mg/m³ W Q 0 - 50 vpm 0 - 2500 vpm X X 测量氧含量 ● 不带 O₂ 传感器 0 - 12 50 vpm X X D P P P P P P P P P P P P P P P P P			
0 - 2 % 0 - 10 % N 0 - 5 % Q 0 - 25 % Q Q 0 - 20 % 0 - 100 % R Q Q 0 - 150 mg/m² 0 - 750 mg/m² U U 0 - 250 mg/m² 0 - 1250 mg/m² V 0 - 400 mg/m² 0 - 2500 vpm X X 测量氧含量 ● 不带Q₂传感器 ● 不带Q₂传感器 ● 表 2 0 V, 50 Hz AC 100 V, 50 Hz AC 200 V, 50 Hz AC 200 V, 50 Hz AC 230 V, 50 Hz AC 120 V, 60 Hz AC 120 V, 60 Hz AC 120 V, 60 Hz AC 230 V, 60 Hz			
0 - 5 % 0 - 25 % P 0 - 10 % 0 - 50 % Q 0 0 - 20 % 0 - 100 % R 0 - 100 % R 0 - 150 mg/m³ 0 - 750 mg/m³ UU 0 - 250 mg/m³ 0 - 1250 mg/m³ V 0 - 400 mg/m³ 0 - 2000 mg/m³ W 0 - 50 vpm 0 - 2500 vpm X N 测量氧含量 ● 不带O₂传感器 0 - 2500 vpm			
0 - 10 % 0 - 50 % Q 0 - 20 % 0 - 100 % R 0 - 150 mg/m³ 0 - 750 mg/m³ U V 0 - 250 mg/m³ 0 - 1250 mg/m³ V V 0 - 400 mg/m³ 0 - 2000 mg/m³ W 0 - 50 vpm 0 - 2500 vpm X X 測量氧含量 ・不带O2 传感器 0 ・ 帯有O2 传感器 1 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日			
0 - 20 % 0 - 100 % R 0 - 150 mg/m³ 0 - 750 mg/m³ U 0 - 250 mg/m³ 0 - 250 mg/m³ V 0 - 400 mg/m³ 0 - 2000 mg/m³ W 0 - 50 vpm 0 - 2500 vpm X X 测量氧含量 ● 不带 O₂ 传感器 0 ● 帯有 O₂ 传感器 1 1 日源 AC 100 V, 50 Hz			$Q \mid \cdot \mid \cdot \mid \cdot \mid$
0 - 250 mg/m³ 0 - 1250 mg/m³ V 0 - 400 mg/m³ 0 - 2000 mg/m³ W 0 - 50 vpm 0 - 2500 vpm X 测量氧含量 ● 不带O₂传感器 0 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □			$\mathbf{R} \mid \; \; \mid \; \; \mid \; \; \mid \; \; $
0 - 400 mg/m³ 0 - 2000 mg/m³ W 0 - 50 vpm 0 - 2500 vpm 沙屋氧含量 0 • 带有O2传感器 1 电源 0 AC 100 V, 50 Hz 0 AC 200 V, 50 Hz 1 AC 200 V, 50 Hz 2 AC 230 V, 50 Hz 3 AC 100 V, 60 Hz 4 AC 120 V, 60 Hz 5 AC 230 V, 60 Hz 5	$0 - 150 \text{ mg/m}^3$	$0 - 750 \text{ mg/m}^3$	\mathbf{U}
0 - 50 vpm 0 - 2500 vpm 测量氧含量 0 ◆ 不带O₂传感器 1 电源 0 AC 100 V, 50 Hz 0 AC 120 V, 50 Hz 1 AC 200 V, 50 Hz 2 AC 230 V, 50 Hz 3 AC 100 V, 60 Hz 4 AC 120 V, 60 Hz 5 AC 230 V, 60 Hz 5			
测量氧含量			
● 不带O ₂ 传感器 ● 带有O ₂ 传感器 电源 AC 100 V, 50 Hz AC 120 V, 50 Hz AC 200 V, 50 Hz AC 230 V, 50 Hz AC 100 V, 60 Hz AC 120 V, 60 Hz AC 230 V, 60 Hz AC 230 V, 60 Hz AC 230 V, 60 Hz		0 - 2500 vpm	X
● 带有O₂传感器 电源 AC 100 V, 50 Hz AC 120 V, 50 Hz AC 200 V, 50 Hz AC 230 V, 50 Hz AC 120 V, 60 Hz AC 120 V, 60 Hz AC 120 V, 60 Hz AC 230 V, 60 Hz AC 230 V, 60 Hz AC 230 V, 60 Hz			
电源 AC 100 V, 50 Hz AC 120 V, 50 Hz AC 200 V, 50 Hz AC 230 V, 50 Hz AC 120 V, 60 Hz AC 120 V, 60 Hz AC 120 V, 60 Hz AC 230 V, 60 Hz AC 230 V, 60 Hz AC 230 V, 60 Hz	● 不带O2传感器		0
AC 100 V, 50 Hz AC 120 V, 50 Hz AC 200 V, 50 Hz AC 230 V, 50 Hz AC 100 V, 60 Hz AC 120 V, 60 Hz AC 230 V, 60 Hz AC 230 V, 60 Hz AC 230 V, 60 Hz	● 带有O2传感器		1
AC 120 V, 50 Hz AC 200 V, 50 Hz AC 230 V, 50 Hz AC 100 V, 60 Hz AC 120 V, 60 Hz AC 230 V, 60 Hz AC 230 V, 60 Hz AC 230 V, 60 Hz	电源		
AC 200 V, 50 Hz AC 230 V, 50 Hz AC 100 V, 60 Hz AC 120 V, 60 Hz AC 230 V, 60 Hz AC 230 V, 60 Hz	AC 100 V, 50 Hz		0
AC 200 V, 50 Hz AC 230 V, 50 Hz AC 100 V, 60 Hz AC 120 V, 60 Hz AC 230 V, 60 Hz AC 230 V, 60 Hz	AC 120 V, 50 Hz		1
AC 230 V, 50 Hz AC 100 V, 60 Hz AC 120 V, 60 Hz AC 230 V, 60 Hz 6			2
AC 100 V, 60 Hz AC 120 V, 60 Hz AC 230 V, 60 Hz 6			3
AC 120 V, 60 Hz AC 230 V, 60 Hz 5 6			4
AC 230 V, 60 Hz			5
			6 1 1
	•		见下页

 订购数据		 订货号
测量二种红外组分和氧含量的		7MB2337-
	- .	-
ULTRAMAT 23 气体分析仪(接上	:负)	· · - - - - - - - - - -
<u>第二种红外组分</u>		
测量组分	可能的量程级别代码	
CO	D,E,F,GR,U,X	A
CO ₂ 1)8)	D,G,JR	C
CH ₄	H,L,N,P,R	D
C_2H_4	K	\mathbf{F}
SO_2	FL,W	N
NO	GJ,V,W	P
R22	Н ,	U
最小量程	最大量程	
0 - 20 vpm	0 - 100 vpm	С
0 - 50 vpm	0 - 250 vpm	D
0 - 100 vpm	0 - 500 vpm	E
0 - 150 vpm	0 - 750 vpm	F
0 - 200 vpm	0 - 1 000 vpm	G
0 - 500 vpm	0 - 2 500 vpm	Н
0 - 1000 vpm	0 - 5 000 vpm	J
0 - 2000 vpm	0 - 10 000 vpm	K
0 - 0.5 % 0 - 1 %	0 - 2.5 % 0 - 5 %	
0 - 1 % 0 - 2 %	0 - 3 %	N
0 - 2 %	0 - 10 %	P
0 - 10 %	0 - 50 %	$\frac{1}{Q}$
0 - 20 %	0 - 100 %	R
$0 - 150 \text{ mg/m}^3$	$0 - 750 \text{ mg/m}^3$	U
$0 - 250 \text{ mg/m}^3$	$0 - 1250 \text{ mg/m}^3$	V
$0 - 400 \text{ mg/m}^3$	$0 - 2000 \text{ mg/m}^3$	W
0 - 50 vpm	0 - 2500 vpm	X
操作软件 , 文档 ³)		
●德文		0
● 英文		1
●法文		2
● 西班牙文		3
● 意大利文		4

订购数据	
其它型号	订购代码
请在定购号后加" - Z"并写明订购代码	
从RS 485转换到RS 232的接口转换器	A11
带八个二进制输入/继电器输出和PROFIBUS-PA接口的补充电子器件	A12
带八个二进制输入/继电器输出和PROFIBUS-DP接口的补充电子器件	A13
滑轨(双轨),可能只有19"机架式单元才用	A31
成套的梅花内六角工具	A32
TAG标签(标明客户规格)	B03
响应时间短的气路	C01
用于斩波器吹扫的气连接管径为6 mm	C02
用于斩波器吹扫的气连接管径为1/4"	C03
客户验收 ⁵)	Y01
量程以纯文本格式显示 ⁶)	Y11
附件	
CO₂吸收盒	7MB1933-8AA
接口转换器 (RS 485/RS 232)	C79451-Z1589-U1

脚注见 34 页

订购数据	订货号		
测量三种红外组分	7MB2338-		
ULTRAMAT 23			
机壳、版本及气路			
• 安装在机柜内的	19 " 单元		
<u>气连接</u>	<u>内部样气泵</u>	<u>独立的气路(双通道)⁷)</u>	
ómm 管	不带有 ²)	不带有	0
⁄4"管	不带有 ²)	不带有	1
ómm 管	带有	不带有	2
4"管	带有	不带有	3
ómm 管	不带有 ²)	带有	4
4"管	不带有 ²)	带有	5
		气连接的管径为 6mm , 带有内部	
	位于前面面板上的安:	全过滤器	_ 8
<u>第一种和第二种红</u>			
~~	最小量程	最大量程	
CO NO	0 - 500 vpm	0 - 2500 vpm	$A \rightarrow A \rightarrow$
NO CO	0 - 500 vpm 0 - 2000 vpm	0 - 2500 vpm 0 - 1000 vpm	A A
NO	0 - 1000 vpm	0 - 5000 vpm	A B
CO	0 - 1000 vpm	0 - 5000 vpm	
NO	0 - 1000 vpm	0 - 5000 vpm	A C
CO	$0 - 250 \text{ mg/m}^3$	$0 - 1250 \text{ mg/m}^3$	
NO	$0 - 400 \text{ mg/m}^3$	0 - 2000 mg/m ³	A K
CO CO ₂	0 - 10 % 0 - 10 %	0 - 50 % 0 - 50 %	$\mathbf{B} \mathbf{A} \mid $
CO_2	0 - 10 %	0 - 50 %	
CO_2	0 - 0.5 %	0 - 2.5 %	ВВ
CO_2	0 - 5 %	0 - 25 %	
CH ₄	0 - 1%	0 - 5 %	C A
CO_2	0 - 5 %	0 - 25 %	
CH ₄	0 - 2%	0 - 10 %	С В
列量氧含量 			
不带O₂传感器			- ' 1
带有O ₂ 传感器			- 1
包源			0
AC 100 V, 50 Hz AC 120 V, 50 Hz			1
C 200 V, 50 Hz			2
C 230 V, 50 Hz			3
C 100 V, 60 Hz			4
AC 120 V, 60 Hz			5
AC 230 V, 60 Hz			6
第三种红外组分			
则量组分		<u>可能的量程级别代码</u>	
CO		D,E,F,GR,U,X	À
$CO_2^{(1)(8)}$		D,G,JR	$\frac{\mathbf{c}}{\mathbf{c}}$
CH ₄		H,L,N,P,R	D
C ₂ H ₄		K	F
SO ₂ NO		FL,W GJ,V,W	P
R22		H	U
			见下页

脚注见 34 页

订购数据		订货号
测量三种红外组分和氧含量的	7MB2338-	
ULTRAMAT 23 气体分析仪(接_	- 	
最小量程	最大量程	 ↑↑
0 - 20 vpm	0 - 100 vpm	¢
0 - 50 vpm	0 - 250 vpm	D
0 - 100 vpm	0 - 500 vpm	E
0 - 150 vpm	0 - 750 vpm	F
0 - 200 vpm	0 - 1 000 vpm	G
0 - 500 vpm	0 - 2 500 vpm	Н
0 - 1000 vpm	0 - 5 000 vpm	J
0 - 2000 vpm	0 - 10 000 vpm	K
0 - 0.5 %	0 - 2.5 %	L
0 - 1 %	0 - 5 %	M
0 - 2 %	0 - 10 %	N
0 - 5 %	0 - 25 %	P
0 - 10 %	0 - 50 %	Q
0 - 20 %	0 - 100 %	R
$0 - 150 \text{ mg/m}^3$	$0 - 750 \text{ mg/m}^3$	U
$0 - 250 \text{ mg/m}^3$	$0 - 1250 \text{ mg/m}^3$	V
$0 - 400 \text{ mg/m}^3$	$0 - 2000 \text{ mg/m}^3$	W
0 - 50 vpm	0 - 2500 vpm	X
操作软件 , 文档 ³)		
● 德文		0
● 英文		1
● 法文		2
●西班牙文		3
●意大利文		4

订购数据	
其它型号	订购代码
请在定购号后加" – Z"并写明订购代码	
从RS 485转换到RS 232的接口转换器	A11
带八个二进制输入/继电器输出和PROFIBUS-PA接口的补充电子器件	A12
带八个二进制输入/继电器输出和PROFIBUS-DP接口的补充电子器件	A13
滑轨(双轨),可能只有19"机架式单元才用	A31
成套的梅花内六角工具	A32
TAG标签(标明客户规格)	B03
响应时间短的气路	C01
用于斩波器吹扫的气连接管径为6 mm	C02
用于斩波器吹扫的气连接管径为1/4"	C03
客户验收 ⁵)	Y01
量程以纯文本格式显示 ⁶)	Y11
附件	
CO ₂ 吸收盒	7MB1933-8AA
接口转换器 (RS 485/RS 232)	C79451-Z1589-U1

脚注见34页

3.9 文档

样本摘要	订货号
ULTRAMAT 23 气体	E86060-K3510-B151-
分析仪	A3-7600
NDIR 气体分析仪,	
一到三个 IR 通道外加	
含氧量测量	
(英文版)	

手册	订货号
ULTRAMAT 23	C79000-G5276-C216
用于测量 IR-吸收气体	
和含氧量的气体分析	
仪	
(英文版)	

备件列表	订货号
ULTRAMAT 23	C79000-E5264-C217
气体和氧气	

3.10 产品的销售和供货情况

遵从产品<u>供给和递送的普通保险条款</u>和 电气维修和电子工业中的各项规定以及 其它一切与样本中各条款一致的规定。

仪器的技术数据、尺寸以及重量都是可以改变的,不能更改的地方会在本样本摘要的单独页上特别注明。

本手册的解释只供参考。

自动化领域中所用软件产品的普通保险 条款也应该应用在软件产品中。

英特网和万维网(WWW)

在万维网上,您可以在自动化与驱动集团的网站上查到各仪器信息,网址是: http://www.ad.siemens.de

您可以选择所需了解的气体分析仪的主页,然后通过选择:产品&解决方案→过程自动化,测试和测量系统→过程自动化的产品、系统和解决方案→过程分析和产品来访问它,或者您也可以直接输入网址来查询气体分析仪的信息,网址是:

http://www.processanalytics.com

出口

该手册中所列的仪器遵从于欧洲、德 国或者美国的出口条例。

在限制范围内的任何出口都需要得到负责任的权威机构的认可。

然后,相关信息可以从我们的回单、 供货注释和发货清单中获得。 启动 4

4.1	安全信息	42
4.2	启动的准备	42
4.3	启动	43
4.3.1	自标定	43
4.3.2	标定	44
4.3.3	分析仪并接的系统设置	45

4.1 安全信息

警告

此分析仪的内部特定部件带有危险电压,所以在分析仪 开启之前,外壳必须要被关好和接地。

警告

此分析仪不可在潜在爆炸环境中使用。不可以测量爆炸性气体混合物(例如:与空气或氧气以潜在爆炸比率混合的可燃性气体)

如果样气中含有比较低爆炸极限低的可燃组分,则所要求的防暴措施必须要得到授权检验员的批准。

4.2 启动的准备

检查泄漏性

用一个 U 型管压力计便可以最简便的方法测量出压力。 按下述方法来检查样气路的泄漏性:

- 在样气路中施加大约 0.1bar 的压力
- 等候大约 1 分钟,直到流入气体的温度达到稳定为止
- 记下压力
- 继续等候 15 分钟, 之后再次记下压力。

如果在 15 分钟内,压力的变化量不大于 1hPa(1 mbar),则可说明样气路具有足够的防泄漏性。

气处理

气体取样装置、气体冷却器、液凝罐、过滤器、所有的 控制器、记录仪或指示器(如果连接)都应该为它们的 运行做好了准备(参见它们各自的说明手册)。

检查各接口(见第3章)是否被正确分配和参数化。

4.3 启动

接通电源

当把分析仪设定到所需的电压并且在所有的连接都已经完成时,你便可将分析仪与电源相连。接通分析仪的电源并让其预热(见 5.3 节)。

4.3.1 自标定

概述

当分析仪开始时,它便会使用所连接的介质来进行标定。这个"自标定"会标定 IR 通道的零点和灵敏度。如果有一个 O_2 传感器,则它的灵敏度也会同时被标定。

注:

如果分析仪中没有 O_2 传感器,则可用氮气来进行自标定。如果分析仪中装有 O_2 传感器,则只能用空气来进行自标定。根据分析仪的配置(气连接)来对所提供的介质进行选择,并且这些所供介质是不能用软件来进行参数化的。

在操作过程中,你可按下 CAL 键来手动触发一个自标定。ULTRAMAT 23 分析仪也可以进行一个自标定循环,例如:自标定循环定期进行(循环时间可调)(见下面)。

持续时间

自标定的持续时间取决于各种因素。它大约需 3 分钟并由以下几部分构成:

- 吹扫时间设定值的两倍(见 5.8.4节)
- 内部电子器件调节的持续时间(相当于时间常数 "T90以内"的2倍半时间;见5.9.3节)。如果使用了一个O₂传感器,则电子调节时间至少需要60秒。

循环时间

可以将自标定的循环时间(二次自动被触发标定之间的时间)设定在 0~24h之间。如果你将"0"作为它的设定值,则自标定循环会终止。

注意

然而,处于预热模式中的分析仪,它的自标定会被执行两次,它们开始的时间大约在分析仪启动后的第5分钟和第30分钟。

为了补偿环境温度的变化,你应选将循环时间选择在3~12h之间。

4.3.2 标定

使用标定气

在分析仪装好之后,你可用标定气来对分析仪进行标定(见 5.8 节)。标定应该使用一种含有足够浓度被测组分的气体(在 N_2 或者合成空气中样气的满量程值的 70%和 100%之间)来进行。

小心

标定气通过样气入口连接

进行一个标定

确保气体流量在 1.2~2.0L/min 之间。

在开始测量之前,分析仪至少要运行30分钟,因为只有在这段时间之后,分析部分的充分稳定才可以得到保证(99%值)。

温度影响的补偿

温度影响的补偿被存储在 ULTRAMAT 23 的 EEPROM 中 , 只能在工厂中进行对温度补偿的修改。

噪声抑制

任何可能会产生的噪音都可以通过调整各种时间常数来抑制(见5.9节)。

根据环境情况的差异,每隔半年到一年就应对分析仪进行重新标定。

4.3.3 分析仪并接的系统设置

例 1 两个带有内部泵和电磁阀(当自标定时,用于在样气和 零气之间切换)的分析仪。

> 自标定主控制仪器的循环自标定通过它的数字输出 SYNC 和从动仪器的数字输出 SYNC 为从动仪器触发一 个并行自标定。

> 从动设备的数字输入 SYNC 和自标定主控制仪器的数字输出 SYNC 之间的同时连接确保了零气始终都是同时通过两个分析仪的。

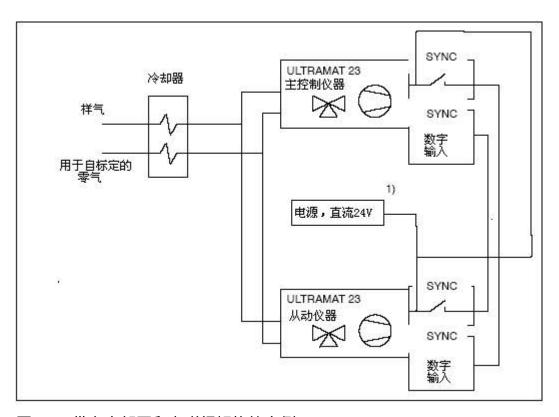


图 4-1 带有内部泵和电磁阀切换的实例

1)将超低电压安全电隔离(SELV)

参数设置

自标定主控制仪器:

- 输入自标定的循环时间,例如:6小时(见5.8.4节)
- 将功能 "Sync"分配给一个继电器 (见 5.10.1.2 节)
- 将功能 " CAL/MEAS " 分配给数字输入 SYNC(见 5.10.1.3 节)。

从动仪器:

- 将自标定的循环时间设为"0"以避免当自标定被触发时执行一个循环自标定
- 将功能 "Sync"分配给一个继电器 (见 5.10.1.2节)
- 将功能"激活 CAL 继电器"分配给数字输入 SYNC(见 5.10.1.3 节)。

例 2

两个都不带有内部泵和内部电磁阀(当自标定时,用于在样气和零气之间切换)的分析仪。

自标定主控制仪器通过一个数字输出来控制一个电磁阀以在样气和零气之间为自标定而切换。

自标定主控制仪器的循环自标定通过它的数字输出 SYNC 和从动仪器的数字输出 SYNC 为从动仪器触发一 个并行自标定。

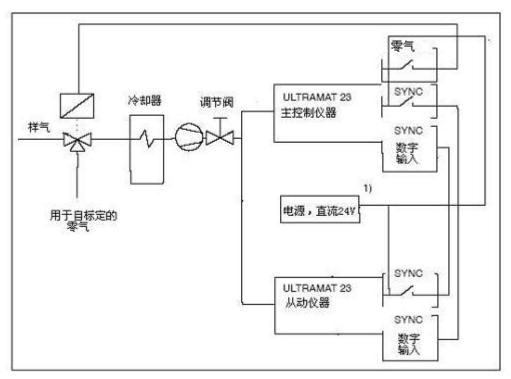


图 4-2 不带有内部泵和内部电磁阀切换的实例

1)将超低电压安全电隔离(SELV)

参数设置

自标定主控制仪器

- 输入自标定的循环时间,例如:6小时(见5.8.4节)
- 将功能 "Sync "分配给一个继电器 (见 5.10.1.2 节)
- 将功能"零气"分配给一个继电器(见 5.10.1.2 节)
- 将功能"激活 CAL 继电器"分配给数字输入 SYNC(见 5.10.1.3 节)。

从动仪器

- 将自标定的循环时间设为"0"以避免当自标定被触发时执行一个循环自标定
- 将功能 "Sync"分配给一个继电器 (见 5.10.1.2节)
- 将功能 " 自标定 " 分配给数字输入 SYNC(见 5.10.1.3 节)。

操作 5

5.1	概述	50
5.2	显示屏和输入面板	51
5.3	预热模式	54
5.4	测量模式	55
5.5	输入模式	55
5.5.1	密码等级	56
5.5.2	键操作步骤	57
5.5.3	使用 ESC 键	59
5.6	将分析仪重新编码	60
5.7	分析仪状态	62
5.7.1	分析仪状态:状态	62
5.7.1.1	分析仪状态:状态:日志/故障	62
5.7.1.2	分析仪状态:状态:维护请求	63
5.7.1.3	分析仪状态:状态:自动标定偏差	63
5.7.1.4	分析仪状态:状态:02传感器状态	63
5.7.2	分析仪状态:诊断值	64
5.7.2.1	分析仪状态:诊断值:IR 诊断值	64
5.7.2.2	分析仪状态:诊断值:0₂诊断值	64
5.7.2.3	分析仪状态:诊断值:压力传感器诊断	65
5.7.2.4	分析仪状态:诊断值:其它诊断值	66
5.7.3	分析仪状态:工厂设置硬件	66
5.7.4	分析仪状态:工厂设置软件	66
5.8	标定	68
5.8.1	标定:标定 IR 通道	68
5.8.1.1	标定:标定 IR 通道:设定量程间距气体值	68
5.8.1.2	标定:标定 IR 通道:开始于量程 MR1/2	69
5.8.2	标定:标定 0₂传感器	69
5.8.2.1	标定: 标定 02传感器:安装之后的 02标定	69
5.8.2.2	标定:标定 0₂传感器:标定 0₂零点	70

5.8.3	标定:标定压力传感器	70
5.8.4	标定:自标定	71
5.9	参数	73
5.9.1	参数:量程	73
5.9.1.1	参数:量程:量程切换	73
5.9.1.2	参数:量程:改变量程	73
5.9.1.3	参数:量程:滞后	74
5.9.2	参数:极限值	74
5.9.3	参数:时间常数	75
5.9.4	参数:泵/LCD 对比度	76
5.9.4.1	参数:泵/LCD 对比度:调节泵	76
5.9.4.2	参数:泵/LCD 对比度:调节 LCD 对比度	77
5.10	配置	80
5.10.1	配置:输入/输出/泵	80
5.10.1.1	配置:输出/同步/泵:模拟输出	80
5.10.1.2	配置:输出/同步/泵:分配继电器	81
5.10.1.3	配置:输入/输出/泵:二进制/同步输入	84
5.10.1.4	配置:输出/同步/泵:标定/测量时的泵	85
5.10.2	配置:特殊功能	85
5.10.2.1	配置:特殊功能:修改密码	85
5.10.2.2	配置:特殊功能:自标定漂移	86
5.10.2.3	配置:特殊功能: ELAN 参数	87
5.10.2.4	配置:特殊功能:工厂数据/复位/单位	89
5.10.3	配置:测试	90
5.10.3.1	配置:测试:显示/键/流量	90
5.10.3.2	配置:测试:输入/输出	90
5.10.3.3	配置:测试:斩波器/IR 源	92
5.10.3.4	配置:测试:RAM 监视器	92
5.10.4	配置:工厂配置	92
5.11	其它输入	93
5.11.1	泵键	93
5.11.2	标定键	93

5.1 概述

在递送之前,ULTRAMAT 23 已经被参数化和标定。 然而,使用基于菜单的功能可以在日后让很多参数适 合于特殊的需要。

以下各节将会向您提供有关显示屏和输入面板以及操作模式的相关知识。你将会学到如何浏览分析仪状态,如何标定分析仪,以及您如何输入和修改参数。

使用最多的配置来对输入次序进行描述。如果你的分析仪具有一个不同的配置(不同的测量组分,红外量程的数量,无氧气测量单元,无泵,无串行接口等等),则可相应地进行解释。

使用到的数字必须要被看成实例。因此,它们就可能和你分析仪上所显示的值有所不同。如果你的分析仪中没有相应的组分,则其对应栏就会是空的。

用户提示

在以下各节中, ULTRAMAT 23 的操作是根据以下摘要来描述的:

ULTRAMAT 23 Example of a display

12345

实例菜单 1:实例菜单 2:实例菜单 3 实例文本

交叉参考

各个小节的标题就隐含了整个菜单路径,它们从主菜单开始,并标明了可以到达的菜单级(见4.2节)。 各种不同的菜单级是用冒号来相互分开的。

显示会如它在分析仪上所示位于文本的左侧。伴随的 文本是解释显示的,如果需要还会包括输入和指令, 例如:

- 你可以用 ENTER 键启动功能
- 你可以用 ESC 键终止功能

在这些指令的显示中,你可以看到光标的位置,并且该位置上相应的字符会被印成粗体并有下划线(在这个显示中:<u>Example</u>)。

显示框右下角上的数字(在这个显示中为 12345)是作为一个交叉参考来使用的,它与 5.7 节—5.10 节所总结的所有菜单和对话框相对应,这样就可方便地确定总述中所述显示的位置。

可以制定一个参考来让各个功能受**密码等级**的保护 (见 5.5.1 节)或者专门用于某个组分。对于功能只用 于某个组分的情况,当你想调用各功能时,就必须要 输入它们相应的被测组分(可达 4 个)(参见 5.5.2 节)。

5.2 显示屏和输入面板

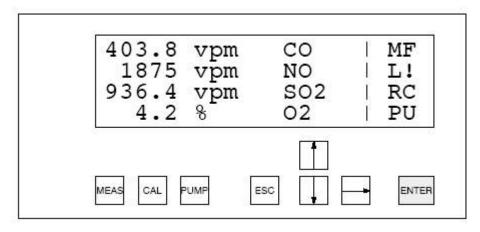


图 5-12 由显示屏和小键盘构成的输入面板

显示为有背景灯照亮的液晶显示屏,它有4行,每行20个字符(5X8-点矩阵)并由薄膜覆盖。显示中一行会显示一个测量组分。行显示从左到右:测量值、单位和组分名称。每行的最后两个位置是用来显示某些分析仪状态的。它们的含意如下:

- M: 维护请求
- F: 有故障
- L: 超过极限
- !: 故障已被记录在日志中并且不再存在
- R: 遥控控制
- C: 功能控制(分析仪被解码,或者通过 RS485 串行接口来连接,或者自标定,或者大约在预热模式进行到第 30 分钟时)
- P: 泵在运行
- U: 未编码

用户桌面

ULTRAMAT 23 有一个基于菜单的用户桌面。菜单结构通常表示如下:主菜单-1 级子菜单-2 级子菜单-3 级子菜单-4 级子菜单。

图 5-2 显示了用户桌面的基本配置图。

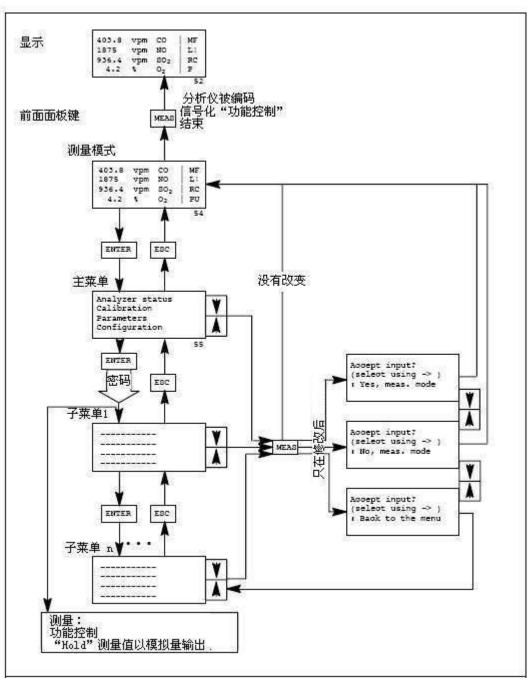


图 5-22 ULTRAMAT 23 的菜单结构

键分配

8个用于操作 ULTRAMAT 23 的键是可用的。它们具有以下的含意:

表 5-1 输入键

编号	名称	含意	功能
1*	MEAS	测量	测量;终止输入操作;退出输入模式
			(从任何菜单级);从输入模式切换到
			测量模式并重新给分析仪编码(参见
			5.6.1 节)
2	CAL	自标定	自动标定;用环境空气或氮气进行标定
3*	PUMP	泵	启动/停止内部样气泵
4	ESC	退出	在输入模式中:退回到上一级菜单 <u>或</u> 取
			消当前输入 <u>或</u> 取消标定*
5	\uparrow	向上箭头	增加所选的数值;选择先前的菜单项
6	\downarrow	向下箭头	减少所选的数值;选择之后的菜单项
7	\rightarrow	向右箭头	将输入光标向右移一位(循环,例如:
			当光标到达右缘时,它会将光标设定到
			左缘)
8	ENTER	输入	在测量模式中:切换到输入模式
			在输入模式中:导入已输入的参数 <u>或</u> 者
			调用一个菜单项

^{*}如果需要满足特定的要求,输入则会被抑制。此时一个相应信息会在显示屏上 短时间地输出。

可以用箭头键通过增加或减小光标所在处的数字,通过这种方法你便可修改数值。数字是连续被修改的,也就是,在数字9之后接着又是0和1,也可以按递减顺序,也就是0之后是9,8...。如果输入错误数字,分析仪则输出FFF...值。

在 5.5 节中,用实例的方法对 MEAS, ESC和 ENTER 键的使用进行了说明。在 5.11 节中,对 CAL 和 PUMP键的使用进行了说明。

5.3 预热模式

分析仪可以处于下列三种操作模式中的一种模式:

- 预热模式
- 测量模式(见 5.4 节)
- 或者输入模式(见 5.5 节)

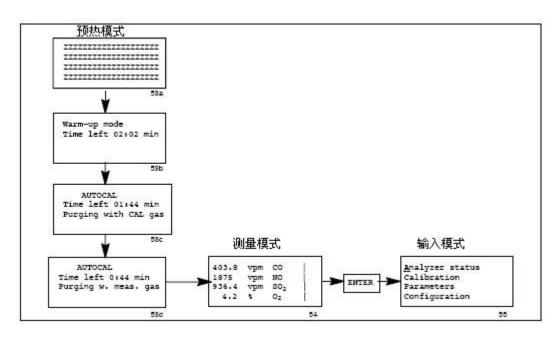
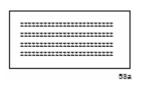
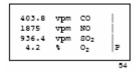



图 5-32 预热模式,测量模式和输入模式

接通电源之后, ULTRAMAT 23 会测试各显示元件。 在该测试过程中, 所有的元件同时点亮约 5 秒钟。



旁边的这个显示框会随后在剩余的预热时间里出现,剩余的预热时间以秒做倒计时到00:00(分钟:秒)

AUTOCAL Time left 01:44 min Purging with CAL gas 在预热模式过程中,分析仪首先会进行一个自标定 (见4.3.2节)。自标定气体(氮气或者空气)的流量 在底行中显示,标定的剩余时间在它上面显示。该标 定不可中断。 AUTOCAL Time left 0:44 min Furging w. meas. gas 在自标定的最后一分钟,分析仪将切换到用样气进行吹扫阶段。

在吹扫阶段结束时,分析仪将切换到测量模式;然而,如果分析仪进行了另外一次自标定,则只有在大约30分钟之后才能获得真正的测量精度,这时也是预热模式结束之时。

5.4 测量模式

被测组分以及它们的数值、单位(mg/m³)、vpm或体积百分数在显示屏中同时输出。分析仪的状态发生一个改变时,相应的字母会出现在最后二列中(实例中出现的字母为"P",也可参见 5.2 节)。分析仪保持在测量模式下直到进行自动标定(自动,遥控控制或手动)或者直到手动将分析仪切换到输入模式(见 5.2.2 节)时为止。

5.5 输入模式

在输入模式中,你可查看仪器的各个参数或者标定和参数化分析仪。

小心

只能由经过培训的专家,同时在参考本说明手册的情况下才能对分析仪进行标定和/或参数化。

Analyzer status Calibration Parameters Configuration 一旦你选择了输入模式,那么出现的第一个菜单就是主菜单,它显示4条菜单项。你可以通过它们来选择 ULTRAMAT 23 的各个输入功能:

分析仪状态

你可以调用子菜单,它会提供有关分析仪状态的信息,例如:日志的各款项,诊断数据和工厂数据(有 关菜单结构参见图 5-4)。

标定

你可以使用标定气体来标定分析仪的零点和灵敏度 (有关菜单结构参见图 5-5)。 参数

你可以使分析仪的功能满足于你的具体应用,例如:通过改变输入极限、量程和时间常数(有关菜单结构见图 5-6)。

配置

你可以定义分析仪接口的分配等等,例如,继电器和 当前各输出的分配(有关菜单结构见图 5-9)。

5.5.1 密码等级

ULTRAMAT 23 提供有二个密码等级以防止未授权或者无意的输入。当你第一次调用一个有密码保护的功能时,分析仪会要求你输入已经设置好的三位数密码。

[]

注意

一旦你熟练掌握 ULTRAMAT 23 的操作之后,你应该 修改密码(见5.10.2.1节)。

工厂设定的最低等级(1级)密码为"111",较高一级(2级)密码为"222"。

下述功能受到1级密码保护:

- 菜单"分析仪状态"中的对话框"日志/故障"和 "维护请求",子菜单"状态"。
- 菜单"标定"和
- 菜单"参数"

下述功能受到2级密码保护:

● 菜单"配置"

注意

如果分析仪要求你输入1级密码,你可以输入2级密码来代替,解开2级密码的同时1级密码也被解开。一旦较高密码等级(2级密码)被解开时,1级密码也会自动地被解开。

5.5.2 键操作步骤

403.8 vpm CO 1875 vpm NO 936.4 vpm 80₂ 4.2 % O₂

Analyzer status Calibration Parameters Configuration 本节通过一个实例来说明如何用键来操作分析仪。分析仪处于测量模式中(见 5.4 节)。

- 通过按下 ENTER 键来从测量模式切换到输入模式。你首先进入主菜单,光标在第一行左边的字符" A"处闪烁。
- 你可用[↑]和[↓]键将光标设定在每行的开始处,光标的 移动为循环式移动,也就是说,如果你将光标移动到 显示屏的顶边以上,它就会重新出现在显示屏的底行 上,反之也一样。
- 通过 按下 ENTER 键来调用相应的菜单项。

Analyzer status Calibration Parameters Configuration

Level 1 required Please enter oode : <u>0</u>00 当你按下↓键两次时,光标会位于" ₽"处。

• 此时通过按下 ENTER 键来调用子菜单"参数"。

接着会出现旁边这个显示框,你会被要求在这里输入1级密码。

- 你可以用↑和↓键来改变光标所指处的密码数值。
- 用→键移到下一个密码位置,这个功能也是循环进行的,当你将光标移出密码的最后一个位置时,它又会重新出现在密码的第一个位置上。
- 通过按下 ENTER 键来关闭密码输入。

Level 1 required Please enter oode : 11<u>1</u>

Measuring ranges Limit values Time constants Pump/LCD contrast

Choose component I NO 1

- 再次按下 ENTER 键则调用子菜单"量程"
- 此时选择组分 1 到 4 , 随后所设定的各量程将分别与它们相对应 , 一共可有 4 种组分存在。

Choose component I CO 3

Switch ranges CO Change ranges CO Bysteresis CO

Switch ranges CO Actual range :1 MR 1:0. 250 mg/m³ MR 2:0.1250 mg/m³ 过按下[↑]或↓键来选择另一个组分,例如在本实例中选 择组分 3。

• 如果你的分析仪根据相应要求配置过,则你可以通

- 按下 ENTER 键,分析仪将提供其它的菜单项,你可通过按↑和↓键来对它们进行选择。
- 按下 ENTER 键,进入所选定的功能中。

在该实例中,在选择功能"切换 CO 量程"之后会出现旁边的显示。第一行包含有标题,第二行包含有参数并且它的值可以被修改,光标位于该行。只有补充信息才会显示在第三行和第四行中。若要切换量程,方法如下:

- 按下 ENTER 键
- 光标跳到量程数字上,你可用[↑]和↓键中的一个键来 修改该数字。
- 当你再次按下 ENTER 键时,量程的修改将会被导入并且你同时返回到起始行。

你不能在这个过程中进行任何其它的设定。若要这么做,你就必须要重新退出这个菜单显示。方法如下:

- 按下 ESC键,在菜单次序中你便返回一级菜单。
- 按下 MEAS 键,这之后你有以下几种可能性:
- 用 ENTER 键处理先前的菜单项,
- 或用↑或→和 ENTER 键返回到测量模式,这样做就会导入你在最后解码操作之后所做的所有修改,
- 或用↓和 ENTER 键返回到测量模式,这样做修改不会被导入。
- 一旦你在分析仪上进行了上述次序的练习,那么你就已经熟练掌握了操作 ULTRAMAT 23 的很多重要要点。

Save changes? (choose with ->) ! Yes, go to meas.

5.5.3 使用 ESC 键

你可以按下 ESC 键来触发二种不同的功能: 第一,你可以取消一个已开始的过程,例如:

- 一个数值的输入
- 用标定气体进行的一个标定过程
- 如果发生一个故障,例如:流入分析仪的样气流消失,任何一个功能。

第二,可用 ESC键退回到子菜单中的较高<u>一级</u>菜单("卷回")。这个过程与用 ENTER 键选择子菜单的过程相反("向前卷动"),如果你反复按动 ESC键,那么就会一步步地返回到主菜单。如果在主菜单中你再次按动 ESC键,则分析仪从输入模式切换到测量模式。

一个实例可以解释这个过程:

分析仪处干测量模式并没有密码。

403.8 Vpm CO | 1875 Vpm NO | 936.4 Vpm SO₂ | 4.2 % O₂ | U

Analyzer status Calibration Parameters Configuration 使用 ENTER 键将分析仪从测量模式切换到输入模式。用↑或者↓键选择菜单项"参数"并按下 ENTER 键。

Measuring ranges Limit values Time constants Pump/LCD contrast 通过这种方式,你便进入到第一个子菜单。按下 ESC键,然后在按下 ENTER键。你返回一级菜单,然后又向前移进了一级菜单,因此你又重新返回到按下 ESC键和 ENTER键之前的那个菜单中。

403.8 Vpm CO 1875 Vpm NO 936.4 Vpm SO₂ 4.2 % O₂ U 按下 ESC 键二次, 你又重新返回到测量模式中。

5.6 将分析仪重新编码

在输入密码后,在分析仪重新被编码之前可进行输入。

注意

为了在输入过程完成时让分析仪重新受到密码保护 (防止未授权和无意的侵入),在测量模式中按下 MEAS 键。

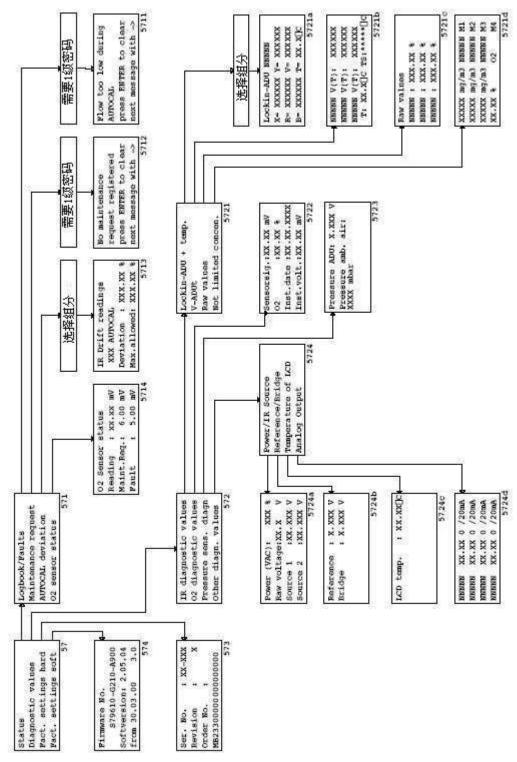


图 5-42 "分析仪状态"的菜单次序

5.7 分析仪状态

在这里,你可看到所有的分析仪数据。图 5-4 中的菜单次序显示了所有可以从菜单"分析仪状态"处进行访问的子菜单。箭头由一个菜单项指向下一个可以通过它调用的子菜单/对话框。

5.7.1 分析仪状态:状态

Logbook/faults Maintenance request AUTOCAL deviation O₂ sensor status 在该菜单中,你可通过其它菜单项来调用 ULTRAMAT 23的状态信息。

5.7.1.1 分析仪状态:状态:日志/故障

Mains voltage beyond tolerance Press ENTER to clear Next message with ->

571

该对话框显示一个记录了所有故障信息的日志。每种 类型的故障信息只在日志中出现一次并以字母数字文 本的形式输出(有关可能故障信息的列表,参见第6 章)

浏览日志受到一级密码保护。

你可以:

- 用→键将记录的所有故障连续显示。
- 用 ENTER 键删除正在显示的故障信息,如有有下一条故障信息,它会随后出现。你应删除那些故障原因已被除去的故障信息。

注意

虽然你删除了故障信息,但并没有消除故障原因(见第6章)!

● 当存储的所有故障信息都被显示后,会输出一个相应的文本。用→键可终止日志的显示。

注意

如果分析仪处于测量模式,当显示屏右缘出现"F"时,你便可识别出发生了一个故障。显示屏右缘的"!"表示一个故障已被记录并且当前不再存在。

5.7.1.2 分析仪状态:状态:维护请求

AUTOCAL drift beyond tolerance Fress ENTER to clear Next message with ->

5713

该对话框隐含了那些已经记录在日志中的维护请求。 如果某些参数的值已经达到定义过的极限,那么就会设定一个维护请求,但分析仪仍能测量(例如:自标定偏差或 O_2 传感器状态;也可参见本节后面部分)。 相应的信息以字母数字文本的形式输出。

该功能的访问受到1级密码保护。

维护请求列表中的操作(继续、删除)可采取与故障 日志中的操作相类似的方法进行。

注意

如果分析仪处于测量模式中,当显示屏的右缘出现一个"M"时,你就可以识别出分析仪发出了一个维护请求。

5.7.1.3 分析仪状态:状态:自动标定偏差

IR drift readings 1 AUTOCAL Deviation: 2.25 % Max. allowed: 6

5713

该对话框表示了两个自标定过程之间设定点的偏差。 各个参数的含意如下:

- 前面二行的文本提供了自标定过程次数的信息,它是自标定参考值被最后设定后分析仪所进行的自标定次数(参见5.10.2.2节)。
- Deviation是实际值与设定点间的测量偏差,它不可以超过设定的最大值。
- Max.allowed是偏差的最大允许值。有关设定最大值的问题,参见 5.10.2.2 节。

该功能专门用干组分。

5.7.1.4 分析仪状态:状态:O₂传感器状态

O₂ sensor status Reading: 12.02 mV Maint. req: 6.00 mV Fault: 5.00 mV

574

由于传感器的老化过程,在它的操作过程中,测量元件的电压会下降。如果它下降到最小值(5.0~mV)时,测量元件就不再可能会产生准确的信息(故障信息)。因此,当 O_2 测量元件的电压低于 6.0~mV(维护请求)时,就应替换它。

- **Reading** 是 O₂ 测量元件的当前电压。
- Maint.req和 Fault 是两个最小值,当低于它们时则会输出一个维护请求或一个故障信息。

5.7.2 分析仪状态:诊断值

IR diagnostio values O₂ diagnostio values Pressure sens. diagn Other diagn. value

可以被显示的诊断值为故障排除和调节提供了重要的 信息。你可从该菜单中选择 4 个不同的功能组:

5.7.2.1 分析仪状态:诊断值:IR 诊断值

Look-in ADU + temp. V-ADUt Not limited concen. 5721 在该子菜单中,你可调用红外量程的诊断值:

Look-in ADU 80₂ X= 408399 Y= 103444 V= 444912 R= 444912 B= 10016 T= 41.0°C 5721a • ADU是:在温度补偿之前,模拟量-到-数字量转换 器的电压值和信号值,这些值需根据相应组分而定。

NO V(T): 440206 V(T): 505577 V(T): 494135 CO 802 T: 42.2°C TS: *****

• V-ADCt 是:在温度补偿之后,模拟量-到-数字量转 换器的电压值和信号值。底行中的 T 与分析仪部分的 温度相对应,TS 是 IR 源的温度(没有使用 IR 源."*****"=无测量值)。

Raw values NO : 1.99 % CO : 0.27 % 5.08 % 57210

 Raw values 是以满量程值的%(=100%)表示的测 量值。

18 mg/m³ NO 2 mg/m³ CO М2 14 mg/m³ 80₂ мз 5721d

• Not limited concen. 为测量模式中的数值,即使超过 了最大量程的上限和下限,也能在此处大约显示气体 的浓度。负值也可以显示(有效零)。当前的量程会 在本显示的最后两栏中输出。

5.7.2.2 分析仪状态:诊断值: O₂诊断值

Sensorsiqu 12.02 mV 021 20.94 % Date: 27.05.1996 Inst.volt.: 12.10 mV 5722 该对话框显示了选择性氧气传感器的诊断值:

- Sensorsig 是 O₂ 传感器的当前电压 (单位为 mV)
- O₂是当前氧气值
- Data 是 O₂ 传感器的安装日期(见 5.8.2 节)
- Inst.volt是安装 O2 传感器时,它的电压。

5.7.2.3 分析仪状态:诊断值:压力传感器诊断

Pressure ADU: 3.965 V Pressure amb. air: 999 mbar 该对话框显示了压力传感器的诊断值(见 5.8.3 节)。 显示的各个数值具有以下含意:

- **ADU** pressure 是在 A/D 转换器输出处测得的压力传感器电压。
- Pressure amb.air 为当前的大气压力(单位是mbar)。

5.7.2.4 分析仪状态:诊断值:其它诊断值

Power/IR source Reference/Bridge Temperature of LCD Analog output 该菜单通常被用来调用其它诊断功能。你可调用以下 对话框:

Power (VAC) : 101 % Raw voltage : 30 V Source 1 : 7.541 V Source 2 :15.023 V

· 电源/IR 源

- 电源:主电压上的数据是以%各个主电压的标称值来表示的(例如:100%相当于230V或者120V)。

- 原始电压:原始电压是校正之后的电压
- 光源 1, 光源 2: IR 源电压的数据以伏特为单位, 前提是 IR 源存在。

Reference | 2.513 V Bridge | 3.755 V

• 参考/电桥

- 参考:分析仪中电子器件的参考电压。

- 电桥:测量电桥的电源电压。

LCD temp. | 34.9°C

• LCD 温度

温度会决定显示屏的对比度。有关 LCD 对比度的调整,参见 5.9.4.2 节。

NO 3.11 4 /20mA CO 4.25 4 /20mA SO₂ 4.04 4 /20mA O₂ 17.82 4 /20mA

• 模拟量输出

对于每个被测组分,都会显示它的输出电压值(单位为 V,但是由于空间所限,其没有被标出)以及当前输出量程的起始量程值(0,2或是 4mA)和满量程值(20 mA)。有关起始量程值的调整,参见 5.10.2 节。

5.7.3 分析仪状态:工厂设置硬件

Revision Order No.

Ser. No. IK-001

工厂设置是一些在分析仪递送之前就已经设定好的参数,例如:仪器的系列号,型号和订货号,用户不能对它们进行修改。硬件的配置和发布型号可以在这里获得。

5.7.4 分析仪状态:工厂设置软件

Firmware No. Software version date 工厂设置是一些在分析仪递送之前就已经设定好的参数,例如:软件/固件的发布版本,用户不能对它们进行修改。软件的发布版本可以在这里获得。

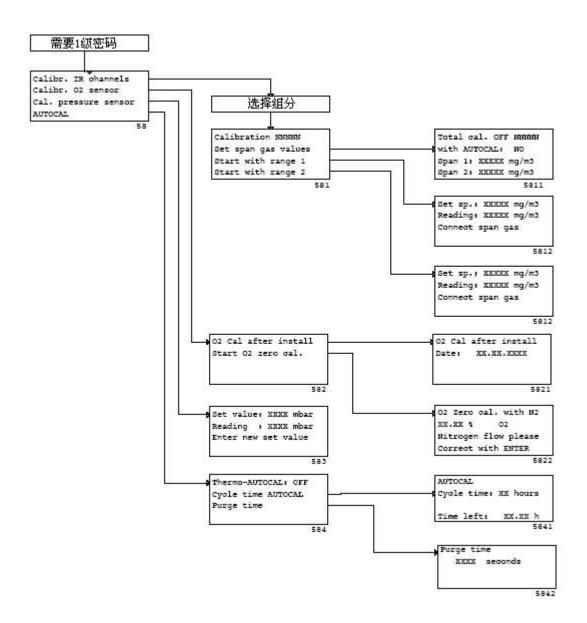


图 5-52 "标定"的菜单次序

5.8 标定

使用这个功能就可以用一种或几种标定气来标定 ULTRAMAT 23 的 IR 通道并重新设定灵敏度。此外, 你可以标定氧气传感器和压力传感器,并且还可定义 自标定参数。图 5-5 显示了相关的菜单次序(有关显 示元件的说明,见 5.7 节)。

只有你输入1级密码后才可进行标定。

5.8.1 标定:标定 IR 通道

Calibration 80₂ Set span gas values Start with range 1 Start with range 2

581a

在该菜单中,你可以:

- 在第 2 行中为各个量程设定标定气体的设定点或者 选择一个全标定或单独标定。
- 在第3行和第4行中开始一个标定过程。

该功能专门用于组分。

5.8.1.1 标定:标定 IR 通道:设定量程间距气体值

Total cal.: OFF 80₂ With AUTOCAL: NO Span 1: 386 mg/m³ Span 2: 1920 mg/m³

581

全标定:在该对话框的第1行中,你可以选择一个全标定或单独标定。

- 开启 意味着一个量程被标定之后,该标定便可以用于其它的量程(全标定)
- **关闭** 意味着各个量程是分别标定的(单独标定,例如:使用不同的标定气进行标定)。
- 自标定:在这里,你可以定义在进行标定过程之前是否希望进行一个自标定(是或否)。如果一个自标定在标定过程开始之前不久刚刚进行过,例如:之前刚刚进行了一个标定过程,那么这里就无需进行自标定。
- •量程 1,量程 2:你可在这里输入各个量程的设定点(它们是各个标定气体的组分浓度)。它们的值应被设定在满量程值的 70%与 100%之间。如果已经选择了开启全标定,那么分析仪会自动将量程 2 的设定点用于量程 1。如果选择关闭全标定,那么在各个量程的起始量程值和满量程值之间的任何输入值都是可能的。

5.8.1.2 标定:标定 IR 通道:开始于量程 MR1/2

Set span: 386 mg/m³ Reading: 1 mg/m³ Connect span gas

5812

如果你调用这两个对话框中的一个,那么分析仪会中断当前的测量。如果参数自标定被设置为关闭,则分析仪希望立即有一股标定气流。如果参数被设置为开启,则自标定会在气体流动之前进行。设定点值和实际值的标定会在前二行中显示。

Set span: 386 mg/m³ Reading: 1 mg/m³ If the reading is stable, press ENTER

58122

Set span: 386 mg/m³ Reading: 380 mg/m³ Calibration o.k. Fress ESC to return

5812b

Set span: 386 mg/m³
Reading: 5 mg/m³
Tolerange not o.k.
Fress ESC to return

如果分析仪识别出一股标定气流,则显示会如所示那样改变。如果第二行中的测量值在超过 10 秒时间内都保持不变或者无明显变化,则按下 ENTER 键。

分析仪然后比较标定的实际值(测量值)和设定点值。如果两个值的偏差在公差范围内,则旁边的这个信息将会输出(O.K.)

如果实际值比设定点值大或小约 20%,则旁边的这个信息会输出 not o.k (无标定可能)。

5.8.2 标定:标定 O₂传感器

O₂ oal. after install Start O₂ zero oal.

58

在该菜单中,你可以调用以下对话框:

- 重新输入 O₂传感器的安装日期
- 重新标定 O₂ 传感器的零点。

5.8.2.1 标定: 标定 O_2 传感器:安装之后的 O_2 标定

O₂ oal after install Date :01.01.2000

5821

在安装一个新传感器之后,你必须要重新输入安装日期。

输入的日期会进行真实性核查,然后使用环境空气进行标定(自标定)

在该标定过程中,会检查传感器的电压以确定它是否大于9mV。如果电压不大于9mV,则出现故障信息"传感器电压太低"。

5.8.2.2 标定:标定 O₂传感器:标定 O₂零点

O₂ zero oa. with M2 O.18 % Mitrogen flow please Calibrate with EMTER 在该对话框中,你可以使用氮气来重新标定 O_2 传感器的零点。接上氮气流,使用 ENTER 键来开始标定。

O2 zero oal with N2 1.25 % >1% => default value Press ESC to return 当你调用标定功能时,当前的氧气值会显示在第2行中。如果该值与设定值的偏差不大于1%,则将该值用作新零点(实例显示中的情况不是这样,见第3行)。

如果偏差值大于 1% ,则会使用一个固定的标准值作为新零点。

注意

请注意当使用低浓度的氧气时,气体的交换会非常慢。吹扫30分钟后再使用当前值。

5.8.3 标定:标定压力传感器

Set value: 1000 mbar Reading: 1007 mbar Enter new set value

583

在这个对话框的第1行中,你可重新输入压力传感器的设定点。例如可用一个精确的气压计来测量某个值,并在需要的情况下改变第1行中的设定点。

5.8.4 标定:自标定

Thermo-AUTOCAL: OFF Cyole time AUTOCAL Purge time

584

AUTOCAL Cycle time: 6 hours Time left 04:44 h

Purge time __ 80 seconds

5842

在这个对话框中,你可以改变自标定参数的下述值:

- · 热-自标定
- **关闭**:只有在循环时间结束时才会进行一个自动自标定(见下面)
- 开启:当所设定的循环时间结束时则进行一个自动自标定,如果温度变化>8°C时也会触发一个自动自标定。

· 自标定的循环时间

调用另外一个对话框,你可以在第二行中设定和修改循环时间(由分析仪触发的二次自标定过程之间的时间)。有效的循环时间是在0~24小时之间。在这个显示中,实例所设定的循环时间是6小时。如果循环时间被设定成0小时,则不能进行一个循环自标定。如果分析仪使用在德国系统(TA Luft 和13.BlmSchV)中时,循环时间的设定不能>6h。

第4行提示了距离下一次自标定的时间。

. 吹扫时间

调用菜单项"吹扫时间"后,你可以在显示对话框的第二行里改变吹扫时间(样气流动的持续时间)。对于装有 O_2 传感器的分析仪,它的有效吹扫时间为 60~300s ,否则就为 0~300s 。根据所测组分的不同,可有最短吹扫时间,不能使用比这个时间还短的的吹扫时间。在我们所提供的实例中,所选用的吹扫时间为 80 秒。

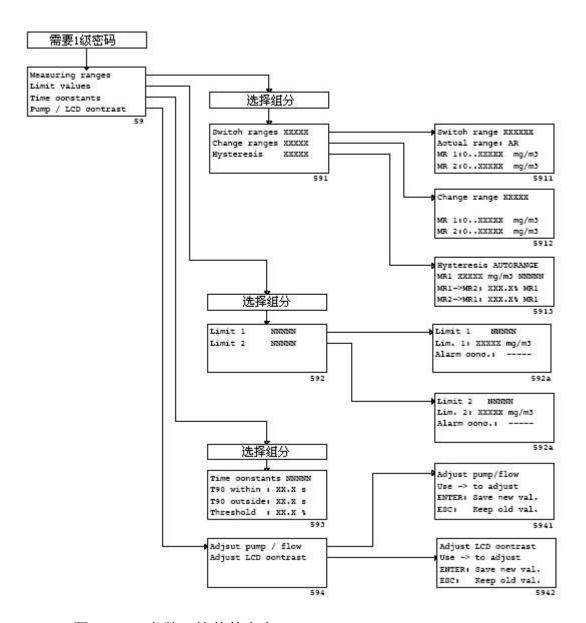


图 5-62 "参数"的菜单次序

5.9 参数

在这里,你可以修改各种分析仪参数,这些修改只能在分析仪预先设定的范围内进行。分析仪核查参数改变的合理性并在需要的时候拒绝它们。图 5-6 显示了菜单次序(有关各个显示元素的说明见 5.7 节)。

菜单"参数"受1级密码保护。

5.9.1 参数:量程

Switch ranges 80₂ Change ranges 80₂ Bysteresis 80₂

591

你可用这个菜单来选择对话框以允许或者取消量程之间的切换、设定满量程值和确定一个滞后。

F

注意

请注意:量程参数只是对模拟量输出而言的(见 5.10 节)。显示屏始终都是显示完整的、实际可行并具有工厂设定数字分辨率的量程。

5.9.1.1 参数:量程:量程切换

Switch ranges SO₂ Actual range: 1 MR 1:0.. 400 mg/m³ MR 2:0.. 2000 mg/m³

5911

在这个对话框的第2行中,你可设定量程1或量程2 或允许自动切换量程(自动在两个量程之间切换)。 参数**实际量程**具有以下数值:

- 1: 分析已被设定到较小量程(MR1),不可切换到模拟量输出(见第3章,针脚分配)(见图)。
- · 2:分析仪被设定到较大量程(MR2),不可切换到模拟量输出。
- **AR:** 分析仪自动从一个量程切换到另一个量程 (AR=自动切换量程)。(关于如何设定切换准则, 参见 5.9.1.3 节)。

5.9.1.2 参数:量程:改变量程

Change ranges 802

MR 110.. 400 mg/m³ MR 210.. 2000 mg/m³

5917

在这个对话框的第3和第4行中可以设定各量程的满量程值,它们必须要在工厂设定的范围内,例如:如果分析仪的总量程被工厂设定为0-2000mg/m³,那么修改只能在这个量程的3%范围内进行,例如最大不可超过2060 mg/m³。此外,量程1的满量程值不能比工厂设定的最小允许量程小-3%,例如:工厂设定的最小允许量程是400mg,量程1的量程不能低于388mg,并且量程1的满量程值不能大于量程2的满量程值。

5.9.1.3 参数:量程:滞后

Bysteresis AUTORANGE MR1 400 mg/m³ SO₂ MR1->MR2: 100.0% MR1 MR2->MR1: 90.0% MR1

5913

在这个对话框的第3和第4行中,你可设定分析仪从一个量程切换到另一个量程是的值。这个数值规定为量程1(MR1)的满量程值的%(参见5.9.1.1节)。

注意

只有在参数**实际量程**已经被设定到对话框"切换量程"中的数值 **AR**(自动切换量程)时,滞后才有效。

两个切换点应尽可能的分开,并且从 MR1 到 MR2 的 切换点必须大于从 MR2 到 MR1 的切换点,在上述显示中,假设的条件如下:

你的分析仪具有二个量程:从0到 400mg/m^3 的 MR1,从0到 2000mg/m^3 的 MR2,滞后被定义为:在 100%时 MR1 \mathbb{R} MR2,在 90%时 MR2 \mathbb{R} MR1。

- 如果分析仪采用较小量程(MR1),当测量值大于 400mg/m³SO₂时它便切换到较大量程(MR2)。
- 如果分析仪采用了较大量程(MR2),当测量值小于 $360~\text{mg/m}^3$ (= $400~\text{mg/m}^3$ 的 90%)时它便切换到较小量程(MR1)。

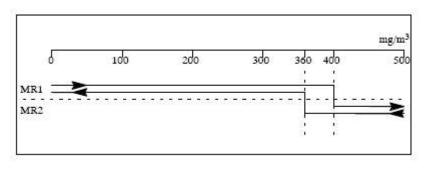


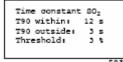
图 5-72 滞后曲线

5.9.2 参数:极限值

每个组分会分配有二个设定极限,可使用这个菜单来设定它们。当超过这两个极限时,会触发一个继电器(见 5.10.1.2 节)。极限 1 为下下限,极限 2 为上上限。

注意

只有在一个继电器已经分配给相应极限信号后,设定的极限才会触一个发继电器触点(见 5.10.1.2 节)。


Limit 1 80₂ Limit 1: 2000 mg/m³ Alarm at conc.:---- 如果你已选择"极限 1"或"极限 2",那么就会出现一个你可为每个组分输入下下限和上上限的对话框,你可在第二行中规定数值,在第三行(Alarm at

conc.:)中规定触点被触发的条件。

High: 超过上限Low: 低于下限

• -----: 无信号;见图。

5.9.3 参数:时间常数

你可使用这个功能来设定各种时间常数以抑制测量信号中的噪音。在测量信号的处理过程中,这些时间常数通过延迟信号来减少噪音。

时间常数"在 T90 之内"在一个参数化间隔中有效,它的临界值被定义为最小测量量程的百分数。时间常数可衰减信号中的小变化(如:噪音),但是如果信号超出一个临界值,它的这种衰减作用就会立即失效。当发生这种情况时,信号会被时间常数" T90 之外"衰减直到它重新降到临界值以下为止,这时" T90 之内"就会重新有效。

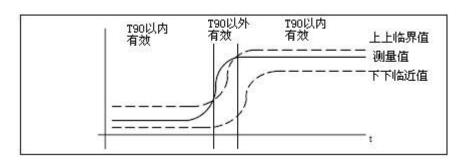


图 5-82 临界值和时间常数

下面的数值可用于时间常数:

•**T90**之内,之外:0.1-99.9(s)

• 临界值:数据单位为%:最小量程的 0-100%(在图

中:0%)

5.9.4 参数:泵/LCD 对比度

Adjust pump/flow Adjust LCD contrast 你可使用该菜单选则两个对话框,通过它们你可改变 泵的流量和 LCD 的对比度。

5.9.4.1 参数:泵/LCD 对比度:调节泵

Adjust pump/flow Use -> to adjust ENTER: save new val. ESC: keep old value 你可以在这里:

- 用→或者↑键增加泵流量
- 用↓键降低泵流量
- 用 ENTER 键保存泵流量的设定
- 用 ESC 键取消输入

流量计中会显示泵流量的变化情况并且在菜单中直接以 OK 或者 NOK 来显示。

5.9.4.2 参数:泵/LCD 对比度:调节 LCD 对比度

Adjust LCD contrast Use -> to adjust ENTER: save new value ESC: keep old value

你可以在这里:

- 使用→或者↑键增加对比度(字符变黑)
- 使用↓键降低对比度(字符变亮)
- 使用 ENTER 键存储设定的对比度
- 使用 ESC 键取消输入

注意

同时按下 $^{\uparrow}$, $^{\downarrow}$ 和 \rightarrow 这三个键可再次设定一个平均对比度

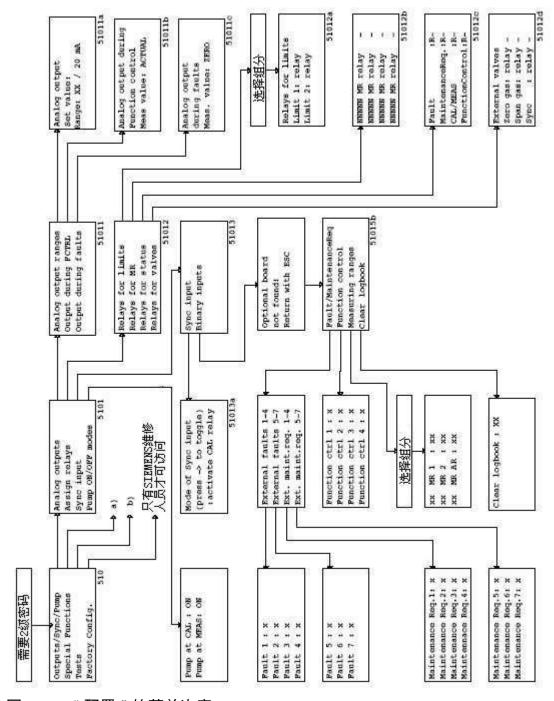


图 5-92 "配置"的菜单次序

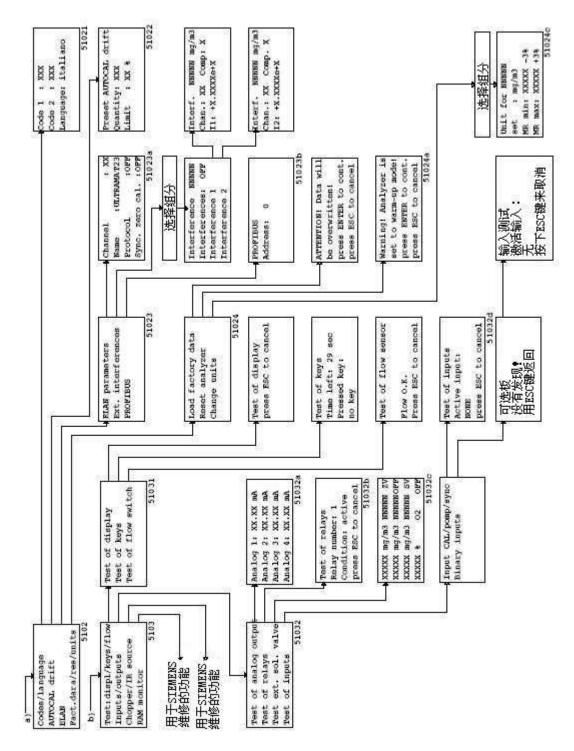


图 5-102 "配置"菜单次序(接上页)

5.10 配置

在这里,你可以分配继电器和输入/输出并可使用一些 特殊功能和测试功能。图 5-9 显示了相关的菜单次序 (参见 5.7 节以获得各元素的说明)。

该菜单受到2级密码保护。

5.10.1 配置:输入/输出/泵

Analog outputs Assign relays Binary-/Syno-Inputs Pump ON/OFF modes

这个菜单提供了一些在测量模式和标定过程中定义继 电器、输入和输出、同步和泵响应的功能:

5.10.1.1 配置:输出/同步/泵:模拟输出

Analog output ranges Output during FCTRL Output during faults

51011

Analog output Set value i Range 4 / 20 mA

51011a

你可使用这个菜单来对模拟量输出进行参数化:

· 模拟量输出量程(模拟量输出的起始量程值) 可在第三行中将当前模拟量量程的起始量程值设定为 0,2或则4mA;不可设定成其它值。如果起始量程 值被设定成 2 或 4mA, 那么低于它们的测量值也会被 输出并且在这时是以负值形式出现的(有效零)。

在旁边的这个显示框中, 当前模拟量量程的起始量程 值就被设定为4mA。

·FCTRL中的模拟量输出(功能控制中的模拟量输

在自标定过程与预热模式中以及分析仪没有密码的状 态下,下述测量值输出是可能的:

- Hold:开始之前的直接测量值将会无变化地输出。

- Actual:测量值会被持续更新。 - Null: 输出的值保持在 0, 2, 4mA - 21 mA: 输出的值保持在 21mA

Analog output during function control Meas. value: hold

51011b

Analog output during fault Meas. value: hold

510110

- · 故障时的输出(出现一个故障时的模拟量输出) 在出现一个故障时,你能定义测量值输出的类型。下面的几种类型是可能的:
- Hold:在故障持续的时间内,出现故障之前的那个最后测量值将会被输出。
- Actual:在故障持续的过程中,测量值将被持续更新。
- **Zero**:在故障持续的时间内,测量值会被设定为"零"(0/2/4 mA)。
- **21mA**:在故障持续的时间内,输出为一个固定值: 21mA

5.10.1.2 配置:输出/同步/泵:分配继电器

Relays for limits Relays for MR Relays for status Relays for valves

51012

你可使用这个菜单将不同的功能分配给安装在分析仪中的 8 个继电器。这些功能可以是极限信号或量程信号,状态信号以及外部电磁阀的功能。

每种功能只能分配给一个单独的继电器,如果你试图给一个继电器分配两个功能,那么分析仪将会输出一个错误信息,使用一个破折号将没有被分配功能的继电器显示在显示屏中。

表 5-2 继电器分配的总结

功能	非励磁继电器	励磁继电器	发信号
极限	极限已经被触发		极限,见5.9.2节
量程	量程 2	量程 1	
故障	有故障		
维护请求	维护请求		
CAL/MEAS	测量	自标定	自标定
功能检测	有功能检测		预热模式(大约 30 分钟),自标定,没 有密码
零气	零气流动		外部电磁阀打开
标定气(样气入 口)		标定气的流动	外部电磁阀打开
同步		输出同步信号	只在"零气流动"时 自标定,并且不在样 气吹扫阶段进行调节

第3章中描述了非励磁继电器的针脚分配

Relays/limits 80₂ Limit 1: Relay 1 Limit 2: Relay 2

510122

NO MR relay 3 CO MR relay -80₂ MR relay 4 O₂ MR relay -

· 用于极限的继电器

上上限和下下限可定义为触发继电器的事件,在第2 行和第3行中选择所需的继电器号。

该功能专用于组分

· 用于 MR 的继电器

每个组分的量程切换都可分配有一个继电器。这将确保将模拟量信号分配给当前有效量程的可信性,尤其是在自动切换量程模式中(见 5.9.1 节)。

Fault IR-Mainten. req. IR5 CAL/MEAS IR6 Service sw. IR-

510120

•用于状态的继电器

你可以用这个对话框将设备的各种运行状态的信号作为事件用于继电器控制(R=继电器)。以下的信号是可能的(可见表 LEERER MERKER):

- 故障:出现一个故障信息
- 维护请求:出现维护请求(用于图中的继电器5)
- CAL/MEAS: 从测量切换到自标定(用于图中的继电器 6)
- 维修开关:进行一个功能检测

External valves Sero gas :Relay -Span gas :Relay 7 Syno :Relay 8

510120

• 外部阀

你可使用这个对话框通过继电器触点来触发外部电磁阀:

- 零气:零气供给,也可触发自标定。
- **间距气体**:标定气公给(分配给图中的继电器 7; 见 5.10.3.2 节)
- 同步:在一个系统中,使某个设备与其它设备同步 (分配给图中的继电器 8;见 LEERER MERKER 节)。

5.10.1.3 配置:输入/输出/泵:二进制/同步输入

Syno inputs Binary inputs

51013

Modes of syno input (press -> to toggle) __sactivate CAL relay

51013a

Fault/MaintenanceReg function control meaasuring ranges Clear logbook

51015b

你可以使用这个对话框来设定同步输入和二进制输入的响应。选择一项。

· CAL/PUMP/SYNC-输入

你可以使用这个对话框来设定同步输入的响应。此时可为一个系统内的若干个分析仪同时触发一个自标定。在第 3 行中可进行以下设定:

- **自标定**:分析仪进行一个自标定并激活它的同步输出 直到电子调节终止。
- 激活 CAL继电器(图中设定):分析仪激活它的同步输出,但不进行一个自标定。同时,CAL输出也会被激活。

• 二进制输入

你可以使用这个对话框来为带有一个可选模块的分析 仪自由配置 8 个悬空二进制输入["0"=0 V(0...4,5V);"1"=24V(13...33V)]。37-接触抽头的 针脚分配在第 3 章中被描述。递送时没有任何输入。

为这8个输入使用一个子菜单,你可以:

- 为故障/维护请求切换7种不同的信息或者
- 为功能检测切换 4 种不同的信息或者
- 切换量程或者
- 删除日志

下面的表格解释了这些功能:

表 5-3 二进制输入的总结

功能	控制		结果
	0V	24V	
吃栏空白			
外部故障 1-7		X	例如:在气处理时,发送一个故障信息
			(冷却器,流量,液凝罐,)
外部维护请求		X	例如:在气处理时,发送一个维护请求信
			息(过滤器,流量,)
功能检测		X	例如:发送维护信号
量程1,2		X	选择相应的量程(自动切换量程关闭)
自动切换量程		X	开启自动切换量程
删除日志		X	删除所有的故障和维护请求条款

5.10.1.4 配置:输出/同步/泵:标定/测量时的泵

Pump at CAL: ON Pump at MEAS: ON

51014

你可以使用这个对话框来确定泵的响应。可能有以下 参数和值:

处于自标定时的泵:在一个标定过程中,泵的开启或

者停止(自标定)

处于 MEAS 时的泵:在测量模式中,泵的开启或者停

止。

5.10.2 配置:特殊功能

Codes/Language AUTOCAL drift ELAN/PROFIBUS Faot.data/Res/Units

你可以使用这个菜单来调用对话框以修改访问密码、 设定自标定迁移、参数化接口以及修改测量值输出的 物理单位。

5.10.2.1 配置:特殊功能:修改密码

Code 1: 111 Code 2: 222 Language: English

51021

在这个对话框的前两行中,你可以修改密码等级1和 密码等级2的密码(可见5.5.1节)。工厂设定的密码 为:

• 1级密码:111

你还可以通过将同样的密码分配给两个密码级以减少密码级。当你随后关掉 ULTRAMAT 23 时,新的密码值就会被保存,因此你应记下修改的密码并把它保存在一个安全的地方。

在退出菜单之前你应记下密码。

你可以在这个对话框的第三行中更改各个显示对话框的语言:

- 德语
- 英语
- 西班牙语
- 法语
- 意大利语
- 波兰语

当你离开这个对话框时,更改将会立即生效。

5.10.2.2 配置:特殊功能:自标定漂移

Freset AUTOCAL drift Quantity: 004 Limit: 6 %

51022

你可使用这个对话框来定义一个自标定过程迁移触发 一个维护请求的条件,可调节的参数有:

- · 数量:在设定一个新参考值之前,自标定循环的次数(在这种情况下为4)
- · 设定极限:最小量程的最大值(最大为 99%)(单位为%),在这个最大值处标定可能会与参考值有偏差(在该情况中为 6%,另可见 5.7.1.3节)。

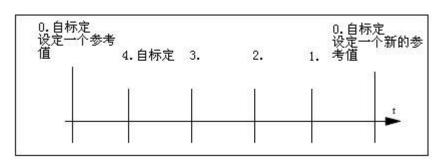


图 5-112 在重新设定一个参考值之前,自标定循环的次数(设定的次数为:4)

5.10.2.3 配置:特殊功能: ELAN 参数

ELAN Parameters ELAN ext.Interfer. PROFIBUS Parameters

51023

Channel : 1 Name: ULTRAMAT 23 Protocol :OFF Syno. zero cal. :OFF

510232

你可使用这个对话框来设定 ELAN 或者 PROFIBUS 网络的参数(见第3章)。

· ELAN 参数

你可使用这个对话框来设定 ELAN 网络的参数(见第3章)。

- 通道

在这里,你可以为该分析仪设定通道的地址。 地址的设定范围是:1-12。在 ELAN 网络中,每个地址只能被使用一次。

- 名称

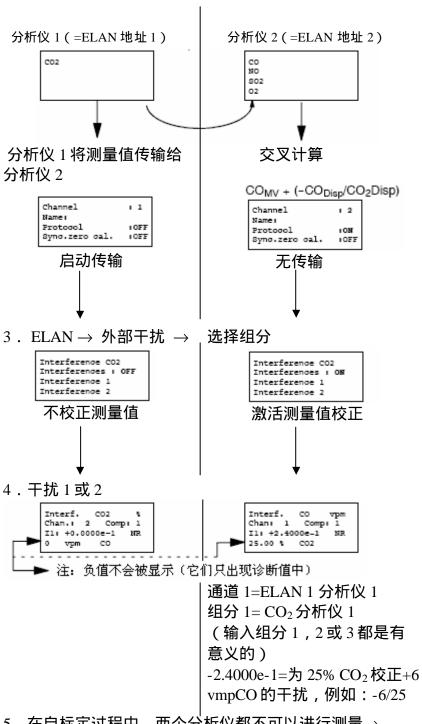
在这里,你可以设定分析仪的名称。在和 ELAN 通讯的过程中,分析仪的名称可以采用纯文本形式表示。

- 协议(开启/关闭)

测量值的自动循环传输(循环间隔为 500ms) 可以被开启/关闭。

- 同步零气标定(开启/关闭) 目前这个功能还不可用。只能被设置为关闭。

F


注意

如果想获得有关 ELAN 的更多细节,请参阅 ELAN 接口描述 (C79000-B5274-C176 德语/英语)

· ELAN 外部接口

使用两个仪器的参数化来作为一个实例。 分析仪 1 传输测量值,分析仪 2 用这些值来进行一个 校正计算。

- 1.使用一根电缆将两个分析仪连接到 ELAN 接口(见 ELAN 接口描述(C79000-B5274-C176 第 2 章)。
- 2. 访问 ELAN 菜单,并选择组分。

5.在自标定过程中,两个分析仪都不可以进行测量→评估功能检测(见 5.10.1.2 节)!

图 5-122 ELAN 外部干扰

PROFIBUS Number : XXX

• PROFIBUS 参数

如果分析仪具有一个 PROFIBUS-PA/DP 可选模块,那么你就可以在这里将站地址设置成十进制形式。

注意

有关 PROFIBUS 的更多细节,请参阅 PROFIBUS-PA/DP 接口描述(A5E00054148)。

5.10.2.4 配置:特殊功能:工厂数据/复位/单位

Load factory data Reset analyzer Change units

51024

你可使用这个菜单来选择很多项目,通过这些项目可以例如:取消故障配置和分析仪设置:

加载工厂数据

你可以使用这个功能来加载分析仪在递送时的原始参数。在递送之后对分析仪参数进行的<u>所有修改</u>都将被删除。

Warning: Analyzer is set to warm-up mode Press ENTER to cont. Press ESC to cancel

510242

· 分析仪复位

可用这个功能来重新启动分析仪。你将会看到这样一个警告(见图):在重新启动之后分析仪需经过一个预热阶段,所以在一定的时间内它是不能进行测量的。ENTER 键启动预热模式。如果需要,可用 ESC 键取消重新启动。

Unit for 80₂ Set: mg/m³ MR min: 400 -3% MR max: 2000 +3%

510240

·修改单位

本对话框的第 2 行允许你对工厂所设定的被测组分的 单位进行修改。

Unit for 80₂ Set: vpm MR min: 321 -3% MR max: 1603 +3%

在修改单位之后,参数 MR min 和 MR max 的显示将会做相应的调整。

这个对话框专用于组分。

注意

组分-特定转换系数可能会导致满量程值出现异常的值,可按 5.9.1.2 节所述那样对它进行调整。另外,请检查标定气体的设定点(见 5.8.1 节)和极限的设定(见 5.9.2 节)。

5.10.3 配置:测试

Test:Displ/Keys/Flow Inputs/Outputs Chopper/IR source RAM monitor

5103

你可用这个测试来检查分析仪的选定组件。这些包括前面板键,LCD,输入和输出以及很多内部分析仪组件。

5.10.3.1 配置:测试:显示/键/流量

Test of display Test of keys Test of flow switch

51031

你可在本菜单中选择以下三种测试:

. 显示测试

该分析仪字符集里的所有字符都在显示区域的每个位置上连续输出。如果输出的字符不能被显示,那么显示区域将保持空白。这是一种循环测试,例如:一旦整个字符集被处理完,测试会重新开始直到按下 ESC键才停止(在测试开始之前,显示屏中将出现信息来提醒你是否要停止测试)。

. 键测试

该测试需 30 秒,到测试结束还剩余的时间将在显示屏中输出。在这个测试过程中你可连续地按下所有输入键,分析仪识别出被按下的键并发出相应指示。该测试在它进行的过程中不能被取消。

. 流量开关测试

该测试是运来检测流量是否正确的,可通过按下泵键来接通和切断流量。

5.10.3.2 配置:测试:输入/输出

Test analog outputs Test of relays Test ext. sol. valve Test of inputs

51032

分析仪的电气输入和输出在这里进行测试。为了进行 这些测试,你需要以下设备:

- . 电流表
- . 欧姆表
- . 电源和/或
- 测试插头

Analog 1: 0.20 mA Analog 2: 0.40 mA Analog 3: 1.55 mA Analog 4: 2.60 mA

51032a

Test of relays Relay number 1 Condition: inactive Press ESC to cancel

51032

130 mg/m³ NO ZV 89 mg/m³ CO OFF 249 mg/m³ SO₂ SV 20.77 % O₂ OFF

510320

Test of inputs Fress ESC to cancel Active input: None

51032d

你可以进行以下测试:

• 测试模拟量输出:

你可使用这个对话框来将 0-20mA 之间的任何一个值设定为输出电流值。一共有 4 个模拟量输出 (0/4-20 mA)。为了测试这些输出,将一个电流表连接到插头 X 80 上的相应模拟量输出处并测量输出电流。有关插头 X80 的针脚分配,请参见第 3 章。

· 继电器测试

你可使用这个对话框来为测试选择一个继电器。一共有8个继电器,它们的触点是可被测试的。将欧姆表连接到插头 X80 上的相应继电器输出处。你可处理以下参数:

- 继电器编号:1到8个继电器中的一个继电器(针对于含有可选模块的分析仪:继电器1-16)或者"-" (没有继电器)
- **条件**:所选继电器的当前状态(有效或无效,图中 为无效)

有关 X80/X50的针脚分配,请参见第3章。

· 外部电磁阀

你可使用这个对话框为零气和标定气体供应通过继电器触点来触发外部电磁阀。用箭[↑]和↓在第 1 行中选择零气阀(ZV)或在第 3 行中选择标定(量程)气体阀(SV)。使用 ENTER 键来调用选定的阀。第 2 行或第 4 行中的任何一个箭头键都可切换先前分配的继电器(位于右乒乓开关开启和关闭之间的值)。在该测试过程中,显示屏上输出的测量值在切换操作之后通常都会发生变化。

· 输入测试(二进制测试)

在调用这个对话框之后,在三个输入"开启/停止泵","标定"或"同步"中的一个输入上施加24V电压,其结果会在第4行中显示(在这种情况下无输入)。

对于带有可选模块的分析仪,它的外部二进制输入可以在菜单"二进制输入"中进行测试。

5.10.3.3 配置:测试:斩波器/IR 源

你可以使用这个功能来关闭斩波器和IR源。

警告

非常重要!必不可少!

如果 IR 源或者斩波器被关闭,那么分析仪就不能进行测量!你必须要根据关闭的时间来提供一个足够长时间的预热模式(例如通过重新启动分析仪)。

F

注意

只有合格的维修工程师才可使用这个功能。

5.10.3.4 配置:测试: RAM 监视器

维修工程师可通过该功能来查看某些存储区域的内容

5.10.4 配置:工厂配置

Factory config. : Please enter special code: 0000

5104

这是工厂专门为你的分析仪所进行的设定。由于修改 这些参数可能会影响分析仪的功能,所以只有维修工 程师使用一个特殊的访问密码才可访问这些工厂设 定。

5.11 其它输入

5.11.1 泵键

这个键可开启和停止内部样气泵(如果有的话)。如果泵在分析仪处于输入模式时被停止,并且如果仪器已经根据相应要求参数化过,那么通过按下 MEAS 键可将泵重新开启(参见 5.10.1.4 节)。

泵也可通过二进制输入来开启和停止(见第3章)。 二进制输入比按钮具有优先权。

5.11.2 标定键

如果分析仪处于测量模式中,按下 CAL 键可触发一个用环境空气或氮气进行的单独自动标定(自标定),标定键在分析仪处于预热模式时是不可用的。

维护 6

6.1	信息	95
6.1.1	维护请求	95
6.1.2	故障信息	96
6.2	维护工作	99
6.2.1	替换 O ₂ 传感器	100
6.2.2	替换保险丝	100
6.2.3	替换安全过滤器	101
6.2.4	清空凝液罐(只针对便携单元)	101
6.2.5	替换粗过滤器(只针对便携单元).	102
6.3	气路的维护	102
6.4	清洗分析仪	102

6.1 信息

ULTRAMAT 23 可以检测和显示各种故障状态。故障状态可分成维护请求和故障信息。

6.1.1 维护请求

维护请求是分析仪中出现某些变化时的参考信息,在分析仪发出维护请求时,它的测量不会受其影响。然而,还是推荐采取一定的补救措施以确保测量得到尽可能的保持。

如果分析仪处于测量模式中,则在发生维护请求时,显示屏的右边会出现"M"字样。

维护请求会被记录在日志中,在输入模式中用菜单路径"分析仪状态-状态-维护请求"可调用维护请求(参见5.7.1.2节)。相应的信息文本会被存储,你可按下ENTER 键来删除这些信息。然而,如果引起维护请求的原因没有被除去,则它们还会再次出现。

在下述三种情况中,分析仪会发出一个维护请求:

自标定迁移超出公差 信息"自标定迁移超出公差"

在自动标定过程中,某一组分的零点迁移太大,可按 5.8.4 节中所述那样输入标定参数。用自标定偏差可读 出距最大允许值的实际偏差值(见 5.10.2.2 节)。在 二个自标定过程之间设定一个较短的时间间隔可能会起 作用,否则则应与维修部门联系。

O₂ 传感器 信息 " O₂ 传感器 "

由于老化的原因, O_2 传感器的测量电压已经下降,但是仍在允许的范围内。这就意味着不需要立即替换 O_2 传感器,但是它的测量电压很快会被耗尽。如果需要,则定购一个新的 O_2 传感器。

LCD 温度超出公差 信息 "LCD 温度超出公差"

如果 LCD 温度超出允许的公差范围,则 LCD的对比度控制便不能得到保证,这样便会造成难以读出显示屏上的显示。

如果环境温度太高,则应提供足够的通风或空调。如果仍发生该故障,则应与维修部门联系。

6.1.2 故障信息

当分析仪中出现某些变化时,它的正确测量能力就会受到影响,故障信息就是根据这些变化所制定出来的参考量。

如果分析仪处于测量模式中,则在发生故障时,显示屏的右边会出现一个"F"。

Mains voltage beyond tolerance press ENTER to clear next message with -> 故障信息会被记录在日志中,在输入模式中用菜单路径"分析仪状态-状态-日志/故障"可调用故障信息(见5.7.1.1节)。相应的信息文本会按文字数字的文本形式存储在日志中。按下 ENTER 键则可删除这些信息。然而,如果引起故障信息产生的原因没有被除去,则它们还会再次出现。

表 6-1 提供了一个关于故障信息、故障的起因以及故障 排除措施的总结表。当出现某种故障信息时,如果它的 补救措施没有在表中列出,则你必须要联系维修部门。

表 6-1 故障信息

10-1 PXPPID芯		\$1 BL 1413E
故障信息	可能的起因	<u> </u>
测量值通道 1 超出公差	第1组分的分析部件出	
测量值显示:*****	现故障	
测量值通道 2 超出公差	第2组分的分析部件出	
测量值显示:*****	现故障	
测量值通道 3 超出公差	第3组分的分析部件出	
测量值显示:*****	现故障	
测量值 O ₂ 超出公差	O ₂ 传感器故障或老化	按 6.2.1 节所述那样替换
测量值显示:*****		O ₂ 传感器
	母板故障	
主电压超出公差	主电压变化	将主电压校正到分析仪
		所允许的公差范围内
	电源单元故障	
分析仪的温度超出公差	环境温度太高或太低	提供足够的通风或空调
	一个检测器的温度传感	
	器出现故障	
环境空气的压力超出公	压力传感器出现故障	
差		

接上页.....

故障信息	可能的起因	补救措施
测量过程中流量太低	样气通道被堵塞或有泄 漏	清洗或替换堵塞的部件 (软管,过滤器等)。
	<i> </i>	(秋色,过滤品等了。 如果仍有问题,联系维
		修部门。
	泵不运行	启动泵
	泵流量太低	按 5.9.4.1 节所述那样
		增加泵的流量
11 = 10 =	泵出现故障	
故障信息	可能的起因	│ 补救措施 │
没有温度补偿的数据 	温度补偿不成功	
	加载了新组分	
**************************************	EEPROM已被初始化	\=\4\- \ +\±±+\7\1\7\ \ \=\0.1\4\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
在自动标定过程中流量	CAL 气路被堵塞或有泄	清洗或替换堵塞的部件
太低	漏	(软管,过滤器等)。 如果仍有问题,联系维
		如来仍有问题,妖乐维 修部门。
		开启泵
	- 京十之门 - 泵出力太低	按 5.9.4.1 节所述那样
		增加泵的流量
	泵故障	
在自动标定中 O ₂ 的浓度	O ₂ 传感器故障或老化	按 6.2.1 节所述那样替
太低,		换 O ₂ 传感器
测量值显示:*****	│ 没有标定 O₂ 传感器的零	按 5.8.2.2 节所述那样
	点	k 标定 O_2 传感器的零点
模拟输出出现故障	开启分析仪时组分没有	
	被初始化	
	┃标定模拟部分时超出了 ┃极限范围	
 所有 IR 通道的常见故障	│	
MV-C1/23 超出公差	IR源故障	
IR 通道地址的故障	位于检测器上用来检测	
	1 组分的插入跳线的插入	
	位置不对	
		检查接头是否正确地连
	检测器的电缆无接触	接到检测器上(插头必
		须被锁住二次)
	检测器的电缆出现故障	

接上页.....

故障信息	可能的起因	补救措施
		でいる人が自己で
自标定迁移超出公差	取样单元受到污染	
	检测器出现故障	
	IR 源电压太低	
EEPROM 出现故障	校验和没有准备就绪	
	读出字符≠书写字符	
找不到相位	斩波器失调	
IR 通道 1 未标定	没有标定满量程值/斜率	
IR 通道 2 未标定	没有标定满量程值/斜率	
IR 通道 3 未标定	没有标定满量程值/斜率	
IR 源的电压超出公差	IR 源没有准备好	
	母板故障	
电桥的电压超出公差	特定通道的电子放大器	
	故障	
	母板故障	
半桥电压超出公差	特定通道的电子放大器	
	故障	
	母板故障	
锁定故障	特定通道的电子放大器	
	故障	
	母板故障	
O ₂ 传感器的灵敏度太低	O ₂ 传感器故障或老化	按 6.2.1 节所述那样替
		换 O ₂ 传感器
AD转换器溢出	电子器件故障	

6.2 维护工作

警告

在操作过程中,电气装置中的特定部件包含有危险电压。

如果电源连接不正确,或者没有正确地进行维护工作,或者没有遵守警告,则可能会造成工作人员的严重伤害和/或财产的损坏。

本分析仪正确和安全的操作是由它合适的运输、存储和安装方式以及谨慎的操作和维护所共同决定的。

警告

当工作在有毒气体环境中时,确保工作地点的气体浓度 不会对工作人员的健康造成危险。如果气体连接不正 确,则有毒气体、可燃气体或者爆炸气体就可能会造成 事故。

小心

装在该仪器中的电子器件和模块必须可以防止静电和放电。在制造、测试、运输和安装这些电子器件和模块时,都必须采取综合的措施来保护它们。

警告

在打开分析仪之前,将所有的极点与主电源断开。

6.2.1 替换 O₂传感器

警告

烧伤的危险

 O_2 传感器中含有醋酸,它会烧伤无防护的皮肤。 在替换传感器时,不可以损坏它的外壳。 然而,如果你接触到该酸,则应该立即用大量的水来冲 洗受伤的皮肤。

另外请注意老化或有故障的 O₂ 传感器为有毒的废弃物,所以它必须要被封装好并做相应的处理。

拆除

- · 旋下前面盖子上的两颗螺丝并拆下改盖
- · 旋松传感器连接的插头并拆下
- · 旋下 O2 传感器
- · 拆掉 O2 传感器的垫圈

安装

- · 插入新的垫圈
- · 旋入新的 O₂ 传感器并拧紧
- . 重新连接插头
- · 按 5.8.2.1 节所述那样在菜单项" 安装后进行 O_2 标定"中输入安装日期。
- · 按 5.8.2.1 节所述来标定 O₂零点。

6.2.2 替换保险丝

- · 拆掉插头下面的保险丝座(见第3节,技术说明,图3.12或者图3.13),使用一把小螺丝起子来做这项工作。
- · 从保险丝座中拆掉熔断的保险丝。
- . 插入一个新的保险丝

[F

注:

只能使用分析仪后面所印型号的保险丝。

· 重新将保险丝座插到原来位置。

6.2.3 替换安全过滤器

准备

- · 旋松机架顶盖上的 4 颗螺丝,并将顶盖移到机架的后面
- · 根据过滤器的型号来找出受到污染的过滤器(见第7节,备件列表,7-18页上的位置14和15)
- · 从过滤器上拆掉软管
- · 替换受到污染的过滤器。

Œ

注

当安装过滤器时,确保过滤器上的箭头指向气体流动的 方向

. 将顶盖推回到机架顶部并将螺丝拧紧。

6.2.4 清空凝液罐(只针对便携单元)

- . 按下泵键来停止泵的运行
- · 将凝液罐稍微倾斜以松开分析仪前面的凝液罐,并小心地向下拉动
- . 根据样气的组分来清空凝液罐并除去凝液
- · 重新将凝液罐从下面推回原位。

6.2.5 替换粗过滤器(只针对便携单元)

- · 按下泵键来停止泵的运行
- · 按 6.2.4 节所描述的方法来松开分析仪前面的凝液罐
- · 拆掉受到污染的过滤器
- · 插入新的过滤器
- . 重新将凝液罐从下面推回原位。

6.3 气路的维护

根据样气的腐蚀性来定期检查气路的状态。

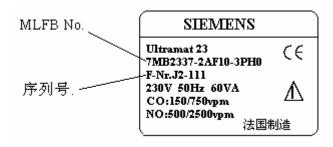
如果需要,则替换软管。

6.4 清洗分析仪

使用一块用温和清洗剂浸湿的软布来擦洗分析仪表面。

备件列表

我们已核查了这本手册的内容以让它和所描述的软件和硬件的内容相符合。因为不能彻底地排除两者内容有所差异的情况,所以我们不能保证两者内容完全一致。然而,我们也应该定期地校阅本手册中的数据并在后来的增刊中加入任何需要的修改。欢迎提出改进意见。


版权所有: Siemens AG-2001-保留所有的权利

技术数据可以更正。

在没有得到权威结构书面允许的情况下,对本手册或其中内容进行翻印、传载或者使用是不允许的,违者将会受到惩罚。保留所有的权利,包括由专利授权机构或者模型使用或设计的注册机构所制订的权利。

这个备件列表是根据 2001 年 1 月的技术规定而制定的。

铭牌上标明了气体分析仪的制造年限(编码形式)。

订购说明

所有的定单都应该说明以下几项:

- 1.数量
- 2. 名称
- 3. 订货号
- 4.气体分析仪的名称,备件所属仪器的 MLFB 号和序列号。

订购实例

1个用在 ULTRAMAT 23 中的氧气传感器

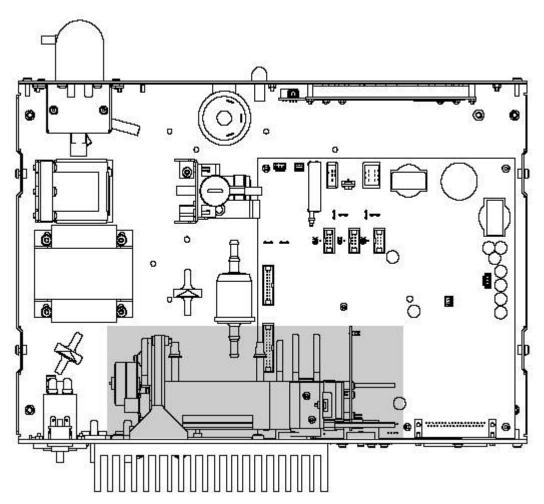
订货号: C79451-A3458-B55 型号 7MB2337-2AF10-3PH1

序列号 J2-111

信息概述

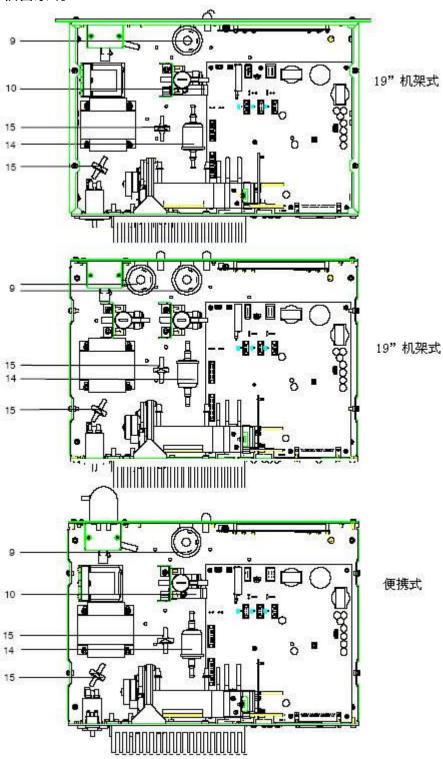
为了替换部件,需要做一些特殊工作。ULTRAMAT 23 的 维修手册将会给你提供这方面的帮助。你可以从位于哈格 诺的 CSC 订购到这本手册,其订货号为:

C79000-W5200-C157 (德文) 或者 C79000-W5200-C157 (英文)

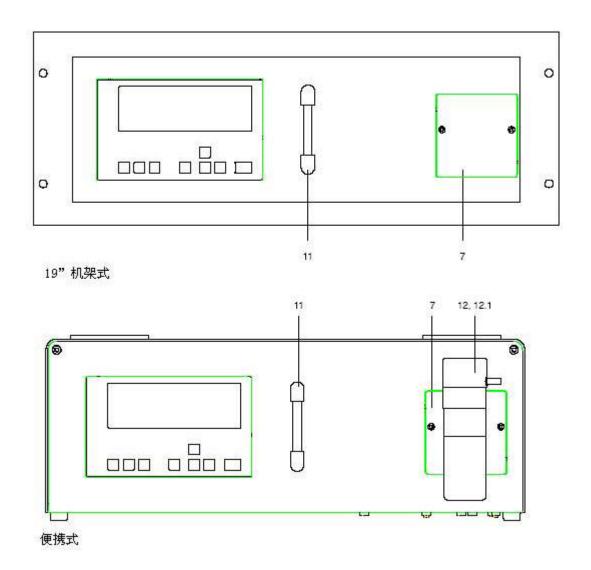

测量精度的注释

为了保持 ULTRAMAT 23 的测量精度,在更换它的部件之后需要进行温度补偿。需要补偿的部件会在它的旁边注有*)

当安装地点的温度短时间内波动>5°C时,温度补偿就显得特别重要。在某些情况下,例如:循环零点调节"自标定"的时间为3小时,不会发生基于温度的影响。

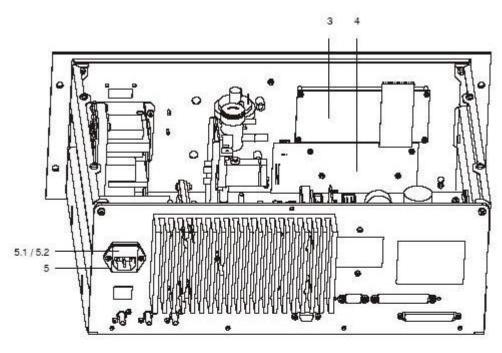

我们推荐在哈格诺进行温度补偿,如果这不可能, ULTRAMAT 23 的维修手册将会给你提供这方面的帮助。 你可以从位于哈格诺的 CSC 订购到这本手册,其订货号 为:

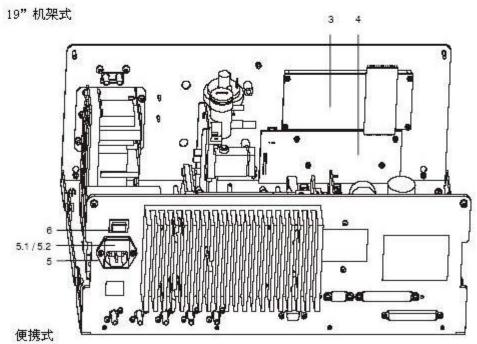
C79000-W5200-C157 (德文) 或者 C79000-W5200-C157 (英文)


灰色区域:分析部件 白色区域:电子部件

气体的软管系统

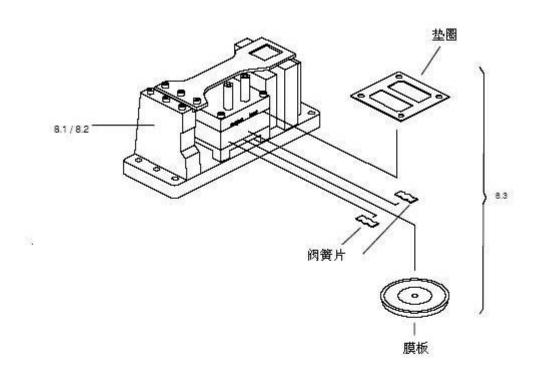
各个部件的名称见 108 页

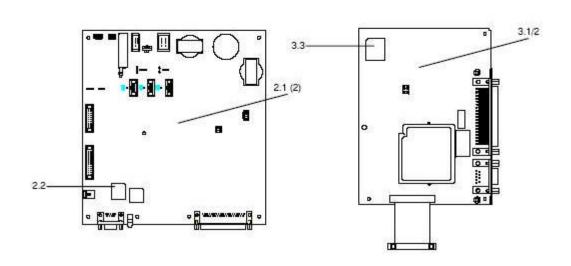

部件号	名称	订货号	备注
9	压力开关	C79302-Z1210-A2	
10	电磁阀	C79451-A3494-B33	
14	安全样气过滤器	C79127-Z400-A1	内部
15	安全零气过滤器/ 斩波器吹扫	A5E00059149	内部



各个部件的名称见 110 页

部件号	名称	订货号	备注
7	氧气传感器	C79451-A3458-B55	
11	流量计	C79402-Z560-T1	
12	凝液罐	C79451-A3008-B43	前面
12.1	过滤器	C74127-Z1211-A1	位于凝液罐中


电子器件

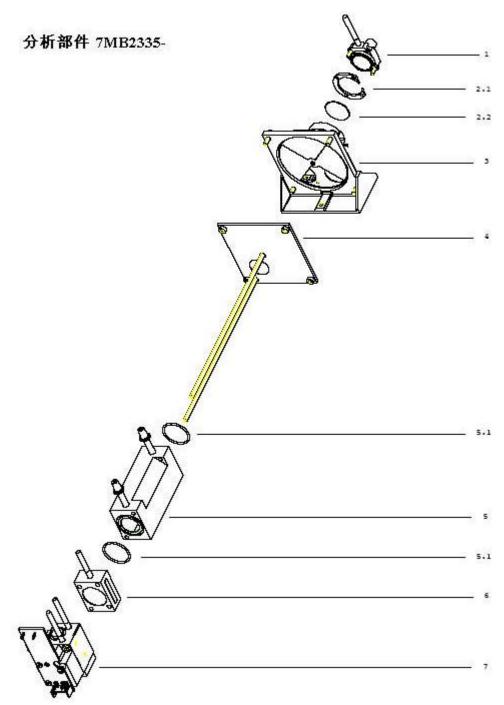


各个部件的名称见 112 页

部件号	名称	订货号	备注
3	LCD模型	C79451-A3494-B16	
4	键盘	C79451-A3492-B605	
5	插头过滤器	W75041-E5602-K2	
5.1	保险丝	W79054-L1010-T630	230V/230V; T0,63/250V 见仪器的后面
5.2	保险丝	W79054-L1011-T125	100V/120V; T1,25/250V 见仪器的后面
6	电源开关	W75050-T1201-U101	

各个部件的名称见 114 页

部件号	名称	订货号	备注
8.1	样气泵	C79451-A3494-B10	50Hz
8.2	样气泵	C79451-A3494-B11	60Hz
8.3	设置垫圈	C79402-Z666-E20	用于样气泵 Nos8.1 和 8.2


部件号	名称	订货号	备注
2*)	母板	C79451-A3494-D501	母板和固件; 德文/英文/法文/西 班牙文/意大利文
2.1*)	母板	C79451-A3492-B601	无固件的母板
2.2	固件(FlashPROM)	C79451-A3494-S501	德文/英文/法文/西 班牙文/意大利文
3.1	附加的电子器件 DP	A5E00057159	PROFIBUS DP
3.2	附加的电子器件 PA	A5E00056834	PROFIBUS PA
3.3	固件(PROFIBUS)	A5E00057164	德文/英文/法文/西 班牙文/意大利文

^{*)} 当替换它们时,需要进行一个新的温度补偿。

分析部件总结表

<u>屋程(MR) 订単 订単 可単</u> nn max comp MR	1100	1100		IRWR C79451- AS468-	好放器 C78451- A3468-	塔有螺栓形 窗口的板 C79461-A3468-	表 所 所	数格单元1 长度 C79481- [mm] A3468-	被 放器	Gas fibert C79451- A3458-	检测器 Type	检測器1 Type A3468-	板 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化 化	取样单元2 长度 Grass- mmi Asses-	Gas Bes o cata	成改略 Creest-	检测器2型号	C7945 1- A3466-
250 vpm A D		a														l		
500 vpm A E		w	ska			1												
750 mg/m3 A U		n	200			ži.												
750 vpm A F	14 ×	ia.					8	1621										
1000 vpm A G	10	0	5,0															
2500 vpm A H		I	550															
2500 vpm A X		×																
3000 vpm A J		,	100		Contract Street		8	62.92		0000000	SOUTHWENEVERS							
10000 ypm A K B206	×	78	920	10	8515,516	8513,514	8	88.88		8500	2 Ryer HO	8625						
2.5% A L	A L	18					8	B254										
Ą	6.5	W	100				0	88								_		
10% A N	10.5	Z	6,5				01	8236		~			- 68					
25.55 A P	4	4					9	8539				1						
20% A Q		o	100				oi	88			2 RIVER HC	8558						
100% A R		œ	8.3		250		55	Se Carried St	100	413		constant in			68	100		503
250 vpm 0 D		٥			9515(516		180	16281		C/V					<u> </u>	ė		
1000 vpm C G		6	68.5		petind			000000000000000000000000000000000000000			2 Byer HO	9636						
0		7	6.5		100000000000000000000000000000000000000		180	R231				300000	_					
٥	000	×					8	88										
0		7					8	85.58		8541								
	M		9206		8515/516	8513/514	8	B234	¥		2 Byer HO	8526						
C	z	- 1					000											
		α.					0	18			Y							
0 0 %%	127	o					64	8638		(8)								
100% C R	100	R	100															
D 4	B	88	-						8							-		
a.	۸	=	830	400	B515,516	8513,514	8	18 31	C7628 5-	360	Stayer	B520 ch. 1						
0.	10	*	201						21491-			8522 ch. 2						
0.3		I	-71					33	8									
~~		2	_	١			8	SS 88							1		Ì	
N	127		ा		15		10000	CHARLES OF		2000					63	Ö-		
×	*	72	-1				8	1634		8208		B521 ch. 1						
w w	U			8206	8515/516	8513,514			O7028 5-		3 layer	8523 ch. 2						
2500 vpm N H		I	es l				0.00	000000	Z1906-									
z		7	7.4				8	88	¥.									
-		ж.	T				8	# 88										
20 % N L	1	. 3		ı			180	20.61		95.40			Ī	Ī	Ì	t	Î	
0 0			1				-	2000	- 20									
2 0	4 3	T	1	3	2700000	\$1000000000000000000000000000000000000	8	# 15 E				-						
z	z		8	8306	8515,516	8513,514	0	8	•		S RIVE HC	8527						
۵	0.5	a.					¢i.	88		8	0		CIR.					
œ	oc	000				111000110011					2 layer HO	8529						
п н	ı	H 8206	8206	-5	8515/816	8513/614	180	16291	*	*	2 Byer HO	8999						
×			8008	2	8515,516	8513,514	180	t	C78265-21491-C2	20	2 layer HC	8587			-	Ö		35
255% - CA B208			830	ø	8516	8514	9	188	is i	ž.	dot ste	8531	9	8235		4	2 layer HC	8527
- 08			9				8	0000000	=0		detector							
. 88	-	-	-	8206	8516	8514	04	9636		3	98 500	8502	8	B254	,		2 isyer HO	8526
8 80 V	-	-	6) 	1			ũ		N	13	debector	-			<u> </u>	V.	all sales	-
Jun3	2 1	AK	1	ı			180	1508	300		And Wallerson	-	I	Ī	t	t	Ī	
2500(2500 vpm - AA	**	1	80	8206	B516	B514			83	8500	dict sta	9000	У			8108	3 layer	B520 ch. 1
- AB	- AB	530	5.0		TIMO TIMO		8	8533			dotector					and the second		
- mgv 0008/0008	900 100	AC	59	- 1			8	E0 50	=58			-00			1			

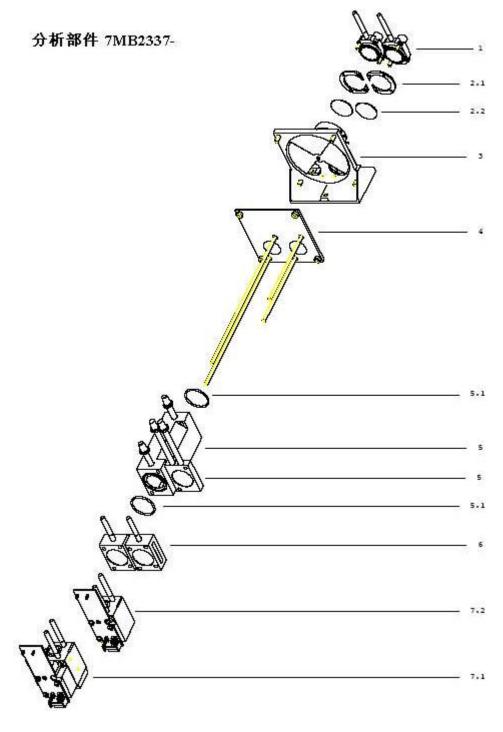
分析部件

各部件的名称见 117 页

7MB2335-

部件号	名称	订货号	备注
1*)	IR源	C79451-A3468-B206	
2.1	隔离块	C79451-A3468-C20	
2.2	滤光片	C75285-Z1491-C5	用于 NO**)
2.2	滤光片	C79285-Z1302-A4	用于 SO ₂ **)
2.2	滤光片	C79285-Z1491-C2	用于 C ₂ H ₄
3*)	斩波器	C79451-A3468-B515	
4	带有螺栓和窗口的板	C79451-A3468-B513	
5.1	O型密封圈	C71121-Z100-A99	
5	带有 O 型密封圈的取样 单元	C79451-A3468-B231	取样单元长度: 180mm
5	带有 O 型密封圈的取样 单元	C79451-A3468-B232	取样单元长度: 90mm
5	带有 O 型密封圈的取样 单元	C79451-A3468-B233	取样单元长度: 60mm
5	带有 O 型密封圈的取样 单元	C79451-A3468-B234	取样单元长度: 20mm
5	取样单元	C79451-A3468-B235	取样单元长度: 6mm
5	取样单元	C79451-A3468-B236	取样单元长度: 2mm
6	气体过滤器	C79451-A3458-B500	用于 CO
6	气体过滤器	C79451-A3458-B508	用于 SO ₂
6	气体过滤器	C79451-A3458-B541	用于 CO ₂ ,最小量 程<5%
6	气体过滤器	C79451-A3458-B542	用于 CH4,最小量程<2%

^{*)} 当替换它们时,需要进行一个新的温度补偿。


^{**)} 当替换它们之后,请检测水蒸气的干扰。

7MB2335-

部件号	名称	订货号	备注
7*)	检测器	C79451-A3468-B525	用于 CO , 最小量 程<5%
7*)	检测器	C79451-A3468-B528	用于 CO , 最小量 程≥5%
7*)	检测器	C79451-A3468-B536	用于 CO ₂ ,最小量 程<1000vpm
7*)	检测器	C79451-A3468-B526	用于 CO ₂ ,最小量 程≥1000vpm
7*)	检测器	C79451-A3468-B527	用于 CH ₄ ,最小量 程<20%
7*)	检测器	C79451-A3468-B529	用于 CH ₄ ,最小量 程≥20%
7*)	检测器	C79451-A3468-B537	用于 C ₂ H ₄
7*)	检测器	C79451-A3468-B520	用于 NO
7*)	检测器	C79451-A3468-B521	用于 SO ₂
7*)	检测器	C79451-A3468-B535	用于 R22

^{*)} 当替换它们时,需要进行一个新的温度补偿。

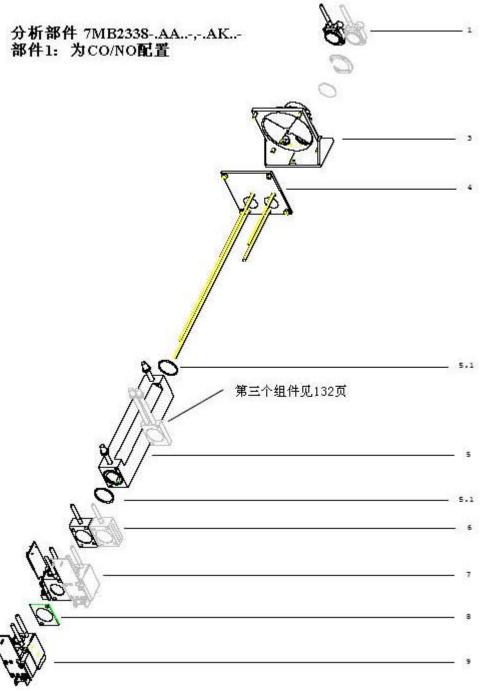
分析部件

各部件名称见 120页

7MB2337-

部件号	名称	订货号	备注
1*)	IR源	C79451-A3468-B206	
2.1	隔离块	C79451-A3468-C20	
2.2	滤光片	C75285-Z1491-C5	用于 NO**)
2.2	滤光片	C79285-Z1302-A4	用于 SO ₂ **)
2.2	滤光片	C79285-Z1491-C2	用于 C ₂ H ₄
3*)	斩波器	C79451-A3468-B516	
4	带有螺栓和窗口的板	C79451-A3468-B514	
5.1	O型密封圈	C71121-Z100-A99	
5	带有 O 型密封圈的取样 单元	C79451-A3468-B231	取样单元长度: 180mm
5	带有 O 型密封圈的取样 单元	C79451-A3468-B232	取样单元长度: 90mm
5	带有 O 型密封圈的取样 单元	C79451-A3468-B233	取样单元长度: 60mm
5	带有 O 型密封圈的取样 单元	C79451-A3468-B234	取样单元长度: 20mm
5	取样单元	C79451-A3468-B235	取样单元长度: 6mm
5	取样单元	C79451-A3468-B236	取样单元长度: 2mm
6	气体过滤器	C79451-A3458-B500	用于 CO
6	气体过滤器	C79451-A3458-B508	用于 SO ₂
6	气体过滤器	C79451-A3458-B541	用于 CO ₂ ,最小量 程<5%
6	气体过滤器	C79451-A3458-B542	用于 CH ₄ , 最小量 程<2%

^{*)} 当替换它们时,需要进行一个新的温度补偿。


^{**)} 当替换它们之后,请检测水蒸气的干扰。

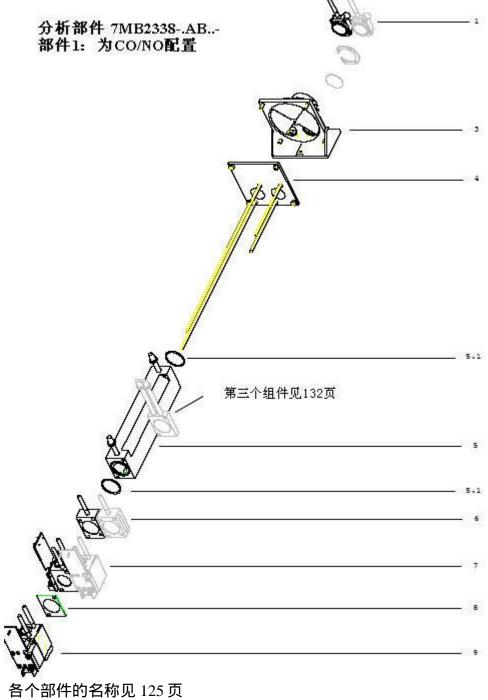
7MB2337-

部件号	名称	订货号	备注
7.1/7.2*)	检测器	C79451-A3468-B525	用于 CO , 最小量程 <5%
7.1/7.2*)	检测器	C79451-A3468-B528	用于 CO,最小量程 ≥5%
7.1/7.2*)	检测器	C79451-A3468-B536	用于 CO ₂ ,最小量 程<1000vpm
7.1/7.2*)	检测器	C79451-A3468-B526	用于 CO ₂ ,最小量 程≥1000vpm
7.1/7.2*)	检测器	C79451-A3468-B527	用于 CH4,最小量程<20%
7.1/7.2*)	检测器	C79451-A3468-B529	用于 CH₄ , 最小量 程≥20%
7.1/7.2*)	检测器	C79451-A3468-B537	用于 C ₂ H ₄
7.1*)	检测器	C79451-A3468-B520	用于 NO (通道 1)
7.2*)	检测器	C79451-A3468-B522	用于 NO (通道 2)
7.1*)	检测器	C79451-A3468-B521	用于 SO ₂ (通道 1)
7.2*)	检测器	C79451-A3468-B523	用于 SO ₂ (通道 2)

^{*)} 当替换它们时,需要进行一个新的温度补偿。

分析部件 1 CO/NO

各个部件的名称见 123 页

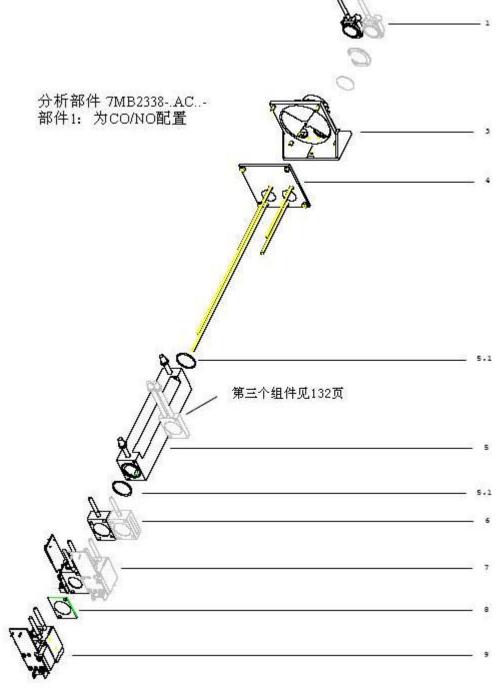

7MB2338-.AA..-,AK..-

部件号	名称	订货号	备注
1*)	IR 源	C79451-A3468-B206	
3*)	斩波器	C79451-A3468-B516	
4	带有螺栓和窗口的板	C79451-A3468-B514	
5.1	O型密封圈	C71121-Z100-A99	
5	带有 O 型密封圈的取样 单元	C79451-A3468-B231	取样单元长度: 180mm
6	气体过滤器	C79451-A3458-B500	用于 CO
7*)	检测器	C79451-A3468-B530	用于 CO
8	滤光片	C79451-A3458-B103	用于 NO**)
9*)	检测器	C79451-A3468-B520	用于 NO (通道 1)

^{*)} 当替换它们时,需要进行一个新的温度补偿。

^{**)} 当替换它们之后,请检测水蒸气的干扰。

分析部件 1 CO/NO


7MB2338-.AB..-

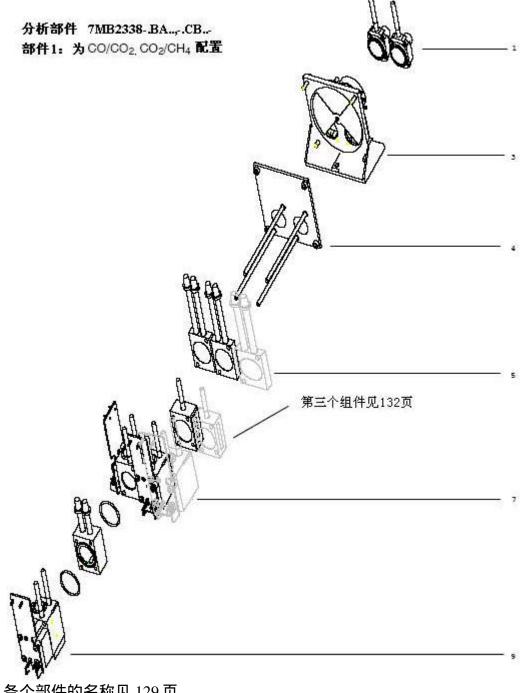
部件号	名称	订货号	备注
1*)	IR 源	C79451-A3468-B206	
3*)	斩波器	C79451-A3468-B516	
4	带有螺栓和窗口的板	C79451-A3468-B514	
5.1	O型密封圈	C71121-Z100-A99	
5	带有 O 型密封圈的取样 单元	C79451-A3468-B233	取样单元长度: 60mm
6	气体过滤器	C79451-A3458-B500	用于 CO
7*)	检测器	C79451-A3468-B530	用于 CO
8	滤光片	C79451-A3458-B103	用于 NO**)
9*)	检测器	C79451-A3468-B520	用于 NO (通道 1)

^{*)} 当替换它们时,需要进行一个新的温度补偿。

^{**)} 当替换它们之后,请检测水蒸气的干扰。

分析部件 1 CO/NO

各个部件的名称见 127 页


7MB2338-.AC..-

部件号	名称	订货号	备注
1*)	IR 源	C79451-A3468-B206	
3*)	斩波器	C79451-A3468-B516	
4	带有螺栓和窗口的板	C79451-A3468-B514	
5.1	O 型密封圈	C71121-Z100-A99	
5	带有 O 型密封圈的取样 单元	C79451-A3468-B232	取样单元长度: 90mm
6	气体过滤器	C79451-A3458-B500	用于 CO
7*)	检测器	C79451-A3468-B530	用于 CO
8	滤光片	C79451-A3458-B103	用于 NO**)
9*)	检测器	C79451-A3468-B520	用于 NO(通道 1)

^{*)} 当替换它们时,需要进行一个新的温度补偿。

^{**)} 当替换它们之后,请检测水蒸气的干扰。

分析部件 1 CO/CO₂+CO₂/CH₄

各个部件的名称见 129 页

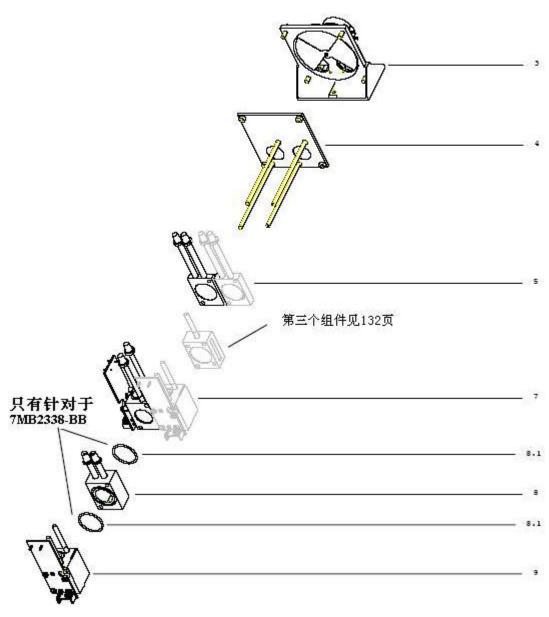
7MB2338-

部件号	名称	订货号	备注
1*)	IR 源	C79451-A3468-B206	
3*)	斩波器	C79451-A3468-B516	
4	带有螺栓和窗口的板	C79451-A3468-B514	

7MB2338-.BA..-

5	取样单元	C79451-A3468-B236	取样单元长度: 2mm
7*)	检测器	C79451-A3468-B532	用于 CO
9*)	检测器	C79451-A3468-B526	用于 CO ₂

7MB2338-.CB..-


5	取样单元	C79451-A3468-B235	取样单元长度: 6mm
7*)	检测器	C79451-A3468-B531	用于 CO ₂
9*)	检测器	C79451-A3468-B527	用于 CH4

^{*)} 当替换它们时,需要进行一个新的温度补偿。

分析部件 1 CO/CO₂+CO₂/CH₄

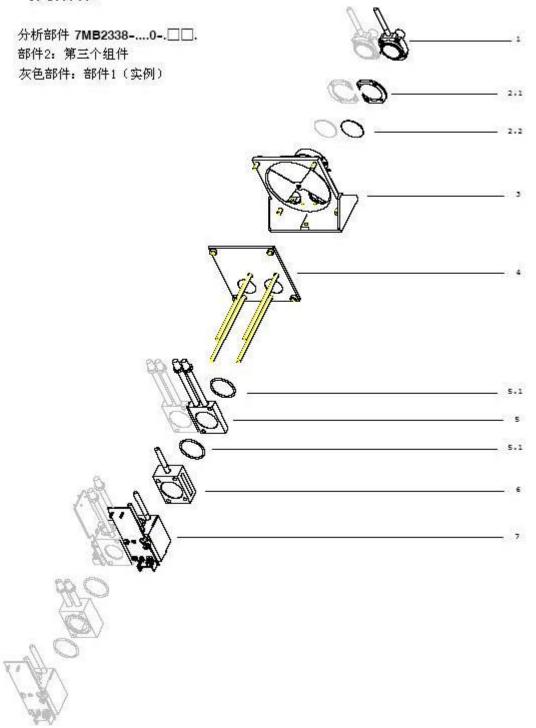
分析部件7MB2338-BB.-, .CA... 部件1: 为CO/CO₂, CO₂/CH₄ 配置

各部件的名称见 131 页

7MB2338-

部件号	名称	订货号	备注
1*)	IR 源	C79451-A3468-B206	
3*)	斩波器	C79451-A3468-B516	
4	带有螺栓和窗口的板	C79451-A3468-B514	

7MB2338-.BB..-


5	取样单元	C79451-A3468-B236	取样单元长度: 2mm
7*)	检测器	C79451-A3468-B532	用于 CO
8.1	O型密封圈	C71121-Z100-A99	
8	带有 O 型密封圈的取样 单元	C79451-A3468-B234	取样单元长度: 20mm
9*)	检测器	C79451-A3468-B526	用于 CO ₂

7MB2338-.CA..-

5	取样单元	C79451-A3468-B235	取样单元长度: 6mm
7*)	检测器	C79451-A3468-B531	用于 CO ₂
8	取样单元	C79451-A3468-B235	取样单元长度: 6mm
9*)	检测器	C79451-A3468-B527	用于 CH4

^{*)} 当替换它们时,需要进行一个新的温度补偿。

分析部件2

各个部件的名称见 133 页

7MB2338-....0-.□□.

部件号	名称	订货号	备注
1*)	IR源	C79451-A3468-B206	
2.1	隔离块	C79451-A3468-C20	
2.2	滤光片	C75285-Z1491-C5	用于 NO**)
2.2	滤光片	C79285-Z1302-A4	用于 SO ₂ **)
2.2	滤光片	C79285-Z1491-C2	用于 C ₂ H ₄
3*)	斩波器	C79451-A3468-B516	
4	带有螺栓和窗口的板	C79451-A3468-B514	
5.1	O型密封圈	C71121-Z100-A99	
5	带有 O 型密封圈的取样 单元	C79451-A3468-B231	取样单元长度: 180mm
5	带有 O 型密封圈的取样 单元	C79451-A3468-B232	取样单元长度: 90mm
5	带有 O 型密封圈的取样 单元	C79451-A3468-B233	取样单元长度: 60mm
5	带有 O 型密封圈的取样 单元	C79451-A3468-B234	取样单元长度: 20mm
5	取样单元	C79451-A3468-B235	取样单元长度: 6mm
5	取样单元	C79451-A3468-B236	取样单元长度: 2mm
6	气体过滤器	C79451-A3458-B500	用于 CO
6	气体过滤器	C79451-A3458-B508	用于 SO ₂
6	气体过滤器	C79451-A3458-B541	用于 CO ₂ ,最小量 程<5%
6	气体过滤器	C79451-A3458-B542	用于 CH ₄ , 最小量 程<2%

^{*)} 当替换它们时,需要进行一个新的温度补偿。

^{**)} 当替换它们之后,请检测水蒸气的干扰。

7MB2338-....0-.□□.

部件号	名称	订货号	备注
7*)	检测器	C79451-A3468-B525	用于 CO,最小量程<5%
7*)	检测器	C79451-A3468-B528	用于 CO,最小量程≥5%
7*)	检测器	C79451-A3468-B536	用于 CO ₂ ,最小量程 <1000vpm
7*)	检测器	C79451-A3468-B526	用于 CO ₂ ,最小量程 ≥1000vpm
7*)	检测器	C79451-A3468-B527	用于 CH ₄ ,最小量程<20%
7*)	检测器	C79451-A3468-B529	用于 CH ₄ ,最小量程≥20%
7*)	检测器	C79451-A3468-B537	用于 C ₂ H ₄
7*)	检测器	C79451-A3468-B522	用于 NO (通道 1)
7*)	检测器	C79451-A3468-B523	用于 SO ₂ 通道 2)

^{*)} 当替换它们时,需要进行一个新的温度补偿。

附录 8

8.1	返修	136
8.1.1	返修的地址	136
8.2	说明	138
8.2.1	缩略词	138
8.2.2	符号的说明	138
8.3	软件发布版本	139

8.1 返修

气体分析仪或者仪器备件部分应该以它们原始的包装材料包装之后运回。 如果原始的包装材料不可以再用,那么用塑料薄片来包装分析仪,并把分析仪封装在一个衬着填充材料(刨花或具有类似特性的材料)并且足够大的箱中。如果使用刨花作为填充材料,装箱任何一处的厚度都不能小于15 cm。

当需海运到国外时,分析仪必需要额外地用至少0.2 mm 厚的聚乙烯薄片和干燥剂(例如无水硅酸凝胶)来密封成不透气型。另外,运输集装箱必需要衬上一层纸。

请影印次页上的表格,填写该表格并把它附在返修的仪器内。

请附上您的担保卡,以备需要担保申请之用。

8.1.1 返修的地址

技术支持 - 若想获得技术支持,请联系我们的服务热线

电话: (00333)88906677

传真: (00333)88906688

备件服务 - 请将您对备件的定单发到以下的地址:

SIEMENS SPA CSC (客户服务中心)

电话: (00333)88906677 传真: (00333)88906688 - DP订货单接收者: 0011E

维修 为了可以快速地检测到故障并解决故障,在得到其它的通

知之前,请把分析仪返回到以下地址: SIEMENS SPA CSC(客户服务中心)

电话: (00333)88906677 传真: (00333)88906688 - DP订货单接收者: 0011E

返修表

() 维修 () 担保

客户姓名			
交货地址			
电话 传真 E-Mail			
返修交货的地址 (如果与上面不同)			
客户(最初的) 订购号			
Siemens(最初的) 订购确认号.			
设备名称			
MLFB编号			
序列号			
返修部件的名称			
故障描述			
使用地点的处理数据			
操作温度			
操作压力			
样气组分			
持续使用时间/			
首次使用日期			
维修报告			
RH Nr.:	到货日期:	 预备时间:	 技术员:

不要填写本栏,只供维修人员使用

8.2 说明

8.2.1 缩略词

表 8-1 使用到的缩略词列表

缩略词	含义
ADC	模拟量-到-数字量转换器的电压(A/D转换 器)
AR	自动切换量程
AUTOCAL	分析仪的自动标定
CAL	标定
CAL-Gas	标定气
ELAN	经济型本地局域网
ERR	分析仪的故障操作
IR	红外线
LCD	液晶显示器
MEAS	测量
MR	量程
MV	测量值
PUMP	开启/停止 泵
R	继电器或者计算机模式(遥控)
SV	量程(标定)气阀
Sync	同步(与系统中的其他设备)
V-ADCt	
ZV	零气阀

8.2.2 符号的说明

为了避免对使用者或者维修工程师的生命或者健康造成危险,同时也是为了避免对财产造成损失,本手册正文中的某些节会用警告符号注明(象形符号)。

危险的一般表示法 必须要遵守说明手册中的相关规定

8.3 软件发布版本

这本手册参考了软件发布版本 2.09._(见 5.7.4 节)。最重要的修改会在下表示列出。

如果要将分析仪的软件升级到 2.09._版,请参考下表 所列的各种措施。

表 8-2 升级到 2.09._版的方法

软件版本	开始生产的 日期	最重要的创新	升级到 2.09版的方法: 替换 ROM 盒 (订货号: C79451- A3494-S501)和
0.24 0.94	大约可追溯 到12/96	· 完整的功能性 (之前生产的分析仪)	· 只可在维修中心进行! 替换 ROM 盒(flash PROM)(订货号: C79451-A3494-S501, GAL) · 需要新的温度调节
1.0	1/97	· 带有德文对话框的完整功 能性	
1.1	1/97	· 内部校正	
1.2	2/97	· 带有德文对话框的完整功 能性	
1.3	2/97	· 内部校正	
1.4	2/97	· 带有德文、英文、法文、 西班牙文、意大利文对话框 的完整功能性	
1.5	3/97	· 引入了信号化"功能控制" 制" · 显示分析仪状态: "功能控制"取代了"维 护"(见 5.2 节)	
1.6	6/97	 ・显示故障校正"加载数据之后标定 O₂"(见 5.8.2.1节) ・在对话框"参数:时间常数"中,T90替代了Tau(T63)(见 5.9.3节) ・公司名"SIEMENS"被移走 ・内部校正 	· 检查时间常数

表 8-2 升级到 2.09._版的方法(接上页)

软件版本	开始生产的 日期	最重要的创新	升级到 2.09版的方法: 替换 ROM 盒 (订货号:C79451- A3494-S501)和
2.0	11/97	· 变化的 · 变 5.10.2.1 节 0h · 方 10.2.1 节 0h · 节	. 检查相应参数
2.01_	3/98	·错误校正:菜单"O ₂ 零点标定"中的文本用英文、法文、西班牙文、意大利文显示。	
2.02_	5/98	· 同步相位整流器的自动定 义功能得到改进(错误信息 " 没有发现相位 ")	
2.03_	9/98	· RS485 接口得到完善 (ELAN)	· 检查 ELAN 各参数

表 8-2 升级到 2.09._版的方法(接上页)

软件版本	开始生产的 日期	最重要的创新	升级到 2.09版的方法: 替换 ROM 盒 (订货号:C79451- A3494-S501)和
2.04_	11/98	·错误校正:环境温度>40°C时,出现零星的测量值尖峰信号	
2.05_	3/99	·错误校正:在通过 NO 认 可"接受修改"后,显示的 各参数不被会更新	
2.06_	2/00	· 可持足的 · 可持足的 · 可持足的 · 可持足的 · 可持足的 · 可持足的 · 可以 · 可	·设置 PROFIBUS 地址。参数化附加的继电器输出和二进制输入 · 当从<=2.05 版升级时,无工厂数据保存在分析仪中

表 8-2 升级到 2.09._版的方法(接上页)

软件版本	开始生产的 日期	最重要的创新	升级到 2.09版的方法: 替换 ROM 盒 (订货号: C79451- A3494-S501)和
2.07_	7/00	· 扩展了通过 RS485/ELAN 的 通讯	
		· 保存工厂数据到 EEPROM 中 /从 EEPROM 中重新加载工厂 数据	
2.08_	8/00	· 内部校正	
2.09_	12/00	· LCD 对比度可以在更大的 范围内调节	