

TxPro-2变送器和WD200系列传感器

用 户 手 册

目 录

1、	规格参数	1
	变送器规格参数	1
	WP传感器规格参数	2
	Y字型装置	3
	安全信息	3
	维护	4
	服冬与维修	1

	变送器规格参数	1
	WP传感器规格参数	2
	Y字型装置	3
	安全信息	3
	维护	4
	服务与维修	4
	可选择部件与附件	5
2、	变送器的安装	6
	管道式安装	7
	壁挂式安装	8
	面板式安装	9
3、	传感器的安装	10
	安装位置所应遵循的标准	.10
	柱螺栓的安装	.12
	对应于介质流向的定位	.14
	插入式传感器	.15
	浸没式传感器	.16
	Y字型装置的安装	.17
4、	设备的连接	19
	交流电源的连接	.20
	继电器的连接	.20
	电流输出(mA输出)的连接	.21
	传感器的连接	.21
	其他信息	.22
5、	软件的操作	23
	标准菜单模式	.23
	测量菜单	.24
6、	仪器的启动	25
	接通电源	.25

	选择语言	5 6 7 8
7、	报警信号继电器和清洗装置继电器2 报警信号继电器S 1、S 2和S 3	9 9 1
8、	测量中求平均值	2
9、	电流模拟输出、约束及测试功能	3 3 4
10、	传感器的校准	5 6 7 9
11、 12、	设备的服务信息	3 3 5 6
13、	设备设置信息表格	7 8 9

1、规格参数

变送器规格参数

测量

TxPro-2变送器有2个传感器通道,每个通道可通过RS 485传输端口独立设置。

控制界面

菜单驱动式软件,具有多点校准功能和可编程约束功能,可以对测量范围、继电器和电流 输出进行设定;

显示屏分辨率:80×64象素。

电源参数要求

交流90~265 V, 50 / 60 Hz, 自动调整范围;

最大消耗功率:25 VA;

保险丝匹配:2A,抗冲击(IEC 127、片型III、类型T)。

制造

外壳:外层为聚酯的铝合金外壳,符合NEMA 4X(IP 66)标准;

重量:2kg(4.4磅);

连续操作温度范围: -20~55 (-4~131 °F);

湿度:0~90%相对湿度(不冷凝)

通用固定支架,能够进行安装的最大管路直径为 50 mm (2 英寸);

符合CE、UL和CSA标准要求。

用户连接

两路可选择的双范围(0~20 mA 和 4~20 mA)电流输出,输出端和控制器绝缘,最大负载为 800 ;

三个报警信号继电器,交流250 V,2 A 或者直流100 V,0.5 A,N.O.(常开)或者N.C. (常闭),可由用户设置;

一个冲洗时间继电器,交流250 V,2 A或者直流100 V,0.5 A,N.O.(常开)或者N.C.(常闭),可由用户设置。

WP传感器使用近红外光源90度散射光技术测量浊度。从介质中散射的光用光度计测量。 性能

测量范围

WP-240 / 242 : 0 ~ 200 NTU

WP-260 / 262 : 0 ~ 2000 NTU

精度:WP-240 / 242:读数的<u>+</u>2%或<u>+</u>0.2 NTU, 取大者(参照 AMCO AEPA-1 标准) WP-260 / 262:读数的<u>+</u>2%或<u>+</u>0.5 NTU, 取大者(参照 AMCO AEPA-1 标准)。

重复性:WP-240 / 242:读数的±1%或±0.1 NTU,取大者(参照 AMCO AEPA-1 标准)。 WP-260 / 262:读数的±1%或±0.2 NTU,取大者(参照 AMCO AEPA-1 标准)。 分辨率:自动调整范围;根据测量的结果显示至小数点后 0~3 位数值。

制造

擦拭器:聚丙烯;聚氯丁烯托板,316 不锈钢支杆。

测量探针: PVC 带石英玻璃窗口。

传感器材质:WP-240和WP-260:CPVC;WP-242和WP-262:316不锈钢。

电缆长度:标准长度为 10 m (33 英尺)。电缆只和浸没式传感器一起提供,插入式传感器的连接电缆需要另外定购。注意:请仅使用 HACH 公司提供的电缆。使用其他的电缆可能会降低设备符合 CE 标准的程度。

符合 CE, UL 和 CSA 标准。

对使用传感器的工艺条件的要求

温度:0~60 (32~140 °F);

流速:最大3m/s(10英尺/s),最小0.3m/s(1英尺/s);

压力:WP-240和WP-260:最大4bar(58psi)。WP-242和WP-262:最大10bar(0~ 35);35~60 下每1 可以改变压力 0.2 bar。

Y型部件

制造

PVC和环氧丁钠橡胶

两个规格:63mm (DN 50);3英寸管

运行条件

温度:最大流量下 0~50 (32~122°F) 压力:50 下最大50 psi (3.5 bar)

安全信息

所有电力和管道连接必须符合国家和地方标准。在变送器附近必须安装一个绝缘开关或者 电路切断开关。所有这些必须由专业人员操作。

以下标识将会在本手册或者仪器上出现:

注意

保险丝和 / 或者匹配、额定值

接地端

维护

必须对本仪器进行定期检查,以确保本仪器的电力连接处于正常状态,以及不对环境产生 危害。在不能满足仪器正常使用的条件下,必须采取补救措施。

服务和维修

变送器和传感器部分都没有用户可维修的部件。只有公司的专业人员或者经公司授权的业务代表才能对系统进行维修,并且仅能使用制造商明确同意使用的元件。任何违反上述规定的 维修都将有可能导致仪器的损坏以及人员的伤害,并且可能导致仪器质量保证的失效、危及安 全操作与电力系统的正常运行以及降低设备符合 CE 标准的程度。

如果您对本仪器的安装、试运行以及操作有任何困难或疑问,请与您购买此仪器的销售商 联系。如果不能与销售商取得联系或者对所得答复不满意,请和 HACH 公司的客户服务部联系。 可选择部件与附件

本手册提到的很多元件都可以由您所在地区的公司代理机构提供,比如球形阀、脱气室装置、接线箱和可快速卸载托架等。其他的元件可能需要由客户自己购置。这些元件将在出现的 地方特别提示。

2、变送器的安装

在选择变送器安装位置时,需要遵循如下标准:

- 避免变送器受阳光直射;
- 避免使变送器产生过多震动;
- 如果情况允许,应将变送器安装于稍稍高于操作者平视水平的位置,这样将会有利于 操作者可以非常舒服地浏览前部面板和进行控制操作;
- 为变送器的开启和维护保留出足够的空间,具体尺寸如图1所示;
- 从变送器到传感器的最大距离不超过600 m(1970英尺);
- 本变送器符合DIN 43700标准。

图1 TxPro-2变送器尺寸图

本变送器可以安装于面板、墙壁或者管路上,在安装中请使用随变送器附带的红色夹具。

该夹具由两个M4 × 18规格的埋头螺栓固定在变送器上。对于每一种安装的实现方法,请参 见下面的三个图及其说明。

管道式安装

取掉将夹具固定在变送器上的螺拴。

按照如图2所示的位置摆放变送器和夹具,并用随产品提供的M4 × 60螺拴固定。图2所示情况是将变送器安装于一个垂直管路上;对于水平管路,只要将夹具旋转90°,安装也可以很容易地实现。

安装所用管路的最大直径应不超过50 mm (2英寸)。

图2 管道式安装

壁挂式安装

使用锚定支架将夹具固定在墙壁上;该锚定支架由用户自行提供,注意其强度要与变送器 重量匹配,其材质要与安装所在墙体的建筑材料匹配。固定所用螺栓的最大直径应不超过4 mm (0.16英寸),而且应选用埋头式螺栓。用随产品提供的M4 × 16螺拴将变送器安装在夹具上。

图3 壁挂式安装

面板式安装

面板上的孔的尺寸应为138 mm × 138 mm(5.4英寸 × 5.4英寸)。

在变送器的边缘位置,使用随产品提供的M4×20螺拴将面板固定于夹具和变送器之间。 所用面板的厚度尺寸范围为:4mm~8mm(0.16英寸~0.32英寸)。

图4 面板式安装

3、传感器的安装

安装位置所应遵循的标准

概述

在选择传感器安装位置时,需要遵循如下标准:

- 应将传感器安装在工艺的恰当位置,以保证获得具有代表性的测量结果。
- 应将传感器安装在易于触及的位置,因为对传感器进行定期的清洁是必要的。
- 应避免将传感器安装在产生气泡的位置,因为那样会产生干扰信号。在某些应用条件下,气泡的产生是难以避免的,如离心液和过滤液等,在这些情况下应将传感器安装 在脱气室装置内。
- 应将传感器安装在有代表性的工艺取样点的附近,该取样点应该便于操作者进行取样操作,传感器和取样点之间的距离推荐最大值不超过1.5m(5英尺)。在校准过程中以及之后的使用中,对工艺进行取样以将仪器读数与实验室分析结果进行比较是有必要的。不正确的取样操作是发现测量数据有误的一个常见原因。
- 应将传感器安装在工艺混合良好和不出现停机的位置,这通常也是取样点所在的位置;
- 最大电缆长度为600 m(1970英尺)。
- 传感器探头必须防止阳光直射,否则会引起读数漂移。
- 传感器的探头应该面向工艺介质流向。
- 传感器探头至少距离反光的表面125mm(5 in)。

浸没式传感器

浸没式传感器的最小浸没深度为30 cm (12英寸),或者浸没至取样时通常所达到的深度。

插入式传感器

请参照图5所示。

- 插入式传感器应安装于上向流管路部分,如果不能实现,则推荐安装在水平管路底部中心45°~90°角度处。注意不要将其安装在下向流管路、水平管路的顶端或者底端等位置。
- 在有泵、阀门、管路肘形弯头等部件的情况下,传感器的安装位置应在这些部件下游

的至少1.5 m (5英尺)处。

- 如图5所示,应预留出取下传感器的空间。
- 如果需要安装传感器的位置预计会有布屑、线头或者塑料等碎片产生,应该将传感器
 安装在一个研磨机的后面。
- 在传感器下游1.5 m(5英尺)之内,应安装取样管、软管和排水沟。取样管的推荐最小尺寸不小于25 mm(1英寸)。
- 推荐工艺管道尺寸不小于100 mm(4英寸)。

图5 对应于配套球阀装置的柱螺栓安装情形

请参照图6所示。

- 1、 从配套球阀装置上拧下安装所用的柱螺栓。
- 将工艺流程暂时停机,排干工艺管路并擦洗干净,(如果条件允许,)取掉适宜长度的 部分管路。
- 3、 将安装所用柱螺栓和取样管切削至与工艺管道的管壁内径匹配。
- 4、 在工艺管道上打孔,并将安装所用柱螺栓和取样管焊接在上面。如果由于工艺管路材 质的原因使得不锈钢柱螺栓不能焊接在上面,则推荐在工艺管路上先安装一个不锈钢 法兰部件以实现柱螺栓的焊接。
- 5、 强烈推荐用户安装自行提供的取样管、阀门和软管,以对工艺进行具有代表性的取样。
- 6、 如果在安装时有取掉的管路部分,则重新接好。
- 7、 使用生料带或者线绳密封,将球阀拧到柱螺栓上。
- 8、 在配套球阀装置的1/4 "端拧上同为1/4 "的减压阀。
- 9、 关闭取样管、减压阀和球阀,重新将工艺流程开通。

图6 配套球阀装置的安装情形

图中代号说明:

- 、传感器探头;
- 、安装用柱螺栓;
- 、安全手柄(2个);
- 、减压阀;

- 、紧线手柄(2个);
- 、安全螺栓(2个);
- 、旋转套环;
- 、传感器套管;
- 、连接管
- 、球形阀法兰
- 、传感器连接法兰;
- 、铰链夹(2个);
- 、取样管(用户自行提供)。

对应于介质流向的定位

插入式传感器(如果情况适用,也包括浸没式传感器)在安装时应该使其与工艺中介质流的方向,以确保传感器上的玻璃窗对着介质流向的上流,示意图如图7所示。对于插入式传感器:

- 1、如果传感器在配套球阀装置内,先将其取出。
- 2、查看工艺的介质流向,并标在管道上供步骤4对照。
- 3、将旋转套环(如图6所示)两端的固定螺丝钉拧松。
- 4、按照图7所示传感器探头定位的方向,确定传感器安装的方向。
- 5、在保持传感器探头定位方向不变的情况下,旋转传感器连接法兰直至与球阀连接法兰 对应(两个法兰如图6所示)。
- 6、当传感器连接法兰与球阀连接法兰对应后,拧紧固定螺丝钉。当固定螺丝钉良好地固定在传感器上的埋头式螺孔内时,传感器连接法兰应该是稳定和紧密连接的。

图7 传感器探头的定位

插入式传感器

在配套球阀装置的内部有两个用于密封的O型环,以防止工艺中的介质从传感器发生泄漏。 在传感器上涂抹一层薄层的硅滑脂可以保护这两个O型环免受损坏。一定要注意,在每次开启 和关闭配套球阀装置时都要确保传感器处于完全缩进状态,以保证传感器的光学探针免受损坏。

- 1、校验传感器方向定位正确,必要情况下请参照图7。
- 2、在传感器上涂抹一层薄层的硅滑脂,但是要注意不能将其涂在测量表面上。
- 3、参照图6所示, 取掉传感器连接法兰插脚上的两个铰链夹。
- 打开减压阀,将传感器插入配套球阀装置内,直至紧线手柄上的孔能够拉到传感器连 接法兰插脚的位置。注意不要击打装有传感器探针的球阀相应部位。
- 5、把铰链夹放回原来位置,锁紧安全手柄和紧线手柄。关闭减压阀。
- 6、将配套球阀装置完全打开,通过推动手柄慢慢地将传感器插入到位。
- 7、安装和拧紧两个安全螺拴,将电缆连接接头接到传感器上。

- 1、随传感器带有1-1/4"的NPT外螺纹管,传感器通过该外螺纹管可以拧在一段管路中,然 后附在栏杆上。
- 图8所示为使用可供选择的可快速卸载托架的一种典型的安装情形。电缆顺着管路方向 铺设,在另一端与发射机连接。
- 4、在所需电缆长度大于所提供的标准长度的应用场合,我们推荐您使用由本公司提供的 可供选择的接线箱。

图8 浸没式传感器的安装情形

图中代号说明:

- 、传感器电缆,(顺着管路方向铺设,在另一端与发射机连接);
- 、可供选择的可快速卸载托架(每个传感器需要2个);
- 、浸没式传感器;
- 、水流方向
- 、由用户自行提供的管路、管接头和肘形弯头。

Y型部件安装

安装位置

- 将Y型部件安装在上升流以取得最佳的效果,不要安装在下降流管线中。
- 在水平安装的情况下,请保证液体充满传感器所在的管线。
- 在距离泵、阀门等下游1.5m或者5倍管线直径距离的地方安装Y型部件。
- 安装和移动传感器至少需要635mm空间。
- 在传感器下游安装一个采样阀。这样可以方便的校正,并且和实验室分析结果相对比。

安装

- 1、根据安装标准选择一个安装的位置。
- 2、图9和图10表示了Y型部件的尺寸。
- 3、把Y型部件安装在过程管线中。保证水流方向和部件上的箭头一致。
- 4、松开螺母,把传感器管子套管从Y型部件上拿掉,
- 5、把传感器电缆通过传感器管子套管,穿过减缩螺纹的小的一段。
- 6、把螺纹密封剂涂在传感器末端的1-1/4"NPT螺纹上,在传感器套管上拧紧。
- 7、把玻璃窗口对准传感器探头,保证他们是处于擦拭器的上游,把传感器插入到Y型部件。 用螺母把传感器和套管固定。
- 8、 管子加压,检查有否泄漏。

图963mm (DN50) Y型部件安装

图中代号说明:

- 、传感器电缆;
- 、浸没式传感器;
- 、传感器管线套管;
- 、缩紧螺母;
- 、Y型部件;
- 、样品管线(用户自己提供)
- 、工作管线;

图10 英制 3 "Y型部件安装

4、设备的连接

电力系统连接都是在保护外壳内的终端模块上实现,电缆线从各模块对应的孔中拉出。

- 电源和继电器上的电缆都应该从其配线板的后面孔中引出。如果想要取掉配线板,则
 应该拧掉配线板左侧的固定螺丝。
- 传感器和电流输出所用电缆则应该从前面孔中引出。

图11 电源和继电器的连接

图中代号说明:

- 、报警信号继电器连接的终端模块(S1、S2和S3);
- 、交流电源连接的终端模块;
- 、保险丝:F1

交流电源的连接

电源应为交流90~265 V (50 / 60 Hz), 在配置中无变化。最大电力消耗为25 VA。具体的 连接位置如图11所示。

- 电源的连接应该按照配线板上的图示说明进行。
- 交流电源连接的终端模块可以从配电箱端板上拿起来,从而更便于连接操作。
- 电线必须耐热在80 或者以上。使用所有电力连接必须符合国家和地方标准。在变送
 器附近必须安装一个绝缘开关或者电路切断开关。所有这些工作必须由专业人员操作。

继电器的连接

TxPro-2变送器带有三个报警信号继电器(S1、S2和S3)和一个计时器继电器(S4)。 (注:接WP传感器时不使用)每个继电器的电源匹配为:交流250V,2A或者直流100V,0.5 A。具体的连接位置如图11所示。

- 在继电器连接的终端模块安排上,S1处于最上端,向下依次为S2、S3和S4。每个
 继电器都有一个单独的、占用两个位置的终端,这些终端可以被移动,从而使得连接
 安装更为便利。
- 每个继电器的操作都是由软件系统来配置,但是当系统关闭时,所有继电器都总是处于断开状态。

电流输出(mA输出)的连接

变送器具有两个电流输出范围: 0~20 mA和4~20 mA,输出端和控制器绝缘,最大负载 为800 。其输出连接终端模块的具体位置如图11所示。

- 应用一套经屏蔽的双绞线信号电缆,在接收器一端进行接地保护。
- 连接终端模块上电缆的连接应该按照配线板上的图示说明进行。
- 两个模拟输出共用同一个接地保护。应采取适当防范措施以避免产生接地回路。

传感器的连接

每个传感器带有两根电源线、两根信号线和一根接地线。传感器连接终端模块的具体位置 如图11所示。上面的模块对应于传感器1,下面的模块对应于传感器2。按照配线板上的图示说 明,将传感器的各导线连接至终端模块上的对应位置。

- 从上至下,所接导线的颜色依次为红、黑、白、绿。
- 将接地线连接至配线板上面的接地线螺钉连接终端。
- 如果您只有一个传感器,则可以将其连接至两个信道中的任一个。
- 请仅使用HACH公司提供的电缆。使用其他的电缆可能会降低设备符合CE标准的程度。
- 接地线的连接必须要符合CE标准。

图12 电流输出和传感器的连接

图中代号说明:

- 、电流输出连接的终端模块;
- 、传感器1连接的终端模块;
- 、传感器2连接的终端模块;
- 、接地线终端。

其他信息

- 在传感器连接终端右侧的、占用两个位置的终端模块以及其下面的、占用三个位置的
 终端模块都不被使用。
- 在变送器关闭之前,要使配线板恢复原来位置。变送器一定要关好并用螺丝拧紧,以
 确保保护外壳内部的元件不受损坏。
- 按照NEMA 4X (P 66) 标准,所有不使用的导线管管口都应该处于封闭状态。

5、软件的操作

标准菜单模式

TxPro-2变送器的用户界面由一个显示屏和四个操作键组成。

Esc(退出键)用于菜单控制操作,每按一次退出键对应于您将回到上一级菜单。

Enter (回车键)用于确认进入或者选择。

中间的两个键(称作*左键*与*右键*)所代表的操作分别由各个键正上方显示屏上对应的文字 或者符号来定义。

图13 主显示屏与键盘

图中代号说明:

、左选择键;

、右选择键。

测量菜单的显示结果反映当前系统的状态:

测量结果:显示屏中央部位的大号阿拉伯数字。

传感器类型:显示在测量结果的下方左侧。

测量结果所用单位:显示在测量结果的下方右侧。

报警显示:如果继电器S1、S2、S3和S4中的一个或者多个被激活,在显示屏的四个角上的一个或者多个继电器代号会出现显示。当出现报警时,显示屏上*左键*与*右键*的上方会显示出报警的故障原因,按*左键*可以查看报警状态。

按左键可以查看下一级测量结果菜单:报警状态、探头信号和电流输出水平。

报警状态子菜单显示三个报警信号继电器(S1、S2和S3)和清洗装置继电器(S4)的 具体情况。

探头信号子菜单显示所连接传感器的瞬时测量值,该测量值为传感器信号计数结果,反映 到测量结果菜单时会转换成工程常用单位。

电流输出水平子菜单显示电流输出的瞬时测量值。

图14 测量菜单

图中代号说明:

- 、通道1的测量菜单;
- 、通道2的测量菜单;
- 、报警器状态的测量菜单;
- 、探头信号的测量菜单;
- 、电流输出水平的测量菜单。

6、设备的启动

SETUP ANALOG OUTPUT RELAYS LANGUAGE DISPLAY AVERAGE Select

接通电源

如果您将变送器接通电源,那么以下三种情况中的一种 将会出现:

- 如果没有连接传感器或者传感器连接有误,系统会显示: "Channel 1 / Comms error"(通道1/ 信号传送错误)。在此情况下,先断开电源,然后 将传感器接入并且保证线路正确,若是因为连接有 误则改正传感器连接中的错误。
- 如果有一个连接正确的传感器,变送器会判断出该 传感器是连接在哪一个通道上。系统会显示该通道 代号,并提供两个选项"CALIBRATE和USE AS IS"(校准和依此状态应用)。
- 如果系统中有两个连接正确的传感器,变送器系统 会显示两个通道,并也提供上述的两个选项: "CALIBRATE和USE AS IS"。

此时如果没有其他菜单可供选择,那么您只能选择 "CALIBRATE"或者"USE AS IS"来查看或者更改通道 信息。

使用*左键*选择"USE AS IS"然后按*回车键*。在此情况下,系统将会从传感器上载出厂校准数据并允许您继续后续操作。

选择语言

语言选择的缺省设置为英语。您可以选择其他可选的语 言(包括法语、德语、意大利语和西班牙语)。如果您选择 的是英语,则进行下一步操作:*校验传感器功能*。而如果您 想选择使用其他语种,则应按照下述步骤操作:

1、使用*右键*转移至 "MENU "(主菜单), 然后使用左 键使光标滚动至 "SETUP"(设置)并按*回车键*。

2、在"SETUP"菜单里,使用左键使光标滚动至"LANGUAGE"(语言)并按回车键。

3、然后使用 右键使光标滚动至您想要选择的语种,并按**回车键**确认语言选择。

4、按**退出键**返回测量菜单。

校验传感器功能

通过观察探头信号显示屏幕确认传感器工作状态正常, 具体操作如下:连续按**退出键**直至显示屏上显示"CHANNEL 1"(通道1)并在右键上方出现"Menu",然后连续按左 键直至探头信号显示屏幕出现。此时如果您在传感器探头上 的两个光学探针之间插入钢笔尖,探头信号的数值会增加。

记录出厂校准数据信息

对每一个传感器,您都应该记录其出厂校准数据信息, 并填入本手册第13节的*出厂校准信息表*中。如果有任何校准 方面的问题发生,该信息将会非常有用。

下面是获取出厂校准数据信息的步骤:

- ➢ 按右键进入"Menu"菜单。
- ➢ 按左键和回车键进入"CALIBRATE"菜单。
- ➢ 按右键和回车键选择所要进入的通道。
- 按左键和回车键进入"MODIFY CAL"(更改校准 数据信息)菜单。请只按回车键读取下面校准显示 屏幕上的出厂校准数据。如果您对这些校准数据进 行任何更改,并按回车键确认,那么您将改变出厂 校准数据。如果您一不小心更改了该显示屏幕上的 任何信息,请按退出键返回到上一级菜单屏幕。
- 在您记录完这些出厂校准数据后,请按回车键,这 些数据就将被制成图表。该图表显示以后,您就可 以按退出键。回到上一级菜单了。

对于每个连接在系统内的传感器,重复上述操作,记录

MODIFY CH1 #POINTS: 1 UNITS: % Select

其出厂校准数据。

记录服务信息和通道1、通道2的信息

我们推荐您对每一个传感器同时记录其服务信息,并填入本手册第13节的*用户校准信息表* 中。如果有任何服务方面的问题发生,该信息将会非常有用。

下面是获取服务信息的步骤:

- ▶ 按右键进入"Menu"菜单。
- ▶ 按左键和回车键进入"SERVICE"(服务信息)菜单。
- ▶ 按左键和回车键选择所要进入的通道。记录"TYPE"(类型)、"RANGE"(测量范围)和"UNITS"(单位)显示屏幕上的数据,然后按左键使光标滚动至下一屏幕, 再记录"SW VER"(软件版本)、"SN#"(序列号)和"ID#"(认证号)显示屏幕上的数据。在记录中,显示屏幕上的序列号应该和传感器电缆上的序列号相符合。
- 再次按*左键*获取"ERROR"(错误信息提示)和"STATUS"(状态)显示屏幕上的 数据,并记录。
- 按 退出键 返回到"SERVICE"菜单,重复上述操作,记录每一个连接在系统内的传感器的服务信息。

MENU

SETUP CALIBRATION SERVICE

Select

设置显示屏选项

使用*左键*进入"SETUP"菜单;然后继续使用*左键*使光标滚动至"DISPLAY"(显示)菜单,并按*回车键*确认。

在"DISPLAY"中:"Auto"(自动)选项下,测量菜 单会在"CHANNEL1"(通道1)和"CHANNEL2"(通 道2)显示屏幕之间进行自动交替切换;"Man"(人工)选 项下,要求操作者使用*左键*和右键在两个通道的显示屏幕之 间进行人工切换。

"CH1"(通道1)和"CH2"(通道2):使用*左键* 选择所要进入的通道,然后使用*右键*移动小数点位置。对两 个通道设置小数点的位置,确定小数点后显示的最多位数。 按*回车键*确认您的选择。本显示系统具有自动调节功能,对 于较大的数字,在有必要的情况下小数点后面的位数会自动 减少。数字前面的"0"不显示。

"SENSCH 1"(通道1)和"SENSCH 2"(通道2): 告知变送器,某个传感器将被连接到系统的某个或者两个通 道上。使用*左键*进入某个通道,然后使用*右键*在"Yes"(选 择)和"No"(不选择)之间进行选择。如果您只有一个传 感器,则可以将其连接至两个通道中的任一个。

SETUP ANALOG OUTPUT RELAYS LANGUAGE DISPLAY AVERAGE Select

DISPLAY DISPLAY: Auto/Man CH1: xx.xx CH2: xx.xx SENSCH1: yes/no SENSCH2: yes/no Select

7、报警信号继电器和清洗装置继电器

RELAYS

RELAY S2 RELAY S3 PURGE S4

Select

Select

报警信号继电器S1、S2和S3

TxPro-2变送器带有三个报警信号继电器,其中S1和S2 是相同的;S3上装有附加元件,用于在系统出现故障时实施 报警。清洗装置计时器/继电器S4具有另外三个继电器所没 有的计时功能。关于S4的使用,在本手册第4节中*传感器的 安装*一节里也有说明。

进入"SETUP"菜单,然后选择"RELAYS"(继电器) 菜单。选择您要修改的继电器。

"ASSIGN"(指定):按右键确定您所选择的继电器 对应于哪一个传感器,或者选择"No"使该继电器处于不被 激活状态。如果您所选择的继电器是S3的话,会出现一个附 加子菜单:

➤ "Fault"(故障)。

- "Accept"(认可): "Man"要求您对继电器进行人工重新设置(在"ALARM"(报警)显示屏幕上按回车键)。"Accept": "Auto"情况下, 在故障被纠正之后,系统将对继电器进行自动重新设置。按右键在两者之间进行选择。
- "RELAY"(继电器)菜单:选择"NO"(常开)
 或者"NC"(常闭)。

"LIMIT"(限制值):输入继电器被激活的调整点, 使用*右键*改变数值(使用工程单位)。

"DIR"(激活方式):选择在"Up"(信号值超过调整点时)或者"Down"(信号值低于调整点时)情况下继电器被激活。使用*右键*在两者之间进行选择。

"HYST"(激活状态保持程度):为了避免继电器长时间震颤,信号值在继电器变为不激 活状态之前必须要返回到调整点以内一定范围。该范围即为"HYST"设置,以限制值的百分数 表示。使用*右键*改变数值。例如:如果把"HYST"设置为5%,则报警信号继电器在达到调整 点值的100%时被激活,而在恢复至调整点值的95%时变为不激活状态。

"RELAY":选择继电器触发方式,是NO(正常情况下断开)还是NC(正常情况下闭合)。 使用**右键**在两者之间进行选择。注意:在发射机不供电时,继电器是断开的。在您对传感器校 准之前,请将继电器S1、S2和S3的"ASSIGN"菜单功能设置为"No",否则,在您对传感 器校准时,继电器可能会出现不正常动作。在校准工作完成之后,您再对继电器的"ASSIGN" 菜单根据需要进行重新设置。

清洗装置继电器S4

"PURGE S 4"(清洗装置继电器)菜单用于控制对WP传感器的清洗,同时它也可以控制RD传感器的擦洗操作。如果您在变送器系统中不使用RD传感器,可以忽略S3 INT, S4 ON和RELAY 按键。

"S4 INT": 仅和RD探头一起使用, WP探头无此功能。

"S4ON": 仅和RD探头一起使用, WP探头无此功能。

"RELAY": 仅和RD探头一起使用, WP探头无此功能。

"WP INT": 键入两次擦拭的时间间隔 (1~999分钟)。

"WIPES":擦拭的数目由WP传感器确定。使用"Right Select"功能改变此设定值。一个典型的"WP INT"设定值是60分钟,"WIPES"的设定值是4。

如果您连接有一个RD探头,并且把"WP INT"设置成和"S4 INT"一样,冲洗和擦拭会同步进行。

8、测量中求平均值

SETUP ANALOG OUTPUT RELAYS LANGUAGE DISPLAY AVERAGE Select 求平均值的目的是为了能获得较平稳的信号,而不至于 因为工艺中某些短时间的波动而造成测量数据显示中出现极 不稳定的变化。求平均值的过程相当于定义了一个波动缓冲 器,在测量中按照给定的时间间隔进行给定次数的测量。求 平均值的过程同时控制测量结果的显示和电流输出。两个通 道的求平均值情况可以有所不同。

进入 " SETUP " 菜单 , 然后进入 " AVERAGE " (求平 均值) 菜单。

" CHANNEL " (通道):选择将要设置参数的通道。 使用*右键*在两个通道之间进行选择。

"AVERAGE":确定对多少次测量结果求平均值。使 用*右键*在1~10的取值范围内进行选择。

"CYCLE TIME"(周期时间):在每个求平均值的过程中,确定每隔多长时间进行一次新的测量,以秒为时间单位。当波动缓冲器通过计数发现完成了在"AVERAGE"选项中确定的测量次数,则生成一个最新测量结果,与此同时,时间最靠前的一个测量结果被覆盖(删除)。通过这样一个过程,平均测量结果被不断更新。使用**右键**在1~15秒的取值范围内进行选择。

"TEST"(测试):您可以同时观察平均测量结果和瞬时测量结果。按*左键*使光标滚动至"TEST"选项,然后按*回 车键*确认。完成操作后,按*退出键*返回上一级菜单。

在您对传感器校准之前,请将"AVERAGE"设置为1次, 将"CYCLE TIME"设置为2秒(缺省设置值),这样的设置 可以使得衰减过程对校准程序的影响最小。在校准工作完成 之后,您再对这些选项根据工艺需要进行重新设置。

TEST CH1

AVERAGE

Average XXX.X Actual XXX.X

9、电流模拟输出、约束及测试功能

ANALOG OUTPUT

output <a> output inhibit <a> inhibit

Select

OUTPUT <A>

SENSOR: CH1 MODE: Lin mA OUT: 4-20mA LOW: X.XX HIGH: XXXX TEST

Select

SENSOR: CH1 MODE: Dual mA OUT: 4-20mA LOW: X.XX MID: XXXX HIGH: XXXX TEST

Select

电流输出的设置

进入"SETUP"菜单,然后进入"ANALOG OUTPUT" (模拟输出)菜单。选择一种输出(A或者B)进行配置。

对选定的一个"SENSOR"(传感器)通道指定一种输出。 对于某一通道,指定上述两种输出中的任何一种均可,但是这 些输出是相对独立的。对每一个通道要分别单独进行设置输入。

从"MODE"(输出模式)中选择一种:"Lin"(简单线性输出)或者"Dual"(双重输出)。使用*右键*在两者之间进行选择。

- "Lin"模式对应于测量结果将输出0~20 mA或者4~ 20 mA的信号。输入"LOW"和"HIGH"(最小值和 最大值),应用您在工艺中使用的工程单位(该工程 单位在"CALIBRATION"(校准)显示屏幕上选定)。 该模式包含了需要跟踪电流输出的整个工艺测量范 围。
- "Dual"模式把整个测量范围分成两个部分:一部分 跟踪从"LOW"点至"MID"点(从最小值至中间值) 的电流输出,0~10mA或者4~12mA;另一部分跟 踪从"MID"点至"HIGH"点(从中间值至最大值) 的电流输出。

对"mAOUT"(电流输出)菜单中选择"0~20mA"或者"4~20mA"范围。使用*右键*在两者之间进行选择。

"TEST"(测试):"TEST"菜单可以被用来提供一个 恒定的输出电流。该电流大小可以在0~21 mA范围内调节。该 功能可以用来校验每个通道的电流输出情况。在您退出测试屏 幕时,该功能即被终止。

电流输出约束行为针对下述几种特定情况决定输出电流的情况:"CALIBRATION"(校 准过程)、"PURGE"(清洗过程)和"FAULT"(故障情况)。对于每种情况,您都可以 有三种选择:"Live"("保持":电流输出继续传送信号)、"Last"(电流输出值将保持 状态改变前的输出信号)或者"Preset"(电流输出值将保持"VALUE"菜单中设置的输出值)。 " VALUE " (电流值设置)的有效取值范围为0~21 mA。

使用左键选择状态。使用右键选择约束编程。

如果不需要清洗功能,则将"PURGE"选项设置为"mA: Live"。(同时,在"RELAYS" 菜单中将S4时间间隔设置为999分钟)。

在对一个通道的所有设置完成之后,按退出键返回上一级"ANALOG OUTPUT"菜单, 然后对另一通道进行设置。

在您对传感器校准之前,请将所有情况下的约束编程都设置为" mA: Live "。在校准工作 完成之后,您再对这些选项根据工艺需要进行重新设置。

INHIBIT <a>
CALIBRATION
PURGE
FAULT
Select
INHIBIT
INHIBIT mA: Last/Preset/
INHIBIT mA: Last/Preset/ Live VALUE: XX mA

用户手册

10、传感器的校准

WP传感器在出厂的时候进行了校正,单位是NTU,使用的是AEPA-1浊度标样。这些数据 被上载到传感器中,并且储存在仪器启动程序中。如果您使用NTU单位,并且用到了工厂校正 范围中的25%以上(WP-240/242是50NTU,WP-260/262是500NTU),则WP不用重新校正。 如果只用到了工厂校正范围的25%一下,则需要增加校正点。

NTU标准样品

AEPA-1是高分子微小颗粒(苯乙烯二乙烯基苯)悬浮于高纯水中。它可以代替福尔马肼作 为浊度标准。与福尔马肼不同,AEPA-1安全、稳定并且不容易沉降。AEPA-1可以从HACH公 司购买。

因为WP探头信号响应成线性关系,所以出厂校正时只用了2个点,函盖了传感器相应的所 有范围。

对于WP-240/242探头,零点是把传感器放在去离子水中设置,最大探头信号是把传感器放在200NTU标准中设置。在去离子水中探头的信号响应值一般是0到85,在200NTU的标准中探头信号响应值是31000到33000。

对于WP-260/262探头,零点是把传感器放在去离子水中设置,最大探头信号是把传感器放在2000NTU标准中设置。在去离子水中探头的信号响应值一般是0到85,在2000NTU的标准中探头信号响应值是31000到33000。

现场使用时有2种标准可以使用。这可以帮助您确定是否需要重新对传感器进行校正。使用 这些标准,您可以检测零点和测量范围最大值的50%的那个点,以确定是否需要重新校正仪器。 标准样品的容器是1升的塑料桶。

使用标准

对于WP-240/242传感器,可以选择100NTU的标准。对于WP-260/262传感器,可以选择 1000NTU的标准。如果需要,您可以将标准品稀释,但是只能使用去离子水。饮用水和自来水 中有矿物质可能会引起标样的沉淀或者污染。

把探头浸没到标样之前,请将探头洗干净并且待它干燥。把探头浸没到标样中大概25mm。 有时候会有空气泡泡附着在探头上,此时请轻轻的敲动探头使得气泡跑掉。附着的空气泡会引 起读数的误差。零点的确定是通过把探头浸没在去离子水中获得。

如果必要的话,按照下面章节所述的快速校正方法把探头重新校正。

校正的时候,推荐使用棕色或者是不透明的瓶子。透明的瓶子会由于光照的原因带来读数

的误差。您可以从HACH公司的实验室设备供应处购买1升的空瓶子。

在其他单位模式下进行校正

如果您希望在除NTU之外的其他单位(比如mg/l或者是ppm)模式下使用,必须用不同于 NTU的标准进行校正。这一点是非常必要的,因为NTU和其他单位的换算和测量过程和条件有 关。主要的影响因素是颗粒物的大小和颜色。可以在同一个时间内测量mg/l、ppm和NTU的标 样,来获得他们之间的换算关系。但是这个关系会随着液体颜色和颗粒物尺寸的改名而改变。 所以不能说1NTU就等于1mg/l或者1ppm。

传感器探测器探针上的信号会被转换成探头信号。作为典型的情况,探头信号与流体中悬 浮固体的浓度呈正比线性关系,在纯净的水中探头信号最小。每一个传感器在纯净的水中探头 信号最小值都在出厂时进行过校准,并储存在其中,该最小信号值简称PS 0。通常情况下它的 信号值是0~85。(由于在空气中的探头信号值和在纯净的水中的值相近,因此可以把空气作为 零点校正)。

探头信号值随着浊度的增大而增加,当浊度达到一定值时,便会超出传感器的测量范围。 一般说来,当传感器探头信号计数值在35000以上时,浊度已经超出了传感器的测量范围。传 感器所能测量的固定浓度的最大值与所用传感器的型号(如WP-242 / 242或者Wp-260 / 262) 以及所测量的悬浮固体的颜色和颗粒尺寸等因素有关。(在NTU单位下,对于WP-240/242,探 头信号35000对应200NTU;对于WP-260/262,探头信号35000对应2000NTU。)

应当尽量避免只对探头可用信号的10%以下进行校正。也就是说,WP探头的校正范围至 少需要0~3500信号单位。

如果你想在除了NTU之外的单位模式下使用,请必须在所使用单位模式下进行校正。在这种情况下,校正的技术对于浸没式和插入式探头都是一样的。有两种校正方法:快速校正法和 多点校正法。

快速校准法

该方法可以很快地对仪器进行校准,但是它也是最不精确的。(除非使用NTU标样)在该 方法中,以出厂测得的水中探头信号值为零点,只在工艺中取一点进行校准,然后根据经验数 据对悬浮固体浓度进行推测。当得到实验室分析结果后,对测量值进行必要的校正。

多点校准法

该方法要求对从工艺中取得的样品用小桶进行离线稀释,以增加校准点,然后根据经验数 据对悬浮固体浓度进行推测。当得到实验室分析结果后,对测量值进行必要的校正。该方法最 为精确,但是也最为费时。如果能有两个人协同操作,校准工作会更为顺利。 在校准之前应进行的工作(适用于上述两种方法)

- 确认在工艺中选取的所要测量的点,其浓度情况正常而且具有代表性。最好是该点的 校准结果为输出范围的50%左右。如果当时工艺中悬浮固体浓度非常低,则最好等其 浓度恢复至正常情况。
- 选择您所要使用的校准方法。
- 如果您要进行稀释操作,请使用塑料容器操作,容器的容积应不小于2升(0.5加仑)。
 注意不要使用玻璃容器,因为由于玻璃向内的反光会使得读数偏高。
- 对于每一个校准点,都需要单独的取样容器。这些容器必须进行编号和贴标签,所取的样品要送到实验室进行悬浮固体的分析。
- 需要准备纯净的水以进行稀释操作。在稀释容器中装入大约占一半容积的水,然后就可以进行稀释操作和浸入传感器进行校准了。
- 可以用一个磁力搅拌器防止悬浮固体的沉降。注意不要让磁力搅拌器长时间对一个样品工作,否则传感器对该样品的读数会稳定增加,因为搅拌子会逐渐将悬浮固体打碎,从而使得颗粒平均尺寸下降。
- 确认哪一种工程单位(如% EBC、FTU、NTU ppm、mg / l、g / l 等)对于TxPro-2
 的显示更适宜,以及更适宜于0~20 mA或者4~20 mA的电流输出范围。 您将要在校 准过程中确定所要使用的工程单位。

测量结果的工程单位

在决定所要使用的工程单位时,需要注意以下几个方面的问题:

系统测量菜单中能够显示的数字的最多位数为4位。例如,如果您原本想用mg/l 作单位, 但是浓度有可能会超过9999 mg/l,那么您就应该选择使用g/l 作单位。

在"**CALIBRATION**"菜单中虽然可以输入5位数字的浓度值(如10000 mg / I 或者更高), 但是如果测量结果超过9999 mg / I,在测量结果显示屏幕中的值就会滚动或者从零重新开始。

在任何两种工程单位之间没有自动转换功能。所以如果您更改工程单位,就必须对新单位进行重新校准,并且必须要确认显示结果小数点的恰当位置,而且在"DISPLAY"菜单和 "CALIBRATION"菜单中先后都要确认。

校准工作之前的仪器设置

在校准工作之前,需要确认模拟输出(包括约束功能)、继电器和求平均值等菜单选项都 要针对校准的情况进行了相应的设置。具体细节请参见对应各节的末尾处。

快速校准法

1、准确确定工艺中正常操作的、具有代表性的位置,并将 传感器安装在此处,以备校准。

2、选定下列菜单的参数: "CALIBRATION"、"SENSOR,
 CH1或者CH2"、"CALIBRATE"(校准)以及"#POINTS"
 (校准点数量)。其中"#POINTS"应设置为或者更改为1。(这
 就意味着您将只选择工艺中的一点进行校准操作。)

3、使用*左键*使"UNITS"菜单变亮,然后使用右键选择您想要使用的工程单位并按*回车键*确认。

4、按*回车键*认可制造商所提供的探头信号最小值(PS 0和PT 0)。此时在"Change"(更改)选项下请不要按左键。
5、当显示"current cal"(电流校准)、"PS 1"和"PT 1"时,在"Change"选项下按*左键*。"current cal"状态会

变为 " PS live " (探头信号工作), " PS 1 " 显示值为实时探 头信号。

6、在" Change"选项下再次按左键,当前PT 1值会变亮。 将PT 1值改变为以所选工程单位表示的、您所估计的当前工艺 中此处悬浮固体浓度值。使用右键改变数字位数,按 回车键确 认更改结果并将光标移至下一个待修改处。完成上述操作后按 回车键确认,屏幕上会显示" current cal"。

7、在"**Change**"选项下再次按*左键*,探头实时信号值会 不断变化,观察其最大值与最小值,然后在数值接近平均值时 按*回车键*确认。

8、所选的探头信号值会被储存,屏幕上会显示"current cal"。如果您感觉探头信号值不正确,则重复步骤7。

9、在校准点处取样送实验室分析。

10、再次按回车键进入最大测量范围屏幕,以所选工程单位表示、输入最大测量范围值,通常该浓度值时电流输出为20 mA。此情况下,变送器将会根据PT1值数据外推出一条校准标 准曲线。注意,输入的最大测量范围值应不小于或等于PT1值。

11、再次按*回车键*显示校准标准曲线,该校准标准曲线 应接近线性。

12、再次按回车键将校准结果储存至变送器和传感器。

13、对从工艺取得的样品分析其总悬浮固体含量。

14、利用"MODIFY CAL"菜单输入实验室实际分析结 果 按 *回车键*直至屏幕上显示PS 1 值和PT 1值,按左键使PT 1 值变亮。与步骤6类似,使用右键和回车键改变显示结果格式。 如果需要或者有必要,改变最大测量范围值,按回车键确认。

15、重复步骤11和步骤12。

17、如果有必要,对另一个通道重复上述操作步骤。

多点校准法

1、准确确定工艺中正常操作的、具有代表性的位置,并将 传感器安装在此处,以备校准。

2、选定下列菜单的参数:" CALIBRATION "、" SENSOR, CH 1或者CH 2 "、" CALIBRATE " 以及" #POINTS " 。其中 " #POINTS " 设置值更改为需要的情况:2、3或者4。

3、使用*左键*使"UNITS"菜单变亮,然后使用*右键*选择您 想要使用的工程单位并按*回车键*确认。

4、按*回车键*认可制造商所提供的探头信号最小值 (PS 0和 PT 0)。此时在"Change"选项下请不要按*左键*。

5、校准点值PT 0~PT 4与探头信号值PS 0~PS 4必须要呈 依次增大的趋势,即:PT 2>PT 1、PS 2>PS 1。因为您将要 对从工艺取的样及其不同倍数的稀释样进行校准,而且要从最高 浓度的校准点开始。按*回车键*直至所要校准的最高浓度的校准点 出现——PS 2、PS 3或者PS 4,具体结果取决于步骤2中所选取 的校准点的数量。

6、在 " Change " 选项下按*左键*, " current cal " 状态会 变为 " PS live ", 屏幕上会显示实时探头信号。

7、在"Change"选项下再次按*左键*,当前PT值会变亮。 使用*右键*改变数字位数 按*回车键*确认更改结果并将光标移至下 一个待修改处。将PT值改变为以所选工程单位表示的、您所估 计的当前工艺中此处悬浮固体浓度值。完成上述操作后按*回车键* 确认,屏幕上会显示"current cal"。

8、在"**Change**"选项下再次按*左键*,探头实时信号值会 不断变化,观察其最大值与最小值,然后在数值接近平均值时按 *回车键*确认。

9、所选的探头信号值会被储存,屏幕上会显示"current cal"。如果您感觉探头信号值不正确,则重复步骤8。

10、立即将在工艺中取得的样往取样桶中装入大约半桶, 同时保留少量样品送实验室分析。对应于校准点的**PT**序号,将 送往实验室的样品编号和贴标签:分别为2、3或者4。

11、将样品稀释一倍(加入相同体积的纯净的水),并将 其搅拌均匀。稀释以后也取少量样品送实验室分析,并且对其进 行相应地编号和贴标签。

12、将传感器从工艺管路中取下,擦洗干净,然后浸没在

Change

CALIBRATE CH1

current cal PS3: 2000 PT3: 1250

Change

current cal PS2: 1425 PT2: 625

Change

稀释后的样品中。将传感器在样品中慢慢地作划圆形搅动以防止 悬浮固体物质的沉降。

13、按一次*退出键*,进入下一个稍低浓度的校准点,对其 重复步骤6、步骤7和步骤8的操作。

14、如果必要的话,对更多新增加的校准点重复该操作程 序。注意对每个稀释样也都要取样、编号、贴标签和送实验室分 析。

15、再次按*回车键*进入最大测量范围屏幕,以所选工程单 位表示、输入最大测量范围值,通常该浓度值时电流输出为20 mA。此情况下,变送器将会根据PT值数据外推出一条校准标准 曲线。请注意,输入的最大测量范围值应不小于或者等于PT值。

16、再次按回车键显示校准标准曲线。

17、再次按回车键将校准结果储存至变送器和传感器。

18、对从工艺取得的样品分析其总悬浮固体含量。

19、利用"MODIFY CAL"菜单输入实验室实际分析结果。 按*回车键*直至屏幕上显示PS1值和PT1值,按左键使PT1值变 亮。与步骤7类似,使用右键和*回车键*改变显示结果格式。对所 有其余的校准点,都重复该步骤操作。

20、重复步骤16和步骤17。

21、在*用户校准信息表*中记录系统校准结果,利用"MODIFY CAL"菜单查看已经储存的数据,记录测量范围内的所有PS和 PT数据以及计算得到的PS值、最大测量范围值等。使用*退出键* 和*回车键*实现向前或者向后的操作。

22、如果有必要,对另一个通道重复上述操作步骤。

23、完成上述操作后,您就可以回到求平均值、清洗装置 继电器功能和模拟输出约束功能等单元根据工艺正常操作情况 改变其设置了。

MODIFY CH1				
D04. 4495				
P31: 1133				
PT1: 312				
PT1: Accept/				
Exclude				
Change				

校准点的增加、使用与放弃

利用 "**MODIFY CAL**"菜单,您可以增加校准点,或者通过观察校准标准曲线的效果决定 是否使用某些现有的校准点。

增加校准点

在增加校准点之前,一定要记录您重新设置的校准参数。

1、进入 "MODIFY CAL " 菜单。

2、选择新的校准点数量,并按**回车键**确认。如果您想要增加的校准点处的悬浮固体浓度值 高于原有校准点中的悬浮固体浓度最大值,则可以直接利用*左键、右键和回车键*在新的校准点 处输入新的探头信号和浓度值。

3、如果您想要增加的校准点处的悬浮固体浓度处于原有校准点中的中间范围,则有必要以 原有数据作参考,重新对所有校准点进行依次增大的排序。例如:如果您原来是使用的两点校 准(PT 1和PT 2),现在想在两点之间增加一个中间浓度的校准点;当您更改完"#POINTS" 设置后,新的校准点会被放在最后的位置,即PT 3。那么您必须将PT 2值转换为PT 3值,再把 新的校准点值输入为PT 2值,而PT 1值保持不变,完成重新排序。

增加校准点后改变最大测量范围

在您完成增加校准点的设置之后,会看到屏幕上显示的最大测量范围值。虽然又可能需要 对测量范围进行更改,但是在此处请先不要更改探头信号值和测量范围值的设置,否则变送器 有可能不能正确地重新计算校准标准曲线。

如果您需要对最大测量范围值进行更改,则应该在"CALIBRATE"菜单中完成。当您在 "MODIFY CAL"菜单中完成对PS值和PT值的更改后,按*回车键*直至看到校准标准曲线图的 显示屏幕,如果认为该校准标准曲线可靠,则按*回车键*确认。浏览"CALIBRATE"菜单,但 是不要更改其中的设置值。直至看到"Enter maximum range"(输入最大测量范围)屏幕, 在此处输入新的最大测量范围的设置值,并按*回车键*确认。变送器会对校准数据进行重新计算, 并显示新的校准标准曲线。

对校准点的使用与放弃

该功能在"**MODIFY CAL**"菜单中通过"INCLUDE / EXCLUDE"操作,可以对原有校准 点评价其对校准标准曲线的影响,同样对于新增加的校准点也可以评价其对校准标准曲线的影 响效果。

- 被排除的校准点在校准标准曲线图中仍有显示,但是在进行校准标准曲线回归时不将 其包括在内。
- > 如果某一点被确认为包括在内,则变送器在进行校准标准曲线回归时将其包括在内。

更新设置参数

在完成了校准工作之后,您可能会希望进入下列 "SETUP"(设置)菜单中对其设置参数进行更新: "RELAYS"、"AVERAGE"以及"ANALOG OUTPUT"等。

11、设备的服务信息

SERVICE

CODE CONTROLLER SENSOR CH1 SENSOR CH2

CODE

CALIB: 0000 SETUP: 0000 SERVICE: 0000

LOAD DEFAULTS SOFTWARE VER mA ADJUST <A> mA ADJUST

Select

先进入"MENU"菜单, 然后由此进入"SERVICE"菜单。

编码

利用"CODE"(编码)菜单,您可以对"CALIB"(校 准)、"SETUP"和"SERVICE"三个菜单的进入权限进行限 制。每个菜单可以设置单独的密码,上述三个菜单的缺省密码 均为"0000",该缺省设置情况下不具备保护功能。您可以输 入新的保护密码,既可以每个菜单使用单独的密码,也可以三 个菜单使用同一个密码。

为了对某一菜单实现保护,您必须更改该菜单缺省设置。 使用*左键*选择菜单,使用*右键*改变密码的每一位数字,使用*回 车键*确认并移动光标。如果您将某一菜单的密码缺省设置值进 行了更改,则下一次进入该菜单时必须要输入正确的密码。如 果您忘记了密码的话,请同时按*退出键和回车键*进入"CODE" 菜单。

控制器

利用"**CONTROLLER**"(控制器)菜单,您可以对出厂时已经确定的多种系统参数进行重新设置。

以缺省设置登录

利用 "LOAD DEFAULTS " (以缺省设置登录)菜单功能,您可以将变送器中任何经用户 更改的设置参数清除,并覆盖以缺省设置参数。但是该覆盖不包括对传感器校准部分和对编码 部分所作的任何更改。

警告! 在使用 " LOAD DEFAULTS " 之前请记录相关数据,否则它们中的多数将被覆盖而 丢失! 软件版本

"SOFTWARE VER"(软件版本)菜单显示变送器当前所使用软件的版本信息。

电流输出调整

"**mA ADJUST <A> / **"(电流输出调整,类型A、B)菜单用于调整两种电流模拟输出。作为出厂时设定的参数,内部系数介于 - 9999~ + 9999之间。通常情况下,没有必要对这些设定值进行调整。

	,连接于通道1、通道2的传感器
SENSOR CH1	
TYPE: RD240	该部分的两个菜单提供有关与变送器相连接的任何传感器
RANGE: XXXXX	的信息。
UNITS: mg/l	
SW VER: 0V00	WP-260以及WP-262)。
SN#: XXXXXXX	
ID#: XX	"RANGE":显示最后一次校准所输入的最大测量范围值。
ERROR: XXX%	" UNITS " :显示最后一次校准中,最后输入的工程单位。
STATUS: XXX	" SW VER ":显示每一个传感器所用软件的版本信息。
Select	 」 " SN# " :显示每一个传感器的序列号。

"ID#":显示由制造商提供的、每一个传感器的认证号。

"**ERROR**":提供在传感器和变送器之间未能传送的(或者传送有误的)信息传送行为的 百分比。该百分比的计算基于最近的100帧信息,每100秒更新一次。出现某些错误传送行为是 一种正常现象,这并不一定意味着传感器或者变送器有故障。

"STATUS":提供每一个连接着的传感器的状态信息,各种状态代码所代表的情况如下:

代码 指示信息

- 000 正常操作
- 001 传感器信号低于测量范围下限
- 002 传感器信号高于测量范围上限
- 004 传感器损耗
- 006 传感器损耗以及传感器信号高于测量范围上限
- 008 擦拭器处于工作状态
- 016 擦拭器失灵
- 032 温度传感器失灵
- 064 传感器ADC(模数转换器)出故障
- 128 EEPROM (电子可擦可编程只读存贮器)出故障

12、错误信息

如果有错误发生,在测量菜单的下面会出现错误提示信息,如果您设置了S3继电器为错误 指示,这些错误会引发继电器。错误类型包括下述几种情况:

" **Comms error** " (信号传送错误):是指传感器与变送器之间的通信失败。这种错误通常是由电缆线路故障,或者传感器连接终端模块连接不良而引起。

"**Under Range**"(低于测量下限):是指介质中悬浮固体或浊度值低于传感器信号测量范围下限。如果持续出现这种情况,您可能需要对**PT 0**值重新进行校准。

" Over Range " (高于测量上限):是指介质中悬浮固体或浊度值超出校正时候设定的传感器信号测量范围上限。如果持续出现这种情况,您可能需要对传感器重新进行校准。

"**Depletion**"(损耗):是指介质中悬浮固体或浊度值超出传感器可以测量的最大值。如果 持续出现这种情况,您可能需要更换一个可以测量更高浓度的传感器。

"Sensor Fault"(传感器有故障):是指传感器工作状态不正常。将变送器电源重新启动。如果仍不能解决问题,则应该更换传感器。

"Wiper fail"(擦拭器失灵):是指擦拭器工作状态不正常。将变送器电源重新启动。如果仍不能解决问题,则应该更换传感器。

后面几页是有关仪器设置信息的两个表格。

- 第一个表格的名称是"出厂校准信息表",该表格是在您启动时选择"USE AS IS" 的情况下用于记录从传感器上载的数据信息。
- 第二个表格的名称是"用户校准信息表",该表格是在您对特定工艺的测量中进行设备校准时用于记录启动和校准信息。

在您进行任何校准操作之前,一定要先记录出厂校准信息,这是很重要的。关于这方面的 详细情况,请参见第6节中的*记录出厂校准数据信息*。 出厂校准信息表

在您接通电源时选择了 " USE AS IS " 后,请填制下表:

	通道1的传感器	通道2的传感器				
类型						
测量范围						
单位						
软件版本						
序列号						
认证号						
错误信息提示						
状态						

服务信息:连接干诵道1、通道2的传感器

校准:更改校准数据信息				
	通道1的传感器	通道2的传感器		
校准点数量	1	1		
单位				
PS 0				
PT 0	0.00	0.00		
PS 1				
PT 1				
测量范围				
测量范围	认可	认可		

用户校准信息表

设置: 模拟输出		
	输出类型 <a>	输出类型
传感器	通道1、通道2	通道1、通道2
输出模式	简单线性输出、双重输出	简单线性输出、双重输出
电流输出	0~20 mA、4~20 mA	0~20 mA 4~20 mA
最小输出值		
中间输出值		
(仅对应于双重输出情况)		
最大输出值		

	类型 <a> 约束 校准过程			类型 <a> 约束 校准过程 类型 约束 校准过			准过程
电流输出选择	Last	Preset	Live	Last	Preset	Live	
电流值设置							

	类型 <a> 抑制 清洗过程			类型 抑制 清洗过程		
电流输出选择	Last	Preset	Live	Last	Preset	Live
电流值设置						

	类型 <	A> 抑制 故[璋情况	类型 <	B> 抑制 故	障情况
电流输出选择	Last	Preset	Live	Last	Preset	Live
电流值设置						

用户校准信息表(续前)

设置:继电器

	继电器 S1	继电器 S 2	继电器 S3	
括引	通道1、通道2、	通道1、通道2、	通道1、通道2、	
37.11	不激活	不激活	不激活、故障	
限制值				
受书计计	超过调整点时、	超过调整点时、	超过调整点时、	
1971011120	低于调整点时	低于调整点时	低于调整点时	
延迟				
激活状态保持程度				
继电器触发方式	常开、常闭	常开、常闭	常开、常闭	
接受				
(仅对应于故障情况)			入上、目动	
继电器触发方式			金井 登街	
(仅对应于故障情况)			吊开、吊闭	

设置:继电器				
	清洗装置继电器 S4			
S 4 时间间隔				
S4被激活时间长度				
继电器触发方式	常开、、常闭			
WP数目				
WP时间间隔				

TxPro-2 变送器 / WP 传感器

用户手册

用户校准信息表(续前)

设置:语言	英语	德语	西班牙语	意大利语	法语
设置:显示					
显示控制		人工、自动			
通道1		XXXX, XXX.X, XX.XX			
通道2		XXXX、 XXX.X、 XX XX			
传感器对应通道1连接信息	3	选择、不选择			
传感器对应通道2连接信息	3	选择、不选择			

设置:求平均值	通道1	通道2
求平均值		
周期时间		

用户校准信息表(续前)

校准:更改校准数据信息					
	通道1	通道2			
校准点数量	1、2、3、4	1、2、3、4			
单位	%、EBC、FTU、NTU、	%、EBC、FTU、NTU、			
	ppm、mg/l、g/l	ppm、mg/l、g/l			
PS 0					
PT 0					
PS 1					
PT 1	认可、排除	认可、排除			
PS 2					
PT 2	认可、排除	认可、排除			
PS 3					
PT 3	认可、排除	认可、排除			
PS 4					
PT 4	认可、排除	认可、排除			
PS					
测量范围	认可、排除	认可、排除			
服务信息:编	码				
校准菜单					
服务信息菜单					
服务信息:控制器					

欢迎联系哈希(中国)公司:

哈希(中国)公司北京办事处 北京建国门外大街 22 号赛特大厦 2301 室 邮政编码:100004 电话:010-65150290 传真:010-65150399

哈希(中国)公司上海办事处 上海天目西路 218 号嘉里不夜城第一座 1208 室 邮政编码:200070 电话:021-63548829 传真:021-63545852

哈希(中国)公司广州办事处: 广州体育西路 109 号高盛大厦 15 楼 B座 邮政编码:510620 电话:020-38791592,38795800 传真:020-38791137

哈希(中国)公司重庆办事处: 重庆渝中区中山三路131 号希尔顿商务中心805室 邮政编码:400015 电话:023-69061906,69061907,69061908 传真:023-69061909