BioAim Scientific Inc

Human CD26 EasyTestTM ELISA Kit

Cat.No: 1010006

Instruction Manual

For research use only

TABLE OF CONTENTS

I.	INTRODUCTION	3
II.	MATERIALS SUPPLIED	4
III.	STORAGE	4
IV.	ADDITIONAL MATERIALS REQUIRED	4
V.	PRECAUTIONS	5
VI.	REAGENT PREPARATION	5
VII.	ASSAY PROCEDURE	7
VIII.	CALCULATION OF RESULTS	8
IX.	PERFORMANCE	9
X.	REFERENCES	10
XI.	TROUBLESHOOTING	11

I. INTRODUCTION

DPPIV/CD26 is a serine exopeptidase that releases X-Proline dipeptides from the N-terminus of oligo- and polypeptides. DPPIV/CD26 is present as a noncovalently linked homodimer on the cell surface of a variety of cell types. It is associated with immune regulation, signal transduction and apoptosis.

DPPIV/CD26 plays an important role in many biological and pathological processes. It functions as T cell-activating molecule (THAM). It serves as a cofactor for entry of HIV in CD4+ cells. It binds adenosine deaminase, the deficiency of which causes severe combined immunodeficiency disease in humans. It cleaves chemokines such as stromal-cell-derived factor 1α and macrophage derived chemokine. It degrades peptide hormones such as glucagon. It truncates procalcitonin, a marker for systemic bacterial infections with elevated levels detected in patients with thermal injury, sepsis and severe infection, and in children with bacterial meningitis.

DPP4 plays a major role in glucose metabolism. It is responsible for the degradation of incretins such as GLP-1. Furthermore, it appears to work as a suppressor in the development of cancer and tumors. A new class of oral hypoglycemics called dipeptidyl peptidase-4 inhibitors work by inhibiting the action of this enzyme, thereby prolonging incretin effect in vivo.

The BioAim Human CD26 EasyTestTM ELISA kit can quantitatively measure CD26 in human serum or plasma. It is a simple and rapid technology for the quantitation of antigen in a range of sample matrices. The whole process takes less than 1.5 hours with high accuracy and precision. EasyTestTM ELISA is faster and easier to perform than standard format ELISA with less reagent handling and fewer pipetting steps.

II. REAGENTS

- 1. Human CD26 Microplate: 96 breakable wells (12strips x 8wells) coated with anti-human CD26.
- 2. 20x Wash Buffer Concentrate: 1 Vial, 25 ml.
- 3. 5x Assay Diluent: 1 vial, 15 ml.
- 4. Standards: 10μ l/ vial, 2 vials, recombinant human CD26.
- 5. BioAim human CD26 Mix: 8µl/vial, 4 vials.
- 6. TBM Substrate solution: 1 Vial, 12 ml.
- 7. Stop Solution: 1 Vial, 8 ml of 0.2 M sulfuric acid.

III. STORAGE

- 1. The kit can be stored for up to 6 months at 2° to 8°C from the date of shipment.
- 2. Standard can be stored at -20 °C or -80 °C. Use freshly prepared standard within 12 hours (stored at 2~8 °C).
- 3. Opened Microplate Wells or reagents may be store for up to 1 month at 2 to 8 °C. Return unused strip to the pouch containing desiccant pack, reseal along entire edge and keep in 2~8 °C.
- 4. Avoid repeated freeze-thaw cycles.

IV. ADDITIONAL MATERIALS REQUIRED

- 1. Distilled or deionized water.
- 2. Precision pipettes, with disposable plastic tips.
- 3. Beakers, flasks, cylinders necessary for preparation of reagents.
- 4. Microplate washing device (multichannel pipette or automated microplate washer).
- 5. Microplate shaker.
- 6. Microplate reader capable of reading at 450 nm.

V. PRECAUTIONS

- 1. All reagents must be at room temperature (18 °C to 25 °C) before running assay.
- 2. Do not mix or substitute reagents with those from other lots or other sources.
- 3. Do not use kit reagents beyond expiration date on label.
- 4. Do not expose kit reagents to strong light during storage or incubation.
- 5. Use disposable pipette tips for each transfer to avoid microbial contamination or cross contamination of reagents.
- 6. Improper or insufficient washing at any stage of the procedure will result in either false positive or false negative results.
- 7. Avoid contact of stop solution with skin or eyes. If contact occurs, immediately flush area with copious amounts of water.
- 8. Do not use TMB substrate solution if it has begun to turn blue.
- 9. Do not expose bleach to work area during actual test procedure because of potential interference with enzyme activity.

VI. REAGENT PREPARATION

1. Bring all reagents and samples to room temperature (18~25°C) before use.

2. Assay diluent

Dilute the concentrated assay diluent 1:5 with distilled water (e.g. 10ml plus 40ml).

3. Wash Buffer

Dilute the concentrated wash buffer 1:20 with distilled water (e.g. 20ml plus 380ml).

4. Sample

Levels of the target protein may vary among different specimens. Optimal dilution factors for each sample must be determined by the investigator. The dilution scheme is only suggestion: the recommended starting dilution for serum and plasma is 1: 500.

5. Standard

- a. Briefly spin standard vial before use. Add 390 µl 1x Assay Diluent to prepare a 500ng/ml standard. Gently vortex to mix.
- b. Take 120 µl CD26 standard into a tube; then add 380 µl 1x Assay Diluent to prepare a 120ng/ml stock standard solution.
- c. Add 150 μl 1x Assay Diluent to 7 tubes. Label as 48ng/ml, 19.2ng/ml, 7.68ng/ml, 3.07ng/ml, 1.23ng/ml, 0.49ng/ml and the last tube with 1x assay diluent is the blank as 0pg/ml.
- d. Perform serial dilutions by adding 100 μ l of each standard to the next tube and vortexing between each transfer (see figure below).

6. BioAim human CD26 Mix

Within 15 minutes prior to use, briefly spin the vial. Add 1492 μ l of 1x Assay diluent to the vial and mix by pipetting. A vial mix can be used for around 30 wells.

VII. ASSAY PROCEDURE

- 1. All reagents must be brought to room temperature (18-25°C) prior to use. Place the required number of microwells in the holder. It is recommended that all samples, standards, and blanks be run in duplicate.
- 2. Add 50 μ l of 1x Assay Diluent into the blank wells.
- 3. Add 50 µl of each standard (*see reagent preparation step 5*) and samples into the designated wells. Gently shake/tap the plate for 5 seconds to mix.
- 4. Add 50 μ l of BioAim CD26 Mix into all wells, including the blank wells.
- 5. Cover wells with plate sealer and incubate at room temperature (18~25°C) for 1 hour with gentle shaking.
- 6. Decant or aspirate contents of wells. Wash wells by filling with at least 300μ /well prepared wash buffer followed by decanting/aspirating. Soak wells in wash buffer for 30 seconds to 1 minute for each wash. Repeat wash 4 times for a total of 5 washes. After the last wash, blot plate on absorbent paper to remove residual buffer. Thorough washing at this step is very important, complete removal of liquid is required for proper performance.
- 7. Pipette 100 μ l of TMB Substrate Solution to each well. Incubate plate for 15 minutes at room temperature in the dark with gentle shaking.
- 8. Add 50 µl of stop solution to each well.
- 9. Read absorbance at 450nm within 30 minutes of stopping reaction. If wavelength correction is available, subtract the optical density readings at 570nm from readings at 450nm.

VIII. CALCULATION OF RESULTS

- 1. Calculate the average absorbance values for each set of duplicate standards, samples and controls. Subtract the average zero standard optical density.
- 2. Create a standard curve by plotting the mean absorbance for each standard concentration on the ordinate against the CD26 concentration on log-log graph paper or using Sigma plot software. Draw a best fit curve through the points of the graph.
- 3. To determine the concentration of circulating CD26 for each sample, first find the mean absorbance value on the ordinate and extend a horizontal line to the standard curve. At the point of intersection, extend a vertical line to the abscissa and read the corresponding CD26 concentration.
- 4. A representative standard curve is shown below. This standard curve is for demonstration only. A standard curve must be run with each assay by operator.

IX. PERFORMANCE

A. Sensitivity

The minimum detectable dose of CD26 was determined to be 80pg/ml. This is defined as two standard deviations above the mean optical density of 20 replicates of the zero standards.

B. Recovery

Recovery was determined by spiking various levels of Human CD26 into the diluted sample types listed below. Mean recoveries are as follows:

Sample Type	Average % recovery	Range %	
Serum	84	73-90	
Plasma	92	88-94	

C. Linearity

Sample	Dilution	% of expected
	1:2	74
Seum	1:4	81
- All Tainedealer -	1:8	73
500.127	1:2	83
Plasma	1:4	87
	1:8	82

D. Specificity

No cross-reactivity was identified with the following cytokines: Adiponectin, BDNF, IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-7, IL-8, IL-9, IP-10, G-CSF, GM-CSF, IFN-gamma, Leptin, MCP-1, PDGF, RANTES, SCF, TGF-beta, TIMP-2, TNF-alpha, TNF-beta, and VEGF.

E. Reproducibility Intra-Assay CV%: <10% Inter-Assay CV%: <15%

X. REFERENCES

- 1. Callebaut, et al. (1993) Science 262:2045.
- 2. Kameoka, et al. (1993) Science 261:466.
- 3. Ohtsuki, et al. (1998) FEBS Lett. 431:236.
- 4. Proost, et al. (1999) J. Biol. Chem. 274:3988.
- 5. Hinke, et al. (2000) J. Biol. Chem. 275:3827.
- 6. Wrenger, et al. (2000) FEBS Lett. 466:155.
- 7. Barnett A (November 2006). Int. J. Clin. Pract. 60 (11): 1454–70.
- 8. Pro B, Dang NH (2004). Histol Histopathol 19 (4): 1345–51.
- 9. Masur K, etal. (2006). Regul Pept. 137 (3): 147–55.
- 10. Wesley UV, etal. (2005). Cancer Res. 65 (4): 1325-34.

XI. Troubleshooting

Problem	Cause	Solution
1.Poor standard curve	 Inaccurate pipetting Improper standard dilution 	 check pipettes; Ensure briefly spin the vial of standard, take the right amount to dilution.
2. Low signal	 Too brief incubation time Inadequate reagent volumes or improper dilution 	 ensure adequate incubation time; Check pipettes and ensure corrected preparation.
3. Large CV	Inaccurate pipetting	 Check pipettes; Accurately perform each step. Follow the manual
4.11igh background	2. Wash buffer contamination	correctly; if using a plate washer, check that all ports are working functionally; 2. Prepare fresh buffer.
5. Low sensitivity	 1.ELISA kit improper storage 2. Stop solution 	 Follow the manual to store each component correctly; Add enough stop solution to each well.

Bioaim Scientific Inc

Unit 6, 27 Casebridge Court Scarborough, ON, M1B 4Y4 Canada Tel: 416-286-6868 www.bioaimscientific.com