BioAim Scientific Inc

Human Insulin EasyTestTM ELISA Kit

Cat.No: 1010009

Instruction Manual

For research use only

TABLE OF CONTENTS

INTRODUCTION	3
MATERIALS SUPPLIED	4
STORAGE	4
ADDITIONAL MATERIALS REQUIRED	4
PRECAUTIONS	5
REAGENT PREPARATION	5
ASSAY PROCEDURE	7
CALCULATION OF RESULTS	8
PERFORMANCE	9
REFERENCES	10
TROUBLESHOOTING	11
	INTRODUCTION MATERIALS SUPPLIED STORAGE ADDITIONAL MATERIALS REQUIRED PRECAUTIONS REAGENT PREPARATION ASSAY PROCEDURE CALCULATION OF RESULTS PERFORMANCE REFERENCES TROUBLESHOOTING

I. INTRODUCTION

The human insulin protein is composed of 51 amino acids, and has a molecular weight of 5808 Da. It is a dimer of an A-chain and a B-chain, which are linked together by disulfide bonds. Insulin's structure varies slightly between species of animals. Porcine insulin is especially close to the human version.

Insulin is a peptide hormone produced by beta cells in the pancreas. It regulates the metabolism of carbohydrates and fats by promoting the absorption of glucose from the blood to skeletal muscles and fat tissue and by causing fat to be stored rather than used for energy. Insulin is provided within the body in a constant proportion to remove excess glucose from the blood. When blood glucose levels fall below a certain level, the body begins to use stored sugar as an energy source through glycogenolysis, which breaks down the glycogen stored in the liver and muscles into glucose, which can then be utilized as an energy source. In addition, it has several other anabolic effects throughout the body.

When control of insulin levels fails, diabetes mellitus can result. As a consequence, insulin is used medically to treat some forms of diabetes mellitus. Patients with type 1 diabetes depend on external insulin for their survival because the hormone is no longer produced internally. Some patients with type 2 diabetes may eventually require insulin if dietary modifications or other medications fail to control blood glucose levels adequately.

The BioAim Human Insulin EasyTestTM ELISA kit can quantitatively measure Insulin in human serum or plasma. It is a simple and rapid technology for the quantitation of antigen in a range of sample matrices. The whole process takes less than 1.5 hours with high accuracy and precision. EasyTestTM ELISA is faster and easier to perform than standard format ELISA with less reagent handling and fewer pipetting steps.

II. REAGENTS

- 1. Human Insulin Microplate: 96 breakable wells (12strips x 8wells) coated with anti-human Insulin.
- 2. 20x Wash Buffer Concentrate: 1 Vial, 25 ml.
- 3. 5x Assay Diluent: 1vial, 15 ml.
- 4. Standards: 10µl/ vial, 2 vials, recombinant human Insulin.
- 5. BioAim human Insulin Mix: 9µl/vial, 4 vials.
- 6. TBM Substrate solution: 1 Vial, 12 ml.
- 7. Stop Solution: 1 Vial, 8 ml of 0.2 M sulfuric acid.

III. STORAGE

- 1. The kit can be stored for up to 6 months at 2° to 8°C from the date of shipment.
- 2. Standard can be stored at -20 °C or -80 °C. Use freshly prepared standard within 12 hours (stored at 2~8°C).
- 3. Opened Microplate Wells or reagents may be store for up to 1 month at 2 to 8°C. Return unused strip to the pouch containing desiccant pack, reseal along entire edge and keep in 2~8°C.
- 4. Avoid repeated freeze-thaw cycles.

IV. ADDITIONAL MATERIALS REQUIRED

- 1. Distilled or deionized water.
- 2. Precision pipettes, with disposable plastic tips.
- 3. Beakers, flasks, cylinders necessary for preparation of reagents.
- 4. Microplate washing device (multichannel pipette or automated microplate washer).
- 5. Microplate shaker.
- 6. Microplate reader capable of reading at 450 nm.

V. PRECAUTIONS

- 1. All reagents must be at room temperature (18°C to 25°C) before running assay.
- 2. Do not mix or substitute reagents with those from other lots or other sources.
- 3. Do not use kit reagents beyond expiration date on label.
- 4. Do not expose kit reagents to strong light during storage or incubation.
- 5. Use disposable pipette tips for each transfer to avoid microbial contamination or cross contamination of reagents.
- 6. Improper or insufficient washing at any stage of the procedure will result in either false positive or false negative results.
- 7. Avoid contact of stop solution with skin or eyes. If contact occurs, immediately flush area with copious amounts of water.
- 8. Do not use TMB substrate solution if it has begun to turn blue.
- 9. Do not expose bleach to work area during actual test procedure because of potential interference with enzyme activity.

VI. REAGENT PREPARATION

1. Bring all reagents and samples to room temperature (18~25°C) before use.

2. Assay diluent

Dilute the concentrated assay diluent 1:5 with distilled water (e.g. 10ml plus 40ml).

3. Wash Buffer

Dilute the concentrated wash buffer 1:20 with distilled water (e.g. 20ml plus 380ml).

4. Sample

Levels of the target protein may vary among different specimens. Optimal dilution factors for each sample must be determined by the investigator. The dilution scheme is only suggestion: the recommended starting dilution for serum and plasma is 1: 2.

5. Standard

- a. Briefly spin standard vial before use. Add 490 µl 1x Assay Diluent to prepare a 300µIU/ml standard. Gently vortex to mix.
- b. Take 200 μl Insulin standard into a tube; then add 300 μl 1x Assay Diluent to prepare a 120 $\mu IU/ml$ stock standard solution.
- c. Add 150 µl 1x Assay Diluent to 7 tubes. Label as 60µIU/ml, 30µIU/ml, 15µIU/ml, 7.5µIU/ml, 3.75µIU/ml, 1.87µIU/ml and the last tube with 1x assay diluent is the blank as 0pg/ml.
- d. Perform serial dilutions by adding 150 μ l of each standard to the next tube and vortexing between each transfer (see figure below).

6. BioAim human Insulin Mix

Within 15 minutes prior to use, briefly spin the vial. Add 1490 μ l of 1x Assay diluent to the vial and mix by pipetting. A vial mix can be used for around 30 wells.

VII. ASSAY PROCEDURE

- 1. All reagents must be brought to room temperature (18-25°C) prior to use. Place the required number of microwells in the holder. It is recommended that all samples, standards, and blanks be run in duplicate.
- 2. Add 50 µl of 1x Assay Diluent into the blank wells.
- 3. Add 50 μ l of each standard (*see reagent preparation step 5*) and samples into the designated wells. Gently shake/tap the plate for 5 seconds to mix.
- 4. Add 50 μ l of BioAim Insulin Mix into all wells, including the blank wells.
- 5. Cover wells with plate sealer and incubate at room temperature (18~25°C) for 1 hour with gentle shaking.
- 6. Decant or aspirate contents of wells. Wash wells by filling with at least 300μ /well prepared wash buffer followed by decanting/aspirating. Soak wells in wash buffer for 30 seconds to 1 minute for each wash. Repeat wash 4 times for a total of 5 washes. After the last wash, blot plate on absorbent paper to remove residual buffer. Thorough washing at this step is very important, complete removal of liquid is required for proper performance.
- 7. Pipette 100 μ l of TMB Substrate Solution to each well. Incubate plate for 15 minutes at room temperature in the dark with gentle shaking.
- 8. Add 50 μ l of stop solution to each well.
- 9. Read absorbance at 450nm within 30 minutes of stopping reaction. If wavelength correction is available, subtract the optical density readings at 570nm from readings at 450nm.

VIII.CALCULATION OF RESULTS

- 1. Calculate the average absorbance values for each set of duplicate standards, samples and controls. Subtract the average zero standard optical density.
- 2. Create a standard curve by plotting the mean absorbance for each standard concentration on the ordinate against the Insulin concentration on log-log graph paper or using Sigma plot software. Draw a best fit curve through the points of the graph.
- 3. To determine the concentration of circulating Insulin for each sample, first find the mean absorbance value on the ordinate and extend a horizontal line to the standard curve. At the point of intersection, extend a vertical line to the abscissa and read the corresponding Insulin concentration.
- 4. A representative standard curve is shown below. This standard curve is for demonstration only. A standard curve must be run with each assay by operator.

IX. PERFORMANCE

A. Sensitivity

The minimum detectable dose of Insulin was determined to be less than $1\mu IU/ml$. This is defined as two standard deviations above the mean optical density of 20 replicates of the zero standards.

B. Recovery

Recovery was determined by spiking various levels of Human Insulin into the diluted sample types listed below. Mean recoveries are as follows:

Sample Type	Average % recovery	Range %	
Serum	112	99- 1 33	
Plasma	101	98- 1 03	

C. Linearity

Sample	Dilution	% of expected
	1:2	126
Seum	1:4	103
	1:8	94
	1:2	98
Plasma	1:4	87
	1:8	95

D. Specificity

No cross-reactivity was identified with the following cytokines: BDNF, IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-7, IL-8, IL-9, IP-10, G-CSF, GM-CSF, IFN-gamma, Leptin, MCP-1, PDGF, RANTES, SCF, TGF-beta, TIMP-2, TNF-alpha, TNF-beta, and VEGF.

E. Reproducibility Intra-Assay CV%: <10% Inter-Assay CV%: <15%

X. REFERENCES

- 1. Bell GI, etal. (March 1980) Nature **284** (5751): 26–32.
- 2. Melloul D, etal. (2002) Diabetologia **45** (3): 309–26.
- 3. Katsoyannis PG, etal. (1964) Journal of the American Chemical Society **86** (5): 930–932.
- Dimitriadis G, etal. (August 2011). Diabetes Res. Clin. Pract. 93 Suppl 1: S52–9.
- 5. Menting JG, etal. (2013) Nature **493** (7431): 241–245.

XI. Troubleshooting

Problem	Cause	Solution
1.Poor standard curve	 Inaccurate pipetting Improper standard dilution 	 check pipettes; Ensure briefly spin the vial of standard, take the right amount to dilution.
2. Low signal	 Too brief incubation time Inadequate reagent volumes or improper dilution 	 ensure adequate incubation time; Check pipettes and ensure corrected preparation.
3. Large CV4.High background	Inaccurate pipetting1. Plate is insufficiently washed;2. Wash buffer contamination	 Check pipettes; Accurately perform each step. Follow the manual correctly; if using a plate washer, check that all ports are working functionally; Prepare fresh buffer.
5. Low sensitivity	 1.ELISA kit improper storage 2. Stop solution 	 Follow the manual to store each component correctly; Add enough stop solution to each well.

Bioaim Scientific Inc

Unit 6, 27 Casebridge Court Scarborough, ON, M1B 4Y4 Canada Tel: 416-286-6868 www.bioaimscientific.com