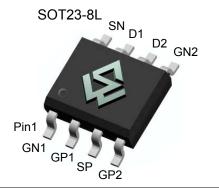


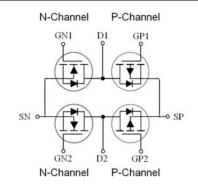
CP9006

30V Full-bridge of MOSFET

General Description

- Low gate charge.
- Use as a load switch.
- Use in PWM applications


Product Summary


N-Channel

- BV_{DSS} = 30V
- $R_{DS(on)}$ (@VGS= 10V) < $60m\Omega$
- $R_{DS(on)}$ (@VGS= 4.5V) < 70m Ω

P-Channel

- BV_{DSS} = -30V
- $R_{DS(on)}$ (@VGS= -10V) < $100m\Omega$
- $R_{DS(on)}$ (@VGS= -4.5V) < 130m Ω

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Parameter	Symbol	Maxi	l luite	
Parameter		N-Channel	P-Channel	Units
Drain-Source Voltage	V _{DS}	30	-30	V
Gate-Source Voltage	V_{GS}	±10	±10	V
Drain Current (T _A =25°C,t<10s,Vgs=10V)		2.0	-1.8	Α
Drain Current (T _A =75°C,t<10s, Vgs=10V)	f I _D	1.5	-1.3	Α
Pulsed Drain Current ^a	I _{DM}	12	-10	Α
Power Dissipation ^b (T _A =25°C)		1.4	1.4	W
Power Dissipation ^b (T _A =75°C)	P _D	1.0	0.9	W
Junction and Storage Temperature Range	T _J , T _{STG}	-55 ~ +150	-55 ~ +150	°C

Thermal Characteristics

Parameter	Symbol	Maxi	Units	
Farameter		P-Channel	N-Channel	Units
Junction-to-Ambient ^a (t ≤ 10s)	R _{0JA}	100	100	°C/W
Junction-to-Ambient a,d (Steady-State)		130	130	°C/W
Junction-to-Lead (Steady-State)	R _{0JL}	90	90	°C/W

CP9006

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	acteristics	Conditions		.,,,,	Mux	Omico
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0V , I _D = 250uA 20 V	20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 20V , V _{GS} = 0V			1	uA
I _{GSS}	Gate-Body Leakage Current	$V_{GS} = \pm 10V, V_{DS} = 0V$			±100	nA
	acteristics	163 2101, 163 01			1 -:00	1
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_{D} = 250uA$	0.45	0.6	1.0	V
25()	Drain-Source On-State Resistance	V _{GS} = 10V , I _D = 2.5A		50	60	mΩ
$R_{DS(ON))}$		V _{GS} = 4.5V , I _D = 2.0		55	70	mΩ
g FS	Forward Transconductance	V _{DS} = 5V , I _D = 1.5A		20		S
Drain-So	urce Diode Characteristics	,	•	l	•	
V _{SD}	Diode Forward Voltage	V _{GS} = 0V , I _S = 1.0A			1.2	V
Is	Maximum Body-Diode Continuous	Current			2.0	Α
Dynamic	Characteristics			•	•	•
C _{iss}	Input Capacitance	V _{DS} = 10V , V _{GS} = 0V f = 1.0MHz		560		pF
Coss	Output Capacitance			83		pF
C _{rss}	Reverse Transfer Capacitance	1 - 1.000112		64		pF
Switchin	g Characteristics					
Qg	Total Gate Charge			8.5		nC
Q _{gs}	Gate-Source Charge	$V_{DS} = 10V$, $I_D = 2.0A$ $V_{GS} = 6V$		2.1		nC
Q_{gd}	Gate-Drain Charge			2.6		nC
t _{D(ON})	Turn-On Delay Time			4		ns
t _r	Turn-On Rise Time	V_{DD} = 10V , ID = 1A V_{GS} = 6 V R_{GEN} = 6 ohm		3.2		ns
t _{D(OFF)}	Turn-Off Delay Time			28		ns
t _f	Turn-Off Fall Time			6		ns

a. Repetitive rating, Pulse width limited by junction temperature $T_{J(MAX)}$ =150 °C. Ratings are based on low frequency and duty cycles to keep initial T_J =25 °C

b. The power dissipation P_D is based on $T_{J(MAX)}$ =150 $^{\circ}C$, using \leqslant 10s junction-to-ambient thermal resistance.

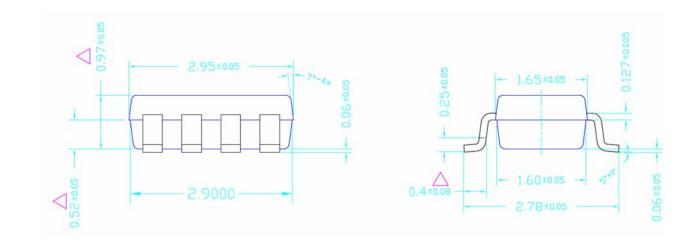
c. The value of $R_{\theta,JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A = 25°C. The value in any given application depends on the user's specific board design.

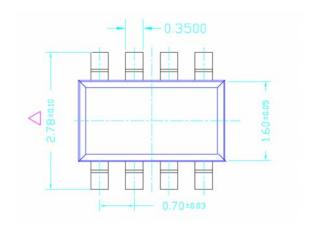
d. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

CP9006

	_			_		
Symbol	Parameter	Conditions	Min	Тур	Max	Units
Off Char	acteristics				T	1
BV_{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_{D} = -250uA$	-20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -20V , V _{GS} = 0V			-1	uA
I_{GSS}	Gate-Body Leakage Current	$V_{GS} = \pm 10V$, $V_{DS} = 0V$			±100	nA
On Chara	acteristics					
$V_{\text{GS(th)}}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -250uA$	-0.45	0.6	-1.0	V
В	Drain-Source On-State Resistance	V _{GS} = -10V , I _D = -1.8A		85	100	mΩ
$R_{DS(ON))}$		$V_{GS} = -4.5V$, $I_{D} = -1.3A$		95	130	mΩ
g FS	Forward Transconductance	$V_{DS} = -5V$, $I_{D} = -1.0A$		15		S
Drain-So	urce Diode Characteristics					
V _{SD}	Diode Forward Voltage	V _{GS} = 0V , I _S = -1.0A			-1.2	V
Is	Maximum Body-Diode Continuous	Current			-1.8	Α
Dynamic	Characteristics					
C _{iss}	Input Capacitance	V _{DS} = -10V , V _{GS} = 0V f = 1.0MHz		650		pF
C _{oss}	Output Capacitance			125		pF
C _{rss}	Reverse Transfer Capacitance	1 - 1.0WH2		85		pF
Switchin	g Characteristics		·			
Qg	Total Gate Charge	$V_{DS} = -10V$, $I_{D} = -1.8A$ $V_{GS} = -6V$		10.5		nC
Q_{gs}	Gate-Source Charge			3.5		nC
Q_{gd}	Gate-Drain Charge			4.0		nC
t _{D(ON})	Turn-On Delay Time	$V_{DD} = -10V$, $ID = -1A$ $V_{GS} = -6 V$ $R_{GEN} = 6 \text{ ohm}$		7.5		ns
t _r	Turn-On Rise Time			4.5		ns
t _{D(OFF)}	Turn-Off Delay Time			45.5		ns
t _f	Turn-Off Fall Time			15		ns

a. Repetitive rating, Pulse width limited by junction temperature $T_{J(MAX)}$ =150 °C. Ratings are based on low frequency and duty cycles to keep initial T_J =25 °C


b. The power dissipation P_D is based on $T_{J(MAX)}$ =150 ${}^{\circ}C$, using \leqslant 10s junction-to-ambient thermal resistance.


c. The value of $R_{\theta,JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A = 25°C. The value in any given application depends on the user's specific board design.

d. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

SOT23-8L Package Outline

