LiSA Kit User Manual Catalog # MBS8291361 Sandwich Enzyme-Linked Immunosorbent Assay for Quantitative Detection of Human IgA Concentrations in Cell Culture Supernates, Serum, Plasma, Cell Lysates, Tissue Homogenates.

For research use only. Not for diagnostic or therapeutic procedures.

| I. INTRODUCTION                         |
|-----------------------------------------|
| II. ASSAY PRINCIPLES                    |
| III. KIT COMPONENTS4                    |
| IV. STORAGE AND STABILITY4              |
| V. MATERIALS REQUIRED BUT NOT PROVIDED5 |
| VI. HEALTH AND SAFETY PRECAUTIONS5      |
| VII. REAGENT PREPARATION                |
| VIII. ASSAY PROCEDURE                   |
| IX. ASSAY PROCEDURE SUMMARY             |
| X. TYPICAL DATA12                       |
| XI. SENSITIVITY12                       |
| XII. SPECIFICITY                        |
| XIII. CROSS REACTIVITY                  |
| XIV. REFERENCES                         |
| XV. TROUBLESHOOTING GUIDE14             |
| XVI. TECHNICAL SUPPORT15                |
| XVII. NOTES                             |

## I. INTRODUCTION

Immunoglobulin A (IgA, also referred to as sIgA) is an antibody that plays a crucial role in the immune function of mucous membranes. The amount of IgA produced in association with mucosal membranes is greater than all other types of antibody combined. In absolute terms, between three and five grams are secreted into the intestinal lumen each day. This represents up to 15% of total immunoglobulins produced throughout the body.

IgA has two subclasses (IgA1 and IgA2) and can be produced as a monomeric as well as a dimeric form. The IgA dimeric form is the most prevalent and is also called secretory IgA (sIgA). sIgA is the main immunoglobulin found in mucous secretions, including tears, saliva, sweat, colostrum and secretions from the genitourinary tract, gastrointestinal tract, prostate and respiratory epithelium. It is also found in small amounts in blood. The secretory component of sIgA protects the immunoglobulin from being degraded by proteolytic enzymes, thus sIgA can survive in the harsh gastrointestinal tract environment and provide protection against microbes that multiply in body secretions. sIgA can also inhibit inflammatory effects of other immunoglobulins. IgA is a poor activator of the complement system, and opsonises only weakly.

### **II. ASSAY PRINCIPLES**

The Human IgA ELISA (Enzyme-Linked Immunosorbent Assay) kit is an in vitro enzyme-linked immunosorbent assay for the quantitative measurement of Human IgA in Cell Culture Supernates, Serum, Plasma, Cell Lysates, Tissue Homogenates. This assay employs an antibody specific for Human IgA coated on a 96-well plate. Standards and samples are pipetted into the wells and IgA present in a sample is bound to the wells by the immobilized antibody. The wells are washed and biotinylated anti-Human IgA antibody is added. After washing away unbound biotinylated antibody, HRP-conjugated streptavidin is pipetted to the wells. The wells are again washed, a TMB substrate solution is added to the wells and color develops in proportion to the amount of IgA bound. The Stop Solution changes the color from blue to yellow, and the intensity of the color is measured at 450 nm.



## **III. KIT COMPONENTS**

| Component                                         | Volume        |
|---------------------------------------------------|---------------|
| 96-well Plate Coated With Anti-Human IgA Antibody | 12 x 8 Strips |
| Human IgA Standard                                | 100 ng x 2    |
| Biotin-Labeled Detection Antibody (100X)          | 120 μl        |
| Streptavidin-HRP (100X)                           | 120 μl        |
| Standard/Sample Diluent                           | 30 ml         |
| Detection Antibody Diluent                        | 12 ml         |
| Streptavidin-HRP Diluent                          | 12 ml         |
| Wash Buffer (20X)                                 | 30 ml         |
| TMB Substrate Solution                            | 12 ml         |
| Stop Solution                                     | 12 ml         |
| Plate Adhesive Strips                             | 3 Strips      |
| Technical Manual                                  | 1 Manual      |

# IV. STORAGE AND STABILITY

All kit components are stable at 2 to 8 °C. Standard (recombinant protein) should be stored at -20 °C or -80 °C (recommended at -80 °C) after reconstitution. Opened Microplate Wells or reagents may be store for up to 1 month at 2 to 8 °C. Return unused wells to the pouch containing desiccant pack, reseal along entire edge. Note: the kit can be used within one year if the whole kit is stored at -20 °C. Avoid repeated freeze-thaw cycles.

## V. MATERIALS REQUIRED BUT NOT PROVIDED

- 1. Microplate reader capable of measuring absorbance at 450 nm.
- 2. Adjustable pipettes and pipette tips to deliver 2  $\mu$ l to 1 ml volumes.
- 3. Adjustable 1-25 ml pipettes for reagent preparation.
- 4. 100 ml and 1 liter graduated cylinders.
- 5. Absorbent paper.
- 6. Distilled or deionized water.
- 7. Computer and software for ELISA data analysis.
- 8. Tubes to prepare standard or sample dilutions.

## VI. HEALTH AND SAFETY PRECAUTIONS

1. Reagents provided in this kit may be harmful if ingested, inhaled or absorbed through the skin. Please carefully review the MSDS for each reagent before conducting the experiment.

2. Stop Solution contains 2 N Sulfuric Acid  $(H_2SO_4)$  and is an extremely corrosive agent. Please wear proper eye, hand and face protection when handling this material. When the experiment is finished, be sure to rinse the plate with copious amounts of running water to dilute the Stop Solution prior to disposing the plate.

e.or

3. Standard protein and Detection Antibody containing Sodium Azide as a preservative.

### VII. REAGENT PREPARATION

#### 1. Sample Preparation

Store samples to be assayed within 24 hours at 2-8°C. For long-term storage, aliquot and freeze samples at -20°C. Avoid repeated freeze-thaw cycles.

**Cell culture supernates**: Remove particulates by centrifugation, assay immediately or aliquot and store samples at -20°C.

**Serum**: Allow the serum to clot in a serum separator tube (about 4 hours) at room temperature. Centrifuge at approximately 1000 X g for 15 minutes. Analyze the serum immediately or aliquot and store samples at -20°C.

**Plasma**: Collect plasma using heparin or EDTA as an anticoagulant. Centrifuge for 15 minutes at 1500 X g within 30 minutes of collection. Assay immediately or aliquot and store samples at -20°C.

**Cell Lysates:** Collect cells and rinse cells with PBS. Homogenize and lyse cells throughly in lysate solution. Centrifuge cell lysates at approximately 10000 X g for 5 minutes to remove debris. Aliquots of the cell lysates were removed and assayed. **Bone Tissue:** Extract demineralized bone samples in 4 M Guanidine-HCl and protease inhibitors. Dissolve the final sample in 2 M Guanidine-HCl.

**Tissue Homogenates:** Rinse tissue with PBS to remove excess blood, chopped into 1-2 mm pieces, and homogenize with a tissue homogenizer in PBS or in lysate solution, lysate solution: tissue net weight = 10ml : 1g (i.e. Add 10ml lysate solution to 1g tissue). Centrifuge at approximately 5000 X g for 5 minutes. Assay immediately or aliquot and store homogenates at -20°C. Avoid repeated freeze-thaw cycles. **Urine**: Urinary samples should be cleared by centrifugation and then can be used directly without dilution. Storage at -20°C.

#### 2. Human IgA Standard Preparation

Reconstitute the lyophilized Human IgA Standard by adding 1 ml of Standard/Sample Diluent to make the 100,000 pg/ml standard stock solution. Allow solution to sit at room temperature for 5 minutes, then gently vortex to mix completely. Use within one hour of reconstituting. Two tubes of the standard (100 ng per tube) are included in each kit. Use one tube for each experiment.

Perform 2-fold serial dilutions of the top standards to make the standard curve within the range of this assay (1560 pg/ml - 100000 pg/ml) as below. Standard/Sample Dilution Buffer serves as the zero standard (0 pg/ml).

| Standard      | Add                                         | Into                                       |
|---------------|---------------------------------------------|--------------------------------------------|
| 100,000 pg/ml |                                             |                                            |
| 50,000 pg/ml  | 500 $\mu l$ of the Standard (100,000 pg/ml) | 500 $\mu l$ of the Standard/Sample Diluent |
| 25,000 pg/ml  | 500 $\mu l$ of the Standard (50,000 pg/ml)  | 500 $\mu l$ of the Standard/Sample Diluent |
| 12,500 pg/ml  | 500 $\mu l$ of the Standard (25,000 pg/ml)  | 500 $\mu l$ of the Standard/Sample Diluent |
| 6,250 pg/ml   | 500 $\mu l$ of the Standard (12,500 pg/ml)  | 500 $\mu l$ of the Standard/Sample Diluent |
| 3,125 pg/ml   | 500 $\mu l$ of the Standard (6,250 pg/ml)   | 500 $\mu l$ of the Standard/Sample Diluent |
| 1,563 pg/ml   | 500 $\mu l$ of the Standard (3,125 pg/ml)   | 500 $\mu l$ of the Standard/Sample Diluent |
| 0 pg/ml       | 1 ml of the Standard/Sample Diluent         |                                            |

**Note:** The standard solutions are best used within 2 hours. The 100,000 pg/ml standard solution should be stored at 4°C for up to 12 hours, or at -20°C for up to 48 hours. Avoid repeated freeze-thaw cycles.

3. Biotin-Labeled Detection Antibody Working Solution Preparation The Biotin-Labeled Detection Antibody should be diluted in 1:100 with the Detection Antibody Diluent and mixed thoroughly. The solution should be prepared no more than 2 hours prior to the experiment.

4. Streptavidin-HRP Working Solution Preparation

The Streptavidin-HRP should be diluted in 1:100 with the Streptavidin-HRP Diluent and mixed thoroughly. The solution should be prepared no more than 1 hour prior to the experiment.

## 5. Wash Buffer Working Solution Preparation

Pour entire contents (30 ml) of the Wash Buffer Concentrate into a clean 1,000 ml graduated cylinder. Bring final volume to 600 ml with glass-distilled or deionized water (1:20).

where

### VIII. ASSAY PROCEDURE

The Streptavidin-HRP Working Solution and TMB Substrate Solution must be kept warm at 37°C for 30 minutes before use. When diluting samples and reagents, they must be mixed completely and evenly. Standard detection curve should be prepared for each experiment. The user will decide sample dilution fold by crude estimation of protein amount in samples.

1. Add 100  $\mu$ l of each standard and sample into appropriate wells.

2. Cover well and incubate for 90 minutes at room temperature or over night at 4°C with gentle shaking.

3. Remove the cover, discard the solution and wash plate 3 times with Wash Buffer Working Solution, and each time let Wash Buffer Working Solution stay in the wells for 1 - 2 minutes. Blot the plate onto paper towels or other absorbent material. Do NOT let the wells completely dry at any time.

4. Add 100  $\mu$ l of Biotin-Labeled Detection Antibody Working Solution into each well and incubate the plate at 37°C for 60 minutes.

 5. Wash plate 3 times with Wash Buffer Working Solution, and each time let Wash Buffer Working Solution stay in the wells for 1 - 2 minutes. Discard the Wash Buffer Working Solution and blot the plate onto paper towels or other absorbent material.
 6. Add 100 μl of Streptavidin-HRP Working Solution into each well and incubate the plate at 37°C for 45 minutes.

7. Wash plate 5 times with Wash Buffer Working Solution, and each time let wash buffer stay in the wells for 1 - 2 minutes. Discard the wash buffer and blot the plate onto paper towels or other absorbent material.

8. Add 100  $\mu l$  of TMB Substrate Solution into each well and incubate plate at 37°C in dark for 30 minutes.

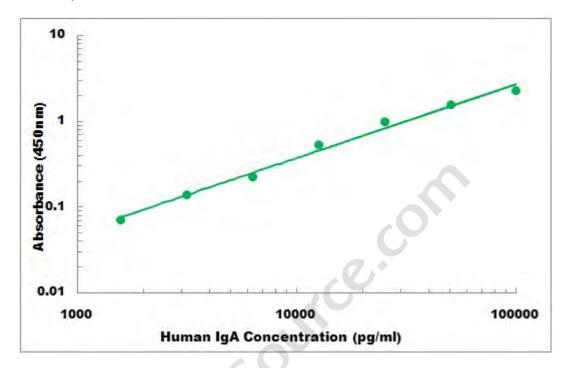
9. Add 100  $\mu l$  of Stop Solution into each well. The color changes into yellow immediately.


10. Read the O.D. absorbance at 450nm in a microplate reader within 30 minutes after adding the Stop Solution.

For calculation, (the relative O.D.450) = (the O.D.450 of each well) - (the O.D.450 of Zero well). The standard curve can be plotted as the relative O.D.450 of each standard solution (Y) vs. the respective concentration of the standard solution (X). The concentration of the samples can be interpolated from the standard curve.

Note: If the samples measured were diluted, multiply the dilution factor to the concentrations from interpolation to obtain the concentration before dilution.

FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES


## IX. ASSAY PROCEDURE SUMMARY



• Read the plate at 450nm

## X. TYPICAL DATA

The standard curve is for demonstration only. A standard curve must be run with each assay.



## XI. SENSITIVITY

The minimum detectable dose of Human IgA is typically less than 800 pg/ml.

## XII. SPECIFICITY

The Human IgA ELISA Kit allows for the detection and quantification of endogenous levels of natural and/or recombinant Human IgA proteins within the range of 1560 pg/ml - 100000 pg/ml.

## XIII. CROSS REACTIVITY

No detectable cross-reactivity with other relevant proteins.

#### XIV. REFERENCES

where we have a second

# XV. TROUBLESHOOTING GUIDE

| Problem                       | Possible Cause                                   | Solution                                        |
|-------------------------------|--------------------------------------------------|-------------------------------------------------|
| High signal and background in | <ul> <li>Insufficient washing</li> </ul>         | <ul> <li>Increase number of washes</li> </ul>   |
| all wells                     |                                                  | <ul> <li>Increase time of soaking</li> </ul>    |
|                               |                                                  | between in wash                                 |
|                               | <ul> <li>Too much Streptavidin-HRP</li> </ul>    | Check dilution, titration                       |
|                               | <ul> <li>Incubation time too long</li> </ul>     | <ul> <li>Reduce incubation time</li> </ul>      |
|                               | <ul> <li>Development time too long</li> </ul>    | <ul> <li>Decrease the incubation</li> </ul>     |
|                               |                                                  | time before the stop solution                   |
|                               |                                                  | is added                                        |
| No signal                     | <ul> <li>Reagent added in incorrect</li> </ul>   | <ul> <li>Review protocol</li> </ul>             |
|                               | order, or incorrectly prepared                   |                                                 |
|                               | <ul> <li>Standard has gone bad (If</li> </ul>    | <ul> <li>Check the condition of</li> </ul>      |
|                               | there is a signal in the sample                  | stored standard                                 |
|                               | wells)                                           |                                                 |
|                               | Assay was conducted from an                      | <ul> <li>Reagents allows to come to</li> </ul>  |
|                               | incorrect starting point                         | 20 - 30 °C before performing                    |
|                               |                                                  | assay                                           |
| Too much signal-whole plate   | <ul> <li>Insufficient washing-unbound</li> </ul> | <ul> <li>Increase number of washes</li> </ul>   |
| turned uniformly blue         | Streptavidin-HRP remaining                       | Carefully                                       |
|                               | <ul> <li>Too much Streptavidin-HRP</li> </ul>    | <ul> <li>Check dilution</li> </ul>              |
|                               | Plate sealer or reservoir                        | <ul> <li>Use fresh plate sealer and</li> </ul>  |
|                               | reused, resulting in presence of                 | reagent reservoir for each                      |
|                               | residual Streptavidin-HRP                        | step                                            |
| Standard curve achieved but   | <ul> <li>Plate not developed long</li> </ul>     | <ul> <li>Increase substrate solution</li> </ul> |
| poor discrimination between   | enough                                           | incubation time                                 |
| point                         | <ul> <li>Improper calculation of</li> </ul>      | <ul> <li>Check dilution, make new</li> </ul>    |
|                               | standard curve dilution                          | standard curve                                  |
| No signal when a signal is    | Sample matrix is masking                         | More diluted sample                             |
| expected, but standard curve  | detection                                        | Recommended                                     |
| looks fine                    |                                                  |                                                 |
| Samples are reading too high, | Samples contain protein levels                   | <ul> <li>Dilute samples and run</li> </ul>      |
| but standard curve is fine    | above assay range                                | Again                                           |
| Edge effect                   | <ul> <li>Uneven temperature around</li> </ul>    | <ul> <li>Avoid incubating plate in</li> </ul>   |
|                               | work surface                                     | areas where environmental                       |
|                               |                                                  | conditions vary                                 |
|                               |                                                  | <ul> <li>Use plate sealer</li> </ul>            |