
# THREE PHASE DIGITAL PHASE METER 三相数字相位伏安表

ETCR 4300 ETCR 4400

http://www.etcr.cc



### **MANUAL**

\_Guangzhou ETCR Electronic Technology Co., Ltd.

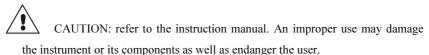
广州市铱泰电子科技有限公司

### **Table of Contents**

| I. Safety Precautions And Procedures                     | 1    |
|----------------------------------------------------------|------|
| 1. Preliminary Instructions                              | 1    |
| 2. During Use                                            | 2    |
| 3. After Use                                             | 3    |
| II. Overview                                             | 3    |
| III. Model                                               | 4    |
| IV. Electrical Symbols                                   | 4    |
| V. Technical Specifications.                             | 5    |
| 1. ETCR4300 reference and working conditions             | 5    |
| 2. ETCR4700 reference and working conditions             | 5    |
| 3. General specifications                                | 7    |
| 4. ETCR4300 Intrinsic error and performance indicators u | nder |
| reference conditions                                     | 9    |
| 5. ETCR4700 Intrinsic error and performance indicators u | nder |
| reference conditions                                     | 10   |
| VI. Meter Structure                                      | 11   |
| VII. Operating Methods                                   | 11   |
| 1. Startup & shutdown                                    | 12   |
| 2. Backlight control                                     | 12   |
| 3. Data retention, cancellation and storage              | 12   |
| 4. Data access and exit                                  | 12   |
| 5. Data deletion                                         | 12   |
| 6. Test display mode switch                              | 12   |
| 7. Testing                                               | 13   |
| VIII. Battery replacement                                | 17   |
| IX. Other Instructions and Attentions                    | 18   |
| X. Configuration List                                    | 20   |

#### I. Safety Precautions And Procedures

This instrument was designed in compliance with IEC61010-1, IEC61010-031& IEC61326 safety guideline relative to electronic equipment.


For your own safety and to avoid damaging the instrument you are recommended to follow the procedures described in this manual and read carefully all instructions preceded by this symbol /

Before and during measurements keep to the following instructions:

- Do not take the measurements in wet places
- Do not take the measurements in the presence of explosive gas and combustibles or in dusty places
- Avoid any contact with the circuit under test even though you are not taking any measurement
- Avoid any contact with exposed metal parts, unused measuring terminals, circuits etc.

  Do not take any measurement whenever anomalous conditions occur such as deformations, breaks, leakages, blind display etc

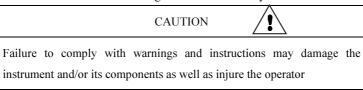
The herewith symbols are used in this manual and on the meter



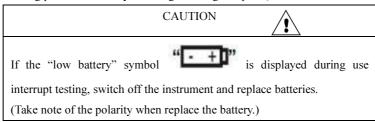


High voltage danger: risk of electric shock

#### 1. Preliminary Instructions


- ullet This meter is designed for use in environments with pollution degree 2
- $\bullet$  It can be used for voltage and current measurement on electrical installations with overvoltage CAT III 600V
- You are recommended to respect the usual safety regulations aimed at protecting you

against dangerous current and protecting the instrument against improper use


- Only the original accessories supplied along with the instrument guarantee compliance with the safety standards in force. They must be in a good conditions and, if necessary, replaced with identical ones
- Do not test nor connect to any circuit exceeding the specified overload protection
- •Do not take measurements under environmental conditions exceeding the limits indicated in this manual
- Make sure that batteries are correctly installed

#### 2. During Use

You are recommended to read the following instructions carefully:



- Do not measure under the conditions of external voltages. Although the instrument is self-protected, an excessive voltage may cause malfunction
- Do not press 2 or more buttons at the same time, otherwise all operations will be invalid.
- Avoid submitting the instrument to voltage while measuring (i.e. a test lead slipping off the measuring point accidentally touching an energized point)

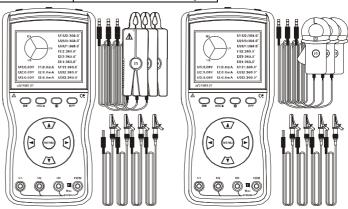


#### 3. After Use

- Turn off the instrument pressing ON/OFF key after using it
- If you expect not to use the instrument for a long time remove batteries

#### II. Overview

ETCR4300 and ETCR4700 three-phase digital volt-ampere meter is a kind of digital, intelligent meter with multiply functions, which we developed specifically for field testing. It has the features of high precision, high stability, low power consumption and easy use, etc.


The meter is able to measure three-phase AC voltage, current, voltage between the phase between the current phase, the phase between voltage and current, frequency, phase sequence, active power, reactive power, apparent power, power factor, current vector sum simultaneously; judge the wiring type of transformer, inductive and capacitive circuits; also test the secondary circuit and bus differential protection system, read the phase relationship between the CT for differential protection; besides, it can be used to check whether the wiring of the watt-hour meter is correct or not, and check the line equipment, thus serving the electric inspector as a new type of safe, accurate and convenient electric meter.

ETCR4300, ETCR4700 three-phase digital phase meter is fitted with anti-vibration, anti-slip and high insulation jackets. With 240dots  $\times$  160dots LCD display, it is able to display dynamically, vector diameter is adopted to show a clear and exquisite luxurious appearance. Its current clamp varies in two sizes; the small tip clamp is applicable for cable intensive area; while the large circular one is for detection of coarse wires. Therefore, the meter can meet requirements of various occasions.

Three-phase digital phase meter is also known as intelligent three-phase digital phase meter, multipurpose three-phase digital phase meter and three-clamp digital phase meter or others, suitable for applications in electric power, petrochemical and metallurgical enterprises, railway, industrial and mining domain, research institutions, measuring departments, etc. It is particularly applicable for electric energy billing system and relay protection system.

## **Ⅲ.** Model

| Model     | Dimensions of Clamp | Description             |
|-----------|---------------------|-------------------------|
| ETCR 4300 | 7.5mm×13mm          | Small tip current clamp |
| ETCR 4700 | 35mm×40mm           | Circular current clamp  |



## IV. Electrical Symbols

| Extremely dangerous! The operator must strictly observe the safety     |
|------------------------------------------------------------------------|
| guidelines; otherwise, free may be a risk of electric shock, injury or |
| death.                                                                 |
| Danger! The operator must strictly observe the safety guidelines;      |
| otherwise, there may be a risk of electric shock, injury or death.     |
| Warning! Strictly follow, the safety guidelines, an improper use may   |
| damage the instrument or its components as well as endanger the user.  |
| Alternate current (AC) $\sim$                                          |
| Direct current (DC)                                                    |
| Double insulation                                                      |

## V. Technical Specifications

## 1. ETCR4300 reference and working conditions

|                                                                        |                                 |                       | 1           |
|------------------------------------------------------------------------|---------------------------------|-----------------------|-------------|
| Influence quantity                                                     | Reference Working Re            |                       | Remarks     |
| minuence quantity                                                      | conditions                      | conditions            | Kemarks     |
| Ambient temperature                                                    | 23°C±1°C                        | -10°C ~ 40°C          |             |
| Ambient humidity                                                       | $40\%\sim60\%$                  | < 80%                 |             |
| Signal waveform                                                        | Sine wave                       | Sine wave             | β=0.01      |
| Signal frequency                                                       | 50HZ±1HZ                        | 45HZ~65HZ             |             |
| Working voltage of meter                                               | 9V±0.1V                         | 9V±1.5V               |             |
| Current magnitude when measuring the phase sequence of phase frequency | 1A±0.2A                         | 2mA ~ 20A             |             |
| Voltage magnitude when measuring the Phase sequence of phase frequency | 100V±20V                        | 10V~600V              |             |
| Current magnitude when measuring the power factor                      | 1A±0.2A                         | 20mA~20A              |             |
| Voltage magnitude when measuring the power factor                      | 100V±20V                        | 10V~600V              |             |
| External electric field, magnetic field                                | To be avoided                   |                       |             |
| Location of the tested                                                 | The tested win                  | re is arranged at the | approximate |
| wire                                                                   | geometrical center of the clamp |                       |             |

## 2. ETCR4700 reference and working conditions

| Influence quantity | Reference | Working | Remarks |
|--------------------|-----------|---------|---------|
|--------------------|-----------|---------|---------|

|                                                                     |                                                | 1            | T      |
|---------------------------------------------------------------------|------------------------------------------------|--------------|--------|
|                                                                     | conditions                                     | conditions   |        |
| Ambient temperature                                                 | 23°C±1°C                                       | -10°C ~ 40°C |        |
| Ambient humidity                                                    | $40\% \sim 60\%$                               | < 80%        |        |
| Signal waveform                                                     | Sine wave                                      | Sine wave    | β=0.01 |
| Signal frequency                                                    | 50HZ±1HZ                                       | 45HZ~65HZ    |        |
| Working voltage of meter                                            | 9V±0.1V                                        | 9V±1.5V      |        |
| Voltage magnitude when measuring the phase-frequency phase sequence | 1A±0.1A                                        | 0.1A ~ 400A  |        |
| Voltage magnitude when measuring the phase-frequency phase sequence | 200V±2V                                        | 30V ~ 600V   |        |
| Voltage magnitude when measuring the power factor                   | 1A±0.1A                                        | 0.1A ~ 400A  |        |
| Voltage magnitude when measuring the power factor                   | 200V±2V                                        | 30V ~ 600V   |        |
| External electric field, magnetic field                             | To be avoided                                  |              |        |
| Location of the tested                                              | The tested wire is arranged at the approximate |              |        |
| wire                                                                | geometrical center of the clamp                |              |        |

## 3. General specifications

| Model         | ETCR4300                                                     | ETCR4700                                         |  |  |
|---------------|--------------------------------------------------------------|--------------------------------------------------|--|--|
|               | It is able to measure three-phase AC voltage, current, phase |                                                  |  |  |
|               | between voltage, phase between current, the phase between    |                                                  |  |  |
|               | voltage and current, frequ                                   | ency, phase sequence, active                     |  |  |
|               | power, reactive power, appar                                 | ent power, power factor, current                 |  |  |
|               | vector sum simultaneously                                    | ; judge the wiring type of                       |  |  |
| Functions     | transformer, inductive and                                   | capacitive circuits; also test                   |  |  |
|               | secondary circuit and bus                                    | differential protection system,                  |  |  |
|               | read the phase relationship                                  | between the CT for differential                  |  |  |
|               | protection; besides, it can                                  | be used to check whether the                     |  |  |
|               | wiring of the watt-hour meter                                | r is correct or not, and check the               |  |  |
|               | line equipment.                                              |                                                  |  |  |
| Power supply  | DC9V Alkaline batteries (1.5                                 | V LR6×6)                                         |  |  |
|               | The maximum power cons                                       | The maximum power consumption can be 80mA if the |  |  |
|               | backlight is turned on, and the battery can work             |                                                  |  |  |
| Power         | continuously for 10 hours                                    |                                                  |  |  |
| consumption   | The power consumption can be 50mA if the backlight is        |                                                  |  |  |
|               | turned off, and the battery can work continuously for 16     |                                                  |  |  |
|               | hours                                                        |                                                  |  |  |
| Display modes | LCD display, 240dots×160do                                   | ots                                              |  |  |
| Dimensions of | L×W×: 196mm×92mm×54m                                         | ım                                               |  |  |
| meter         |                                                              |                                                  |  |  |
| Dimensions of | 7.5mm×13mm                                                   | 35mm×40mm                                        |  |  |
| Clamp         |                                                              |                                                  |  |  |
| Voltage range | AC 0.00V~600V                                                |                                                  |  |  |
| Current range | AC 0.0mA~20.0A                                               | Current: AC 0mA~400A                             |  |  |
| Phase range   | 0.0°~360.0°                                                  |                                                  |  |  |
| Frequency     | 45.00Hz~65.00Hz                                              |                                                  |  |  |
| range         |                                                              |                                                  |  |  |
| Active power  | 0.0W~12kW                                                    | 0W~240kW                                         |  |  |

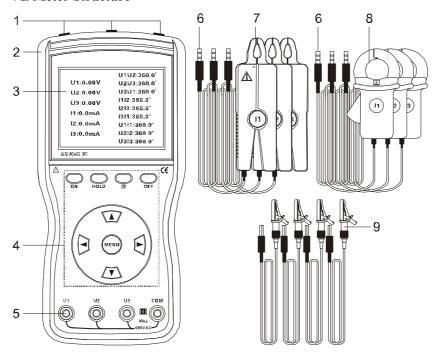
| range           |                                                            |                                |  |
|-----------------|------------------------------------------------------------|--------------------------------|--|
| Reactive power  | 0.0W~12kVAR                                                | 0W~240kVAR                     |  |
| range           |                                                            |                                |  |
| Apparent        | 0.0W~12kVA                                                 | 0W~240kVA                      |  |
| power range     |                                                            |                                |  |
| Power factor    | -1~+1                                                      |                                |  |
| range           |                                                            |                                |  |
| Current vector  | 0mA~60.0A                                                  | 0A~1200A                       |  |
| sum             |                                                            |                                |  |
|                 | Voltage: AC 0.01V                                          |                                |  |
|                 | Current: AC 0.1mA                                          |                                |  |
|                 | Phase: 0.1°                                                |                                |  |
|                 | Frequency: 0.01Hz                                          |                                |  |
| Resolution      | Active power: 0.1W                                         |                                |  |
|                 | Reactive power: 0.1VAR                                     |                                |  |
|                 | Apparent power: 0.1VA                                      |                                |  |
|                 | Power factor: 0.001                                        |                                |  |
|                 | Current vector sum: 1mA                                    |                                |  |
|                 | Positive phase: U1, U2, U3 or I1, I2, I3 cursor flashe     |                                |  |
| Phase sequence  | sequentially from left to right                            | t .                            |  |
| i nase sequence | Negative phase: U1, U2, U                                  | J3 or I1, I2, I3 cursor blinks |  |
|                 | sequentially from right to left                            |                                |  |
| Tested rate     | About 2s/time                                              |                                |  |
| Data retention  | Press HOLD during the te                                   | est to keep the data, and the  |  |
| Data retention  | symbol "HD" will be display                                | ved.                           |  |
| Data storage    | 500 sets                                                   |                                |  |
|                 | USB-RS232 interface; all data stored are uploaded to the   |                                |  |
| RS232 interface | computer, to provide the convenience for data analysis and |                                |  |
|                 | management.                                                |                                |  |
| Automatic       |                                                            | ts down about 15 minutes after |  |
| shutdown        | The meter automatically shuts down about 15 minutes after  |                                |  |
| SHULUOWH        | start-up, as to reduce the battery consumption.            |                                |  |

|                       | T                                                           |                                  |  |
|-----------------------|-------------------------------------------------------------|----------------------------------|--|
| Backlight<br>function | Available, suitable for use in dark places or at night      |                                  |  |
| Voltage               | When the battery voltage is below 7.2V, low voltage sign    |                                  |  |
| detection             | will be displayed to remind the                             |                                  |  |
| uctetion              | Host: 550g (with battery)                                   | e abor or replacing the battery. |  |
|                       | T                                                           |                                  |  |
| Meter mass            | Small tip current clamp:                                    | тине тине                        |  |
|                       | 170g×3                                                      | 185g×3                           |  |
|                       | Test line: 250g                                             |                                  |  |
| Length of test        | 1.5m                                                        |                                  |  |
| line                  | 1.5111                                                      |                                  |  |
| Length of             |                                                             |                                  |  |
| current clamp         | 2m                                                          |                                  |  |
| wire                  |                                                             |                                  |  |
| Working               |                                                             |                                  |  |
| temperature           | -10°C ~ 40°C; below 80%Rh                                   |                                  |  |
| and humidity          |                                                             |                                  |  |
| Storage               |                                                             |                                  |  |
| temperature           | -10°C ~ 60°C; below 70%Rh                                   |                                  |  |
| and humidity          |                                                             |                                  |  |
| Input                 |                                                             |                                  |  |
| impedance             | Input impedance of test voltage: 2MΩ                        |                                  |  |
| Withstand             | The withstand sine-wave AC voltage of 1000V/50Hz            |                                  |  |
| voltage               | between the meter line and the shell can last for 1 minute. |                                  |  |
| T 1.4                 | The insulation resistance between the meter line and the    |                                  |  |
| Insulation            | jacket shell is ≥100MΩ                                      |                                  |  |
| Structure             | Double insulation, with insula                              | ted vibration-proof jacket       |  |
| Applicable            | IEC61010-1 CAT III 600V                                     | /, IEC61010-031, IEC61326        |  |
| safety                | Pollution Degree 2                                          |                                  |  |
| standards             |                                                             |                                  |  |

## $\begin{tabular}{lll} \bf 4. & ETCR4300 & Intrinsic error & and performance & indicators & under & reference \\ conditions & & & & \\ \end{tabular}$

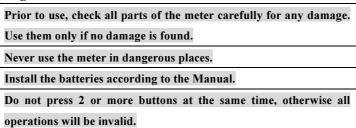
| Category Range | Resolution | Basic error |
|----------------|------------|-------------|
|----------------|------------|-------------|

| Voltage        | AC 0.00V ~ 600V                | 0.01V  | ±(1.5%rdg+3dgt) |
|----------------|--------------------------------|--------|-----------------|
| Current(AC)    | $0.0 mA \sim 20.0 A$           | 0.1mA  | ±(1.5%rdg+3dgt) |
| Phase          | $0.0^{\circ} \sim 360^{\circ}$ | 0.1°   | ±1°             |
| Active power   | 0.0W ~ 12kW                    | 0.1W   | ±(3%rdg+3dgt)   |
| Reactive power | 0.0VAR ~ 12kVAR                | 0.1VAR | ±(3%rdg+3dgt)   |
| Apparent power | 0.0VA ~ 12kVA                  | 0.1VA  | ±(3%rdg+3dgt)   |
| Frequency      | 45HZ ~ 65HZ                    | 0.01HZ | ±(2%rdg+3dgt)   |
| Power factor   | <b>-1</b> ∼ <b>+1</b>          | 0.001  | ±0.03           |


Note 1: Under working conditions, the phase error is  $\pm$  3  $^{\circ}$  (the error is doubled in case that the current amplitude is less than 10mA).

## 5. ETCR4700 Intrinsic error and performance indicators under reference conditions

| Category       | Range             | Resolution | Basic error     |
|----------------|-------------------|------------|-----------------|
| Voltage(AC)    | $0.00V \sim 600V$ | 0.01V      | ±(1.5%rdg+5dgt) |
| Current(AC)    | 0Ma ~ 400A        | 1mA        | ±(1.5%rdg+5dgt) |
| Phase          | 0.0° ~ 360°       | 0.1°       | ±3°             |
| Active power   | 0.0W ~ 240kW      | 0.1W       | ±(3%rdg+5dgt)   |
| Reactive power | 0.0VAR ~ 240kVAR  | 0.1VAR     | ±(3%rdg+5dgt)   |
| Apparent power | 0.0VA ~ 240kVA    | 0.1VA      | ±(3%rdg+5dgt)   |
| Frequency      | 45HZ ~ 65HZ       | 0.01HZ     | ±(2%rdg+5dgt)   |
| Power factor   | <b>-1</b> ∼ +1    | 0.001      | ±0.03           |


Note 1: Under working conditions, the phase error is  $\pm 6^{\circ}$ .

#### VI. Meter Structure



- 1. Three-phases current input interface 2. Vibration insulation jacket 3.LCD display
- 4. Function key area 5. Three-phase voltage input interface 6. Current clamp plug
- 7. Small tip current clamp (optical) 8. Circular current clamp (optical)
- 9. Voltage input test line

#### VII. Operating Methods



#### 1. Startup & shutdown

Press the **ON** key to start up the meter and activate the LCD display. Press **OFF** to shut it down, and the meter will automatically shut down after 15 minutes of start-up.

#### 2. Backlight control

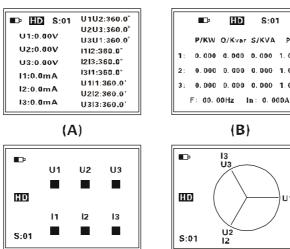
After the meter is powered on, press the key to control the backlight, which is suitable for use in dark places or at night.

#### 3. Data retention, cancellation and storage

In the test mode, press **HOLD** key to hold the displayed data, "**HD**" symbol will be displayed; press **HOLD** key again to cancel the retention. The meter will automatically number and store the currently held data while maintaining the data, group number of "S: 01" will be given. The meter can store up to 99 sets of data, if the memory is full, the "**FULL**" symbol will be displayed.

#### 4. Data access and exit

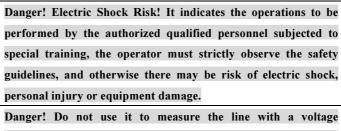
In the test mode, press the MENU to enter the data access mode, the "RD" symbol will be displayed. Now it allows user to consult from "R: 01", press the "Up Arrow" to consult forwards with 1 increment each time, and press the "Down Arrow" to consult backward with 1 decrement each time, and press the "Left Arrow" to exit from the data access mode and return to the test mode.


#### 5. Data deletion

In the data access mode, press the "**Right Arrow**" key to enter the data delete option, then press the "**Left Arrow**" key or the "**Right Arrow**" key to move the cursor to "**YES**" or "**NO**", then press the "**MENU**" key to confirm the deletion or exit, and then return to the test mode.

#### 6. Test display mode switch

Once started, the meter will automatically enter the display mode of voltage, current, phase test (Figure A); press the "Down Arrow" key to enter the display


mode of active power, reactive power, apparent power, power factor, frequency, phase current vector test (Figure B); press the "**Right Arrow**" key to enter the phase sequence test display mode (Figure C); press the "**Left Arrow**" key to enter the vector diagram display mode (Figure D); press the "**Up Arrow**" key to return the display mode of voltage, current and phase test. The three-way powers, power factor shown in Figure B correspond to the power and power factor of U111, U212, and U313.



#### 7. Testing

4

(C)



(**D**)

Danger! Do not use it to measure the line with a voltage exceeding 600 V, otherwise there may be risk of electric shock, personal injury or equipment damage.

Dangerous! Do not use it to measure the line with current higher



Wire strictly in accordance with the manual, and make sure I1, I2, I3 are inserted correctly.

After testing, unplug the meter only after the test line is separated from the tested line.

The phase test relationship of meter: for U1U2, U2U3, U3U1, I1I2, I2I3, I3I1, U1I1, U2I2, U3I3, the signal of the previous line advances that of the latter one.



The voltage jack of U1, U2 and U3 have the homonymous ends with the red marked points on the corresponding current clamp.

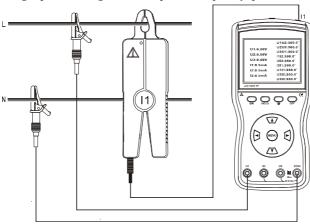
During the phase test, the direction of the current input clamp should be consistent with that indicated by red marks on the clamp.

The meter can be used to test the three-phase AC voltage, current, phase between voltages, phase between currents, phase between voltage and current, frequency, active power, reactive power, apparent power, power factor, phase current vector sum; and judge the phase sequence, inductive, capacitive circuit.

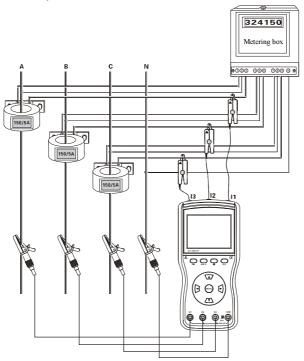
Test wires are as follows:

Single-phase test: wire the L and N voltage lines to the U1 yellow and COM black jack of the meter, and use the current clamp I1 to clamp the L line to be tested. Connecting to U2 green, COM black, I2 or U3 red, COM black, I3 test lines are also feasible.

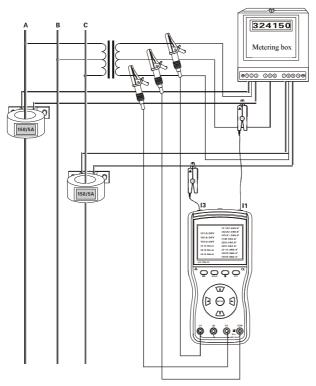
Three-phase four-wire test: wire the voltage lines of yellow UA, green UB, red UC, black N to the corresponding U2 green, U3 red, COM black jacks of the meter, and use the clamp I1, I2, I3 to clamp the line IA, IB, IC to be tested.


Three-phase three-wire test: wire the voltage lines of yellow UA, green UB, red UC and black N to be tested to the yellow U1, green U2, red U3 and black  $\boldsymbol{COM}$  jacks of the meter, and use the clamp I1, I3 to clamp the IA, IC lines to be tested, as the following wiring diagram.

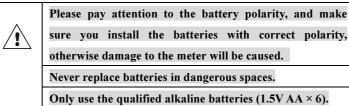
During the test, the inductive or capacitive load, phase sequence and polarity can be identified according to the phase relationships. If U111 phase is displayed in the range of  $0^{\circ}$  to  $90^{\circ}$ , the tested load can be judged as inductive; if in the range of  $270^{\circ} \sim 360^{\circ}$ , the tested load is capacitive; If the displayed phases are all close to  $120^{\circ}$ , then they are positive in phase sequence and have the same polarity; if the displayed phases are close to  $120^{\circ}$  and  $300^{\circ}$ , then they are negative in phase sequence and have the opposite polarities (there is possibility that the current clamp or line are inversely wired); negative phase sequence is common in other cases (regardless of phase failure).


In the phase-sequence test display mode, when U1, U2, U3 or I1, I2, I3 are positive phase sequence, the cursor flashes sequentially from left to right; if negative for U1, U2, U3 or I1, I2, I3, the cursor flashes sequentially from right to left. If the corresponding cursor of U1, U2, U3 or I1, I2, I3 is not on, there might be phase failure or too low amplitude of the signal.

#### Reference wiring diagram:

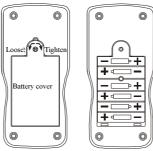

#### Test single-phase voltage, current, phase, frequency, power, etc.:




Test three-phase four-wire voltage, current, phase, phase sequence, frequency, power, power factor, etc.:



Test three-phase three-wire voltage, current, phase, phase sequence, frequency, power, power factor, etc.:




## VIII. Battery replacement



#### Do not use old and new batteries together.

- When the meter supply voltage drops below 7.2V, the battery symbol will be displayed to indicate low battery. Please replace the battery timely, see the Figure below.
- 2. Press OFF button to turn off the meter.
- 3. Use a cross head screw-driver to loosen one of the screws on the battery cover, as to open the battery cover.
- 4. Remove the old battery and install a new battery, please pay attention to the battery polarity.
  - 5. Lid the battery cover and tighten the screws.
- 6. Press "ON" button to power on the meter, make sure the battery is replaced properly, otherwise, and repeat the operations from step 2.
- 7. Remove batteries if you do not expect to use the instrument for a long time remove batteries.



#### IX. Other Instructions and Attentions

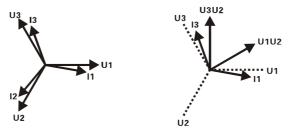
1. Dedicated use of current clamp

The three current clamps of each meter are particularly dedicated to the specific meter. Do not install the clamps on any other meter for use purpose. Protect the current clamps against collision, and keep the jaw clean. It is more reliable after passing fully closed test.

2. Maintenance of current clamp

After use, remove the dust attached to the surface of current clamp immediately. Wiping with soft cloth dipping with lubricant is preferred other than

rough materials or corrosive agent. (e.g. WD-40 lubricant) for cleaning. Prior to test, clean it properly before use.


- 3. The meter is used for testing of the secondary circuit and low-voltage circuits, it is not suitable for measurement of current in high-voltage line, in order to prevent electric shock.
- 4. Three-phases four-wire (phase with three phase load balanced)

| Ī | Phase        | Phase value | Phase relationship | Phase value |
|---|--------------|-------------|--------------------|-------------|
|   | relationship |             |                    |             |
|   | Ua-Ub        | 120°        | Ia-Ib              | 120°        |
|   | Ub-Uc        | 120°        | Ib-Ic              | 120°        |
| Ī | Uc-Ua        | 120°        | Ic-Ia              | 120°        |

5. Three-phase three-wire (phase with three phase load balanced)

| Phase relationship | Phase value | Phase relationship | Phase value |
|--------------------|-------------|--------------------|-------------|
| Uab-Ucb            | 300°        | Ia-Ic              | 240°        |
| Uab-Ia             | 30°         | Ucb-Ic             | 330°        |

6. three-phase four-wire vector diagram and three-phase three-wire vector diagram



Three-phase four-wire vector diagram Three-phase three-wire vector diagram



Where the current clamp is inversely wired or the current lines are inversely wired, the difference of phase displayed will be 180°, which means increase of 180° based on the standard value.

## X. Configuration List

| Host                               | 1 set                              |
|------------------------------------|------------------------------------|
| Metering box                       | 1pcs                               |
| Current clamp                      | 3pcs                               |
| Test lines                         | 4 (yellow, green, red, black line) |
| Battery                            | 6 (Alkaline batteries: 1.5V AA)    |
| Manual, Warranty card, Certificate | 1 copy for each                    |
| of quality                         |                                    |

## **Manufactured** by

ETCR Electronic Technology Company Address: F-3F, No.4 Pengshang Zhifu Road, Jiahe, Baiyun District,

Guangzhou, Guangdong, China

**Post Code: 510440** 

Tel: (86-20)62199556 62199554

Fax: (86-20)62199550 E-mail: info@etcr.cc Website: www.etcr.cc