

AP 音频分析仪的一般操作和使用方法

Front Panel

- 模拟输入、输出
- 数字输入、输出
- 耳机插孔、音量控制旋钮
- 同步、触发信号输入、输出
- 信号监视输出端口

输出、输入有 XLR (平衡), BNC (非平衡)方式 其中数字信号还有 optical (光口)输入、输出

Rear panel

- 同步或参考信号的输入、输出
- 并口输入、输出数字音频信号通过并口方式 输出,主要用于和 PSIA-2700 可编程串口适 配器连接
- · APSI 主要用于 Dolby 数字信号源的连接

AP2700 系列软件

一.工具栏简介

快速链接工具栏:用户可以通过点击图标,快速调用 一些测试,这些测试已经设置好了相应的面板参数, 不需要用户逐项设置。

AP2700 的快速调用

二.常用的测试工具

1. ◎ :模拟信号发生器

当点选此项时,便会出现如下画面:

1.信号指示: 指示当前两通道内信号的幅值、频率

2.输入接口方式: XLR-Bal, BNC-UnBal, Gen-Mon

3.功能选择

根据所测量的项目选择测量功能,主要有 Amplitude,

Bandpass, THD+N Ratio, THD+N Ampl, Wow&Flutter,

Crosstalk 等

4.读取速率和信号检波方式

控制分析仪的数据地区速率以及对信号的检波方式

5.高通、低通滤波器

根据测量选择不同的高通、低通滤波器,通常音频测量的范

围为 20Hz—20kHz

6.外部滤波器: 提供选件滤波器选项

7.参考参数:分析仪输出的参考参数,用于分析仪内部计算

Wfm: 选择产生信号波形。一般测量使用 Sine / Normal (典型正弦波波形),是由模拟部分硬件产生的低失真度的信号,20Hz - 20KHz 时失真度< 0.0001%。

Frequency: 设定信号频率, Sine / Normal 模式下可设定频率范围: 10Hz - 204KHz。输入时可加单位"k (千)"。

Fast / High Acc.: 选择快速(+/-0.5%)或高精度(+/-0.03%)模式。快速模式适合于一般音频测试,建议在需高速自动测试中使用。高精度模式产生精确的信号频率,但需 150mS - 750mS的设定反应时间,建议手动测试时选用此模式提高测量精度。

Amplitude: 设定信号振幅。平衡输出时可设定振幅:<10uV - 13.33Vrms。非平衡输出时可设定振幅:<10uV - 26.66Vrms。输入时可加单位"n(纳),u(微),m(毫)"。 注意因信号发生器的输出阻抗的差异,和 DUT 输入阻抗的差异,会导致 DUT 输入端的信号电压偏低于 APWIN 的设定电压。

OUTPUT ON/OFF: 信号发生器输出开关。按钮绿色是开启,灰色是关闭。

Auto On: 如选中,在扫频开始时自动开启信号发生器,结束时自动关闭信号发生器。

CHA On/Off: A 通道输出开关。按钮绿色是开启,灰色是关闭。作用在信号发生器输出开关前。

CHB On/Off: B 通道输出开关。按钮绿色是开启,灰色是关闭。作用在信号发生器输出开关前。

Invert: 信号相位 180 度反转。可分别控制 A / B 通道。通常反转 B 通道相位用于 Dol by ProLogic 测量。

Track A: 如选中则同时设定 A / B 通道的振幅,反之分别设定。

EQ Curve: 选用 APWIN 或自定的均衡器曲线。一般测量不使用。

Configuration / Z-Out: 选择 balanced (平衡) / unbalanced (非平衡) / Comm mode t est, 选择 grounded (接地) 或 float (浮地) , 选择 20 Ohm / 40 Ohm / 150 Ohm / 60 0 Ohm 输出阻抗。一般测量设定 unbalanced float 和 20 Ohm 输出阻抗。

Sample Rate: 设定 DSP 和 D/A 的取样率,一般用于任意波形或 MLS 信号。对模拟硬件产生的 Sine 波无效。

dBm Reference: 当信号振幅单位为 dBm 时,设定 DUT 实际的输入阻抗 (Rdbmref)为 dBm 的计算参考。

dBr Reference: 当信号振幅单位为 dBr 时,设定的计算参考电压值(Vdbrref)。接 F3 自动置 dBr 归零。

Frequency Reference: 当信号频率单位为 dHz 时,设定的计算参考频率值。按 Ctrl+F3 自动置 dHz 归零。

Watts Reference: 当信号振幅单位为W时,设定负载阻抗(Rwref)为W的计算参考。

信号发生器的单位计算(正弦波波形):

在很多的测量中,参考参数是非常重要的,如果参考没有设置好,则直接导致测量结果的错误。

测量参考可以由用户手动输入(在知道参考的情况下),通常的操作是用快捷键 F4 将分析仪中 Level 当中前读数自动设置为参考。

Vpp: 正弦波的峰峰值。

Vp(峰值) = Vpp / 2

Vrms (有效値) = Vp / 1.414

 $dBV = 20 \times log(Vrms)$

 $dBu = 20 \times log(Vrms / 0.7746)$

W = (Vrms x Rwref / (Rzout + Rwref)) 2 / Rwref

dBm = 10 x log((Vrms x Rdbmref / (Rzout + Rdbmref)) 2 x 1000 / Rdbmref)

 $dBr = dBV - 20 \times log(Vdbrref)$

dHz = 信号实际频率值 - 参考频率值

Setup A Test

- •连接仪器与被测设备(输入/输出通道、接口方式等)
- 设定信号发生器输出信号(信号类型、频率、幅度),并输出信号
- 检查信号发生器与分析仪的接口配置方式是否与世界连接相一致
- · 在分析仪面板上检查 det, BW, filter 是否设置正确
- · 检查 reference 区域是否正确,这里直接关系测量结果是否准确
- •在 Function Reading 选择要读取数据的通道,并选择你所要测量的项目(ampl, 2-ch ratio, crosstalk, THD+N 等)
- 在 Function Reading Meter 中读取测量的数值
 - 一个基本的测试完成,当然具体的测试有具体的设置方法,需要根据实际测量情况,改变响应的设置

专业音频测试仪器供应商

- 数字信号输入、 输出的配置
- •显示一些数字接口信号的信息

左半部分是输出配置 右半部分是输入配置和一些 接口信号的监视器

仪器前面: XLR(平衡), BNC (非平衡), OPTICAL(光口)

仪器后面: PARALLEL(并行口)

PSIA 配合可编程接口适配器使用

Parallel 普通并行接口

当点选此项时,便会出现如下画面:

DC Coupling: 如选中则为 DC 耦合输入,不选则为 AC 耦合输入(适合于一般音频测量)。

Input Source: 选择输入 XLR balanced (平衡) / BNC unbalanced (非平衡) /模拟信号发生器。一般测量选择 XLR balanced (平衡)输入。

System Two Analyzer Input Unbalanced BNC Configuration

Input Termination Impedance: 选择 300 Ohm/600 Ohm/100K Ohm 输入阻抗。只对 XLR b alanced (平衡) 输入有效。一般测量选择 100K Ohm 输入阻抗。

Input Ranging: 选择手动或自动量程。当测量信号振幅较稳定则可选用自动量程;否则在振幅短时间有较大波动时(啐声),应选择手动量程来得到振幅峰值。一般测量选择自动量程。

Level Meters: 共有 CHA / CHB 两个独立电平计。精确的真 RMS 测量。在信号低于 5毫伏时精确度有所降低。注意高低通滤波器和其它滤波器无作用于它们。

Frequency Counters: 共有 CHA / CHB 两个独立频率计。在信号低于 5 毫伏时精确度有所降低。

Phase Meter: 测量 CHA 和 CHB 两通道输入信号的相位差。

Input Channel Selection: 选择 CHA 或 CHB 通道信号到 Function Reading 功能测量仪。 Function Reading: 功能测量仪能选择不同的信号检测方式,带通滤波器,加权或其它滤波器。

- o Amplitude: 测量通过选择的高低通滤波器和其它滤波器的信号振幅。一般测量信噪比要在此读数。Detector type, reading rate, high-pass filter, low-pass filter, and plug-in option filter may be selected.
- o Bandpass: 测量通过带通滤波器的信号振幅。4 种 1/3 octave(倍频程)带通滤波器可选。
- o Bandreject: 测量通过选择的带阻滤波器的信号振幅。4 种带阻滤波器可选。
- o THD+N Ampl: 测量通过带阻滤波器(基频)和其它滤波器的信号电压的均方根值。
- o THD+N Ratio: 测量通过带阻滤波器(基频)和其它滤波器的信号电压的均方 根值与基频信号电压的百分比值。
- o 2-Ch Ratio: A, B 两通道电压的差值。

- o Detector Control: RMS (有效値), Average (平均値), Peak (峰値), Quasi-Peak (Q-Peak), and Sine Scaled Peak (S-Peak) 检波器可选。
- o High Pass Filter Control: <10Hz, 22 Hz, 100 Hz, and 400 Hz 高通滤波器可选。
- o Low Pass Filter Control: 22K Hz, 30K Hz, 80KHz and >500KHz 低通滤波器可选。
- o Optional Filter Control: 选用滤波器。
- o Bandpass-Bandreject Filter Steering Control: 选择带通和带阻滤波器中心频率设定方式: Counter Tuned: 中心频率与频率计的读数相同。

Sweep Track: 中心频率与扫频中信号源的频率相同。不扫频时与频率计的读数相同。

AGen Track: 中心频率与模拟信号发生器的频率相同。 DGen Track: 中心频率与数字信号发生器的频率相同。

Fixed: 中心频率可自由设定。

o 检波器,滤波器与读数器的影响关系。

	检波器	高通滤波器	低通滤波器	选用滤波器	带通和带阻滤波器
电平计	No	No	No	No	No
频率计	No	No	No	No	No
相位计	No	No	No	No	No
Amplitude	Yes	Yes	Yes	Yes	No
Bandpass	Yes	Yes	Yes	Yes	Yes
Bandreject	Yes	Yes	Yes	Yes	Yes
THD+N Ampl	Yes	Yes	Yes	Yes	Yes
THD+N Ratio	Yes	Yes	Yes	Yes	Yes
2-Ch Ratio	Yes	Yes	Yes	Yes	No

Figure 2-7. FIL-AWT ANSI-IEC "A" Weighting Filter

dBr Reference: 当信号振幅单位为 dBr 时,设定的计算参考电压值(Vdbrref)。按 F4 自动置 dBr 归零。

Frequency Reference: 当信号频率单位为 dHz 时,设定的计算参考频率值。按 Ctrl+F4 自动置 dHz 归零。

Watts Reference: 当信号振幅单位为W时,设定负载阻抗(Rload)为W的计算参考。

dBm Reference: 当信号振幅单位为 dBm 时,设定输入阻抗(Rdbmref)为 dBm 的计算 参考。

信号分析器的单位计算: dBV = 20 x log(V)

 $dBu = 20 \times log(V / 0.7746)$

W = V 2 / Rload

 $dBm = 10 \times log(V 2 \times 1000 / Rdbmref)$

 $dBr = dBV - 20 \times log(Vdbrref)$

dHz = 测量频率值 - 参考频率值

THDN dB = 20 x log(THDN 百分比)

注意事项:

为什么 Function Reading 与 Level Meters 读数不一致?

因为 Function Reading 受选择的滤波器影响,而 Level Meters 跟滤波器没影响。所以在测量信噪比时一般要在 Function Reading 里读数。

慎用 dBr 单位,因为 dBr 是参考值。除非在扫频曲线时要置莫个频率点(如 1kHz)的测量值为 0dBr,否则最好使用 dBV。

为什么扫频图会出现"T"标志?

专业音频测试仪器供应商

在扫频或自动测试时,如果只读取1个数值,那么精度和重复性就较差,不是真实有效的值。一般会读多个数,然后根据运算法则来判断所读的数是否是真实有效的值。运算法则要求越高,测量的精度就越高,但测量的时间也会越长。

AP 扫频时,会跟据 Sweep Setting *** 的设置来读数,如果无法符合设置的要求,那么就会出现"T"标志,表示该点的测量值无法满足运算法则,读数可能有误。通常输出的电压不稳定、电压过低、失真不稳定都可能出现该标志。可以通过修改运算法则来避免,如把 Toler ance 或 Floor 放宽。

东莞市诺盾电子有限公司 专业音频测试仪器供应商

Anal	og Analyzer	Tolerance:	Floor	P	oints	Delay	Algorithm	
	Amplitude	3.00000 %	100.0 nV	~	3	30.00 msec	Flat	٧
	Level A:	1.00000 %	10.00 uV	~	3	30.00 msec	Flat	٧
	Level B:	1.00000 %	10.00 uV	*	3	30.00 msec	Flat	٧
Frequency A: Frequency B:		0.50000 %	250.000 uHz	~	2	20.00 msec	Flat	~
		0.50000 %	250.000 uHz	*	2	20.00 msec	Flat	
Phase:			+0.20 deg	~	2	20.00 msec	Flat	~
DCX	DCV	0.20000 %	+0.00050 Vdc	~	3	30.00 msec	Flat	v
	Digital In:	0.00000 %	0 dec	~	3	30.00 msec	Flat	٧
DIO	Sample Rate:	0.50000 %	100.000 mHz	~	3	30.00 msec	Flat	~
	Voltage:	3.00000 %	10.00 mVpp	~	3	30.00 msec	Flat	Y
	Delay, In from Ref In:	0.01000 %	70.00 nsec	~	3	30.00 msec	Flat	~
	DelayfromOut:	0.01000 %	70.00 nsec	~	3	30.00 msec	Flat	~
	Interface Jitter:	3.00000 %	500.0 psec	~	3	100.0 msec	Flat	~
DSP							1):	
	DSP Anir.Level A	1.00000 %	1.000 uFFS	V	3	30.00 msec	Flat	Y
	DSP Anir.Level B	1.00000 %	1.000 uFFS	¥	3	30.00 msec	Flat	Ų
	DSP Anir.Freq A	0.50000 %	10.0000 mHz	v	1	2.000 msec	Flat	Y
	DSP Antr.Freq B	0.50000 %	10.0000 mHz	×	1	2.000 msec	Flat	V
	DSP Antr.Ampl A	1.00000 %	1.000 uFFS	v	3	30.00 msec	Flat	v

3. 墨:扫描

有许多测试要对信号进行扫描,所以如何设置扫描面板是一项非常重要的工作。

调用扫描面板:

- 1. 在软件操作界面上使用快捷键 CTRL+S
- 2. 在菜单栏上 panels→sweep
- 3. 在菜单栏上 Sweep→show sweep panel
- 4. click 图标

扫描结果显示:

表格形式,用 data editor 查看; 曲线形式,观察扫描结果,直观。 曲线是由许多数据组成 数据是曲线的数字表示

同一种结果的不同表示

- ■Data1: 扫描变量(Y轴)
- ■Sourcel: 扫描自变量(X轴)
- √设定变量和自变量的范围
- √设定扫描点与点之间的间隔 steps
- √设定扫描曲线的显示方式

对数坐标(Log)

线性坐标 (Lin)

- ▶重复扫描 (repeat)
- ▶立体声扫描 (stereo sweep)
- ▶附加扫描 (append)
- ▶单点扫描 (single point)

设置和读取点击浏览按钮____

从弹出对话框中选择读取的参数。 从这里可以选择变量或自变量的 参数。

当所有的设置都完成后,按扫描面板上的 GO, 开始扫描。

三、测试实例

(一)扫频测试

对于全频带功放扫频,一般将参考频率设定为 1KHz,输出 1W,输入灵敏度依实际输出而定.下面来看具体的设定步骤.

①信号发生器设定

- 1. 波形选择:设定为正弦波;
- 2. 参考频率设定:1KHz
- 3. 输入灵敏度设定:以输出为 1W 时所需要输入的灵敏度为准.
- 4. 信号源接地设置:有四种方式,分别为平衡接地,平衡虚地,相对应的阻抗为 40 Ω,150 Ω,和 600 Ω;非平衡接地和非平衡虚地,相对应的阻抗为 20 Ω,600 Ω,实际的选择依实际的输出而定.在此选择为非平衡接地,阻抗选择为 600 Ω,此与信号发生器的阻抗相同.
- 5. 打开信号源开关.
- 6. 信号源选择 Channel A 输出.

当设定好以后,此时观察模拟信号分析仪输出面板,此时相对应的输出就会在该面板显示出来.

②信号输出面板设定

- 1. 信号输入方式选择:具体的输入方式的选择由 AP 分析仪的接线而定, AP 分析仪 有两种接线方式,分别为平衡输入方式和非平衡输入方式.在这里选择非平衡输入方式.
- 2. 信号输入通道选择:在这里选择 Channel A 输入.
- ③扫描面板设定

- 1. 数据 1:扫描信号通道的选择,因为信号是由 A 通道输入,所以在此选择 Anlr.Level A.Top 设定为+20dBr 或+20dBu,Bottom 设定为-40 dBr 或-40dBu.
- 2. 信号源选择 Gen.Freq.扫描的起点即 Start 设定为 20KHz 或 50KHz,此由具体的需要而定. 扫描的终点即 Stop 设定为 20Hz.
- 3. Append 的设定:如果需要将曲线作比较,可勾选此项.
- 4. 开始扫描点选此项.也可按快捷键 F9.

扫描完毕的曲线如图所示:

- C)THD 测试
- ①信号发生器设定

同前所说的扫频测试一样,只是要注意一点,输入灵敏度不可以过大,避免烧机.标示*的地方,就是设定外接负载,一般接 4 \(\Omega) 负载,此处根据实际所接负载而定.

②信号输出面板设定

设定同前所说的扫频测试一样.只是注意标示*部分,此选择 THD+N Ratio,则在右边相应的栏可以看见相对应的失真度.标示"&&"的部分,就是设定外接负载,一般接 4 Ω 负载,此处根据实际所接负载而定.

③扫描面板设定

1. 点选该按钮,则会出现以下画面

此时,选择 Anlr,然后再选择 THD+N Ratio,再按 OK.得到如下画面:

- 2.对于数据 2 的设置同数据 1 一样,不同的是选择 Anlr.Level A.
- 3.信号源选择 Gen.Ampl A,扫描起始位置依实际需要而定,只是有一点要注意,Stop 这一栏的数据不可设得过大,因为相应的输入灵敏度对应相应的输出电压或相应的功率,同时也对应相应的失真度.所以扫描终点的设定就要以实际所需要的失真度而定.
- 4.当设定好以后,再双击 SWEEP 面板,出现如下画面:

点选标注"&&"的地方.

5. 当所有的参数设定好以后,就按 Go 该键进行扫描.最后结果如下所示:

专业音频测试仪器供应商

为什么要做外部扫描?

• 跟踪开环激励

激励信号产生与分析在不同一起上

广播应用

• 被测设备没有实时输入

MP3 players

CD players

DVD players

Web Streaming Audio

- •许多扫描都是以内部信号发生器的频率或幅度作为扫描自变量的,扫描和信号发生器公用一个时钟参考。
- 有些设备不需要用到信号发生器,如 CD player等,因此没有公共时钟基准。
- 当作外部扫描时,分析仪检测输入信号,并以信号本身为扫描时钟基准。

需要注意的几个问题:

- 1. 扫描的范围及扫描的方向?
- 2. 在什么样的条件下画曲线?
- 3. 什么时候结束扫描

如此多的问题,很容易就导致外部扫描的失败。采集的到数据要么过多,要么太少。

- Source1 要设置成 analyzer 中量表的参数,而一不是 Gen 中量表的参数;如频率扫描时,通常用 analyzer 中的 Freq 作为扫描 source
- 有些量表也作为特别的或难度较大的测量,如 DSP analyzer 在 bandpass 模式下可作为幅度扫描。

External Rules:

开始 (start)

数值 (value)

数据 (rules)

间距 (spacing)

极限 (threshold)

结束 (end)

数值 (value)

规则 (eules)

Graphs

- 描述扫描面板 souce 与 data 之间的关系
- 提供一系列更改曲线的控制
- 检查曲线、加标签等
- 放大显示区域

在 graphs 区域内电点击鼠标右键。 可以显示 graphs 的显示控制。

Comment

曲线下方显示, 作为对曲线的注释

• New data

重新绘制扫描曲线, 在存储器取出扫描数据, 不可恢复

· Graph buffer

可用来存储扫描, store trace 将当前的曲线存入缓冲器中; recall 将曲线从缓冲器中调出; delete trace 将曲线删除;

• Title and labels

编辑扫描曲线的名称及其他标签

在任何一个测量仪表上点击鼠标右键,均有选项 create bargraph 调用。

Bar graph 是用来更好地观察和设置一些仪表的数值。

在 bar graph 面板上有 setup, reset 命令可以对其进行编辑和设置。

Regulation

- 如果你需要知道一个功放在何种输出时产生 1%的 THD+N?
- 如果你需要找出被测设备输出的-3dB 点
- 如果你在信号发生器幅度与频率扫描时希望保持一个恒定的调制度(以百分比表示)

Regulation 是一个可以让测量参数向一个特定测量值自动靠近的伺服装置。

专业音频测试仪器供应商

菜单栏 Panels>Regulation.

或者点击 安 按钮

调用 regulation 面板

Regulate: 目标变量,如目标变量为 THD+N

To: 目标变量趋向值,如 THD+N 的趋向值为 1%

By: 自变量,例如输入信号的幅度 Bound: 定义自变量的变化范围

影响 ragulation 的几个参数:

Operation

Linear: 自变量的变化产生变量相同的变化(主要用于 DUT 恒定输出的频率响应)

+normal: 自变量的变化产生变量以一定的比率反向变化

Maximum: 寻找最大值 Minimum: 寻找最小值

• Stepsize

自变量每变化一次的变化量

Iterations

为了达到目标参数自变量所要进行的变化的次数, 应当设置得足够大,以保证能达到目标参数的值。

• Timeout

给 ragulation 提供一个安全阀的作用,与 setting 的设置有关

当这些参数都是设置完成时,点击 ragulate 进行校正,可以进行后续的扫描了

保存/加载

•可以将一个测试及其设置保存起来,以免下次做同样测试时再花费时间去设置一些复杂的参数。

保存: file>save>test 加载: filr>open>test

专业音频测试仪器供应商

- √新建一个测试,将分析仪接口方式设置为 GenMon(或者用信号传输连接信号输出与输入端),将信号输入到分析仪里面;
- √设置扫描面板,将 stereo 选上,设置为两通道信号测试
- √将 data1 单位设置为 dBV, 范围为 (1, -1)
- √扫描 step 设置为 100, 使扫描结果更为详细
- √打开信号发生器 ON,按下扫描面板 GO,产生扫描曲线(如上图所示)

幅度线性度

- •新建一个测试,将分析仪接口方式设置为 GenMon (或者用信号传输线连接信号输出与输入端),将信号输入到分析仪里面;
- •设置扫描面板, stereo 选上, 设置为两通道信号测试
- 将 data1 单位设置 dBg A 范围为(1,-1)
- ·扫描 step 设置为 100, 使扫描结果更为详细
- 打开信号发生器 ON, 按下扫描面板 GO, 产生扫描曲线

专业音频测试仪器供应商

FFT Spectrum Analyzer

- 打开 digital analyzer 面板,选择 FFT spectrum analyzer (fft)
- 用信号传输线连接音频分析仪的输出输入端
- •在扫描面板上, data1 选取 fft Ch1 Ampl, 范围设置为(0,-175dBV), Source1 选择 fft.Freq, 范围(20,20k)
- 选择 stereo, 打开信号发生器 ON, 按下 GO, 扫描进行, 完成后得到信号的频谱。
- 扫描完成后,可以通过点击工具栏上的 → 按钮,在频域和时域之间转换显示 当 FFT 用在时域时,又可以当做示波器来使用,检测实时信号的波形

四、AP 常用测量单位

dB:分贝的十分之一.

dBr:是测量当前电子电路的一个参考电压,也就是参考电压从单一讯号到全频 20-20K, 其量测的校准刻度是在 0dBr.补充一点:0dBr=1.23Vrms=+4dBv.

dBm:是在电子电路内,求得一声频讯号电压电平的量测单位,它在分贝的领域内代表所依据的基准是 1Milliwatt,在单个电路内其阻抗为 $600\,\Omega$,它参照换算相当于一个 0.775V 的讯号电压,这个讯号电压是 RMS 的电压值.也就是说 0dBm 因为 0.775V 跨接个 $600\,\Omega$ 的负载即等于 1mW,即 1 Milliwatt 等于 0.775V=0dBm/ $600\,\Omega$.

dBv and dBu

dBv:美国惯用

专业音频测试仪器供应商

dBu:殴洲惯用

两者是一样的,都是在电子电路内,求得一声频讯号电平的量测单位,所依据的基准也是 0.775V 的 RMS 值.

换算公式为:

dBm=20log(E/0.775)

 $dBv=20 \log(E/0.775)$

其中 dBm 的 0.775V 是以正 $600\,\Omega$ 求出的.而 dBv 或 dBu 则是假设它们是 $600\,\Omega$ 而求得. E:经量测后所得到的电压值.

dBv:是在电子电路内求得一声频讯号电平的量测单位,在分贝的领域内所依据的基准是 1VRMS 值的分贝,它量测的条件可作用在任何阻抗上.