名称: AN97 单相智能变频电源 TS 系列用户手册

(物料编号: 08819184)

版本号	V1.3	生效期	下发之日
编制	刘广扩	日期	2010-3-5
审 核	史继虎	日期	2010-3-5
市 场	燕丽婷	日期	2010-3-10
标准化	张卫霞	日期	2010-03-25
批准	王岩崧	日期	2010-03-25

注:本页为用户手册批准页,不做印刷,"名称"行为印刷时参考。

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

AN97 系列

单相智能变频电源

用户手册(V1.3)

本用户手册中包含的智能变频电源型号:

AN97015TS /AN 97020TS / AN97030TS / AN97045TS / AN97060TS /

AN97100TS / AN97150TS

本系列智能变频电源前视图:

符合标准

智能变频电源产品参照以下标准组织生产: GB 7260.2-2003 不间断电源设备(UPS)第2部分:电磁兼容性(EMC)要求 GB/T 7260.3-2003 不间断电源设备(UPS)第3部分:确定性能的方法和试验要求 SJ/T 10691—1996 变频变压电源通用规范 SJ/T 10541—94 抗干扰型交流稳压电源通用技术条件

	
P	স্ম
н	~1~

目录

第一章 概述	1
1.1 产品简介	1
1.2 产品特点	1
1.2.1 基本功能	1
1.2.2 智能化特点	2
1.3 性能参数	2
第二章 选择产品型号	4
2.1 型号命名方法	4
2.2 输出电压和电流对应关系	4
2.3 负载的功率因数对输出功率的影响	4
2.4 电机、压缩机负载对输出功率的要求	4
第三章 拆封与安装	5
3.1 折封检查	5
3.2 安装环境	5
3.3 接线	5
3.3.1 电源进线	5
3.3.2 电源输入输出接线	5
3.4 通电检查	5
第四章 操作方法	5
4.1 前面板说明	б
4.2 工作状态说明	8
4.2.1 待机状态	3
4.2.2 预置状态	3
4.2.3 运行状态	3
4.2.4 线路电阻补偿状态	9
4.2.5 故障状态	9
4.3 操作注意事项10	0
4.4 快捷操作	9
第五章 串行通信协议11	1
5.1 握手协议	1
5.2 通信数据格式1	1
5.3 通信时序1	3
5.4 通信命令及应答数据格式详注13	3
第六章 维护与品质保证17	7
6.1 常见故障与维护11	7
62 品质保证 11	7
0.2 前次你是	

II

第一章 概述

1.1 产品简介

艾诺智能变频电源可提供世界各国电网供电电压,适用于出口电器生产厂、实验室、国防军工等行业。艾诺智能变频电源采用数字技术和 IPM/IGBT 智能化输出,动态特性好,负载适应强,效率高,操作简单,是目前技术性能优秀的产品。

图 1-1 原理框图

1.2 产品特点

1.2.1 基本功能

1、输出频率预置

输出频率在 45~65Hz 和 400Hz(选择)之间预置, 50Hz/60Hz 转换热键可以快速选择这两个常用频率,对应的 2F/4F 倍频快捷键,可提供对绕组类产品进行倍频测试的输出频率。

2、输出电压预置和调节

输出电压预置范围: 1V~300V;常用电压 120V 和 220V 可以通过转换热键 120/220 选择,还可以用增或减键调节到任意输出电压值;在运行状态,可以按切换键切换到△U 状态,然后按增或减键按照预置的上下浮值快速调节输出。电压输出有预置调节和在线调节两种方式。

3、高档锁定功能

待机状态下,按下系统键,进入系统参数设置界面,可分别设置通讯的地址、波特率及 锁定电压高档。

当电压窗口显示 AUTO 时,高低档可自动换档,当显示为 HOLD 时,输出锁定为高档。 4、电压、频率在线调节

切换键,可以切换 U/f/△U 三种状态,在运行状态下,增、减键可分别在线调节输出电压、频率值及电压上下浮。

5、按键锁定功能

在电源待机状态或者运行状态下,按锁定键3秒,电源进入按键锁定状态,此时除了停止键和锁定键外,其余按键均不响应,可以避免非专业人士对电源进行误操作。当需要解锁

时,再次按锁定键3秒即可。

6、线路电阻补偿功能

对于 20kVA 及以上型号的电源,由于输出电流较大,在输出线路上会造成一定电压降 使负载两端的实际电压降低。线路电阻补偿功能可以根据用户设置的补偿参数,提高电源端 的实际输出电压,补偿线路造成的电压降。

在启动状态下,长按<u>系统</u>键进入线路电阻补偿状态,调节该补偿参数可以补偿输出线路所造成的电压降。

注: 只有 20kVA 及以上功率的电源具有线路电阻补偿功能。

7、过压保护功能

TS 系列的电源的输入为三相四线制,其中 A-N 作为系统控制电路的供电电源,额 定工作电压为 220V。如果在 A-N 间接入 380V 的电压输入断路器左边的保险丝就会熔断, 保护内部电路不受损坏。接线正确后,更换保险丝电源就可以继续工作。

8、 快捷组功能

TS 系列电源具有多个快捷组,每个快捷组的电压、频率和上下浮值都可以独立设置。在待机状态下,按动两个快捷组键,可以快速切换各个快捷组的值。

1.2.2 智能化特点

艾诺智能变频电源采用智能 IGBT(IPM)输出,具有自动过流、过压保护,和独立的温度 检测保护电路。内部存储器自动记忆上次启动时的输出条件。

艾诺智能变频电源具有锁相组合功能,可以通过锁相接口按 120 度相位互相锁相,将单相输出的产品组成三相输出电源产品。

串行通信接口,可以使电源与计算机通信,通过计算机对变频电源进行操作。

1.3 性能参数

见表 1-1。

表 1-1 单相 LED 系列智能变频电源性能参数表

型号/参数	数	AN97015TS	AN97020TS	AN97030TS	AN97045TS	AN97060TS	AN97100TS	AN97150TS		
输出容量	= =	15kVA	20kVA	30kVA	45kVA	60kVA	100kVA	150kVA		
工作方式	Č.	LED 四显示窗口,	正弦波输出,锁木	目组合,远程操作(;	选配)					
输出频率	<u>K</u>	45~65Hz,100Hz,120Hz, 200Hz, 240Hz,400Hz								
频率稳定	三度	$\leq 0.1\%$								
输出	110V	136.4A	182A	273A	410A	546A	908A	1364A		
电流	220V	68.2A	91A	136.5A	205A	273A	454A	682A		
输出电压	- - -	(低档)1V~150V,	(高档)151V~300	V; 或者 (高档)1V	√~300V					
输出相数	¢	单相								
负载效应	Ž.	$\leq 1\%$								
输出电日 失真度	<u> </u>	<2%(阻性负载)								
输入电源	系	三相四线								
过载报警	文 ī	>100%报警								
保护装置	9 L	短路保护,过载保护,功率器件过热保护								
记忆功能	N N	上次启动参数								
效率		≥85%								
预置功能	נאנא	待机状态时可预量	呈输出电压,输出电	1压频率,输出电压	三上、下浮动电压值					
输出电日 快捷方式	ī 〔选择	运行状态时,切抄	英到∆U状态, 按	"增"或"减"键,	可使输出电压快捷	赴 上浮或下浮				
输出频率 快捷方式	^國 式选择	待机状态时,按	"50Hz/60Hz"键利	II"2F/4F"键,可	使输出电压频率转换	换至 50Hz 或 60Hz	及其2倍频和4倍	频		
通信接□]	RS232/RS485(选酉	(5							
输入电源	亰	AC: 380V±10%	, $50Hz\pm5\%$							
外形尺寸	ŀ	600*11	00*000	000*60	0*1200	750*1400*1100	000*16	00*1200		
$W \times H \times$	D(mm)	000.11	00.900	900.00	0.1200	750*1400*1100	900*10	00.1300		
工作环境	之	温度: 0~40℃	相对湿度: ≤	90%RH						
备注		型号中末尾字母合 相电源输出。	含义: 第一个"S"	表示单相电源输入	,"T"表示三相电	源输入;第二个"	'S"表示单相电源转	输出,"T"表示三		

第二章 选择产品型号

第二章 选择产品型号

2.1 型号命名方法

- 图 2-1 型号命名方法
- 1、规格代号:表示电源的输出容量。
- 2、输入输出代号:
- ① H:采用 VFD 显示方式的台式产品;
- ② SS/TS: LED 显示方式的立式单相(S)、三相(T) 输入/输出产品;

2.2 输出电压和电流对应关系

在 110V 和 220V 两个中心电压处的输出电流,如图 2-2 所示。

2.3 负载的功率因数对输出功率的影响

智能变频电源供电负载是感性或容性时,受无功功率的影响,有功功率呈斜线变化。

2.4 电机、压缩机负载对输出功率的要求

电机和压缩机通电瞬间需要一个较大启动电流。因此,应根据启动电流来选择电源型号。 请注意,压缩机启动电流较大,特别是断电几秒钟内再启动,电流会异常大甚至会烧 坏压缩机!

第三章 拆封与安装

3.1 折封检查

旋开螺栓后打开木箱,将变频电源取出。

首先检查产品铭牌,确定机型与定单相符,检查包装箱内物件,确定与装箱清单相符。 检查有无运输损伤,紧固件有无脱落,或其他异常现象,如有疑问请及时与艾诺仪器公 司联系。

3.2 安装环境

严禁安装在含有易燃易爆气体或腐蚀性环境处。

散热孔与墙面或遮挡物应留有 30cm 以上距离,避免将智能变频电源放置在阳光直射和 潮热处,严禁水淋。

3.3 接线

3.3.1 电源进线

电源进线接三相 380V 电网, 电源输入输出端子盒在打开前门下侧, 如图 3-1 所示接线。

图 3-1 单相 LED 系列智能变频电源接线方式

3.3.2 电源输入输出接线

输入输出接线线径不应小于表 3-1 数据。

表 3-1 输入输出接线线径

型 号规 格	输λ(线径)	输出(线径)		
主切观相		110V	220V	
AN97015TS	BVR16mm ²	BVR50mm ²	BVR25mm ²	
AN97020TS	BVR16mm ²	BVR50mm ²	BVR25mm ²	
AN97030TS	BVR25mm ²	BVR95mm ²	BVR50mm ²	
AN97045TS	BVR25mm ²	双 BVR50mm ²	BVR50mm ²	
AN97060TS	BVR50mm ²	双 BVR95mm ²	BVR95mm ²	
AN97100TS	BVR50mm ²	\equiv BVR95mm ²	双 BVR95mm ²	
AN97150TS	BVR70mm ²	四 BVR95mm ²	双 BVR95mm ²	

3.4 通电检查

重新检查智能变频电源的进线和出线,连接正确无误后,合上进线开关,经过15秒左 右的预热,显示面板显示待机状态。检查显示窗口是否有多笔画或者少笔画的现象,按键功 能是否正常。

如果出现报警声,表明有故障,智能变频电源会自动进入保护状态,并在功率窗口显示 报警代号。

第四章 操作方法

第四章 操作方法

4.1 前面板说明

4.1.1 前面板示意图

单相 LED 系列智能变频电源的前面板示意图如图 4-1 所示。

图 4-1 单相 LED 系列智能变频电源的前面板示意图

4.1.2 显示窗口和按键说明

见表 4-1。

表 4-1 显示窗口和按键说明

序号	名称	功能
1	由正显示窗口	待机状态下,显示 0.00;预置状态下,显示预置电压值,上下浮设
1	电压亚尔图片	定值;运行状态下,显示实际的输出电压值。
2	新家显示窗口	待机状态和预置状态下,显示预置电压值;运行状态下,显示实际
2	<u> </u>	的输出频率值。
3	由流見云窗口	待机状态和预置状态下,显示 0.00;运行状态下,显示实际的输出
3	电机业小团口	电流值,报警状态下,显示 ""
		待机状态和预置状态下,显示 0.00;运行状态下,显示实际的输出
4	功率显示窗口	有功功率值;报警状态下,显示报警代码,如0002;线电阻补偿状
		态,显示补偿参数,如"5"
		显示输出档位,当高档锁定标志设为 "AUTO"时,根据预置电压
5	高、低档指示灯	自动切换高低档,相应指示灯亮;当高档锁定标志设为"HOLD"
		时,输出锁定为高档,高档指示灯亮。
6	输出指示灯	绿色指示灯,运行状态时,该指示灯亮。
7	报警指示灯	红色指示灯,报警状态时,该指示灯闪亮,并伴有声音报警。
8	快捷组指示灯	共6个。使用快捷组时,相应组的指示灯亮。
9	切换指示灯	在运行状态下,指示可以在线调节的参数,该参数可以通过"增"、

		"减"键调节。
10	瑞宁指示灯	指示按键是否处于锁定状态,锁定时指示灯亮。锁定状态下除"停
10	员是泪小月	止"键和"锁定"键外,其他键均无效。
11	快捷组键	共两个。待机状态下,可以切换6个快捷组。
12	50Hz/60Hz 键	待机状态下,快速切换 50Hz 和 60Hz。
13	2F/4F 键	待机状态下,可以设置 50Hz 和 60Hz 的 2 倍频和 4 倍频。
14	120V/220V 键	待机状态下,快速切换 120V 和 220V。
15	瑞宁键	待机和运行状态下,按该键3秒后,锁定键盘,同时锁定指示灯亮,
15	坝疋琏	再按3秒解除锁定,锁定指示灯灭。
16	切换键	运行状态下, 切换"增"、"键"键调节的参数。
17	亥纮姆	待机状态下,设置通讯波特率、和上位机通讯时的本机地址,高档
17	尔玑挺	锁定标志。
18	预置键	待机状态下,预置输出频率,电压,上、下浮电压值。
19	增键	增加相应的参数。
20	减键	减小相应的参数。
21	启动键	启动输出,输出指示灯亮。
22	停止键	停止输出,输出指示灯灭。

4.1.3 各按键在不同状态下的响应

AN97 单相 LED 系列智能变频电源各按键在不同状态下的响应,见表 4-2 所示。

按键 电源状态 作用 按键名	软启动完 成之前	停止态 (待机态)	运行态 (输出态)	预置态	系统设置态	故障态	线路电阻 补偿状态
启动	Х	启动输出	Х	Х	Х	Х	Х
停止	Х	Х	停止输出	保存设置 返回待机 态	保存设置返 回待机态	第一次按,消 除报警声,第 二次按,退出 故障态进入 待机态	保存设置, 停止输出, 返回待机 态
增	Х	Х	根据切换 标识所使 能的状态	增减闪动 窗口的参 数 依次是	改变闪动窗 口的参数。 依次是波转	Х	调节补偿
减	Х	Х	进行电压 频率的在 线调节	频率,电 压,上浮 值,下浮值	率、通讯地 址、高档锁 定标志。	Х	参数
切换	Х	Х	切换可以 在线调节 的参数	Х	Х	х	Х
预置	Х	进入预置态	Х	切换预置 参数	Х	Х	Х
系统	X	进入系统设 置态	X		循环使能通 讯地址、波 特率、电压 高档锁定设 置	X	保存补偿 参数,返回 运行态

表 4-2 AN97 单相 LED 系列智能变频电源按键功能

第四章 操作方法

锁定	Х	长按3秒锁 定键盘或解 锁	长按3秒锁 定键盘或 解锁	х	х	Х	X
120V/220V	X	电压 120V /220V 切换	X	Х	X	X	X
50Hz/60Hz	X	频率 50Hz /60Hz 切换	X	Х	X	X	X

注:"X"代表无效。

4.2 工作状态说明

4.2.1 待机状态

检查变频电源进线、出线连接正确无误后,合上进线开关,延时约15s后,进入待机状态。此时电源无输出,显示窗口均不闪动。在待机状态下按启动键进入运行状态,按预置 键进入预置状态,按系统键进入系统设置状态,按电压热键 120V/220V 可切换预置电压常 用值(120V、220V),按频率热键 50Hz/60Hz 可切换预置频率常用值。

4.2.2 预置状态

在待机状态下,按动两个快捷组键,可以切换普通状态和6个快捷组,按预置键进入 预置状态,在该状态下可以设置该组的频率、电压和上下浮值。

在预置状态下可以预置四个参数,依次为频率、电压、电压上浮值、电压下浮值。在待 机状态下按预置键首先进入预置频率状态,每按一下预置键进入下一个参数的预置状态,最 后再按预置键回到待机状态,也可在预置任何参数的过程中按停止键回到待机状态。

1) 预置频率状态:频率显示窗口闪动,可以按增键、减键改变预置频率值,也可按频率热键选择常用频率(50Hz、60Hz)。

2) 预置电压状态: 电压显示窗口闪动,可以按增键、减键改变预置电压值,也可按 电压热键选择常用电压(120V、220V)。

3) 预置电压上浮百分比状态:电压显示窗口数值闪动,可以按增键、减键改变预置 电压上浮值(预置范围 5V~30V)。

4) 预置电压下浮百分比状态:电压显示窗口数值闪动,"-"号代表下浮值,可以按增键、减键改变预置电压下浮值(预置范围-5V~-30V)。

4.2.3 运行状态

智能变频电源在待机状态下,按启动键进入正常运行状态,输出预置的电压和频率值,输出指示灯亮。电压、频率、电流和功率窗口分别显示实际输出的电压值、频率值、电流值和功率指。按启动键返回待机状态。

运行状态下,可以在线调节电源的输出电压和频率。

1) 输出电压调节:按切换键切换到调节电压状态,"U指示灯"亮,按增键和减键调 节输出电压。电压窗口显示预置电压约2秒后,显示实际输出的电压。电压调节范围不能超 出当前档位的电压范围。

2) 输出频率调节:按切换键切换到调节频率状态,"f指示灯"亮,按增键和减键调 节输出频率。频率窗口显示实际输出的频率。频率可以在线调节的范围是45Hz~65Hz。

3) 输出电压上下浮调节: 按切换键切换到调节电压上下浮状态,"△U指示灯"亮, 按增键输出电压上浮,按减键输出电压下浮。电压窗口显示预置电压约2秒后,显示实际 输出的电压。上下浮的范围不能超出当前档位的电压范围。

4.2.4 线路电阻补偿状态

在运行状态下,长按系统键,可以进入线路电阻补偿状态。进入线路电阻补偿状态后, 功率窗口显示线路电阻补偿参数(闪动),按增键和减键可以调节该参数,电源的输出电压将 随着发生变化。再次按系统键,可以退出线路电阻补偿状态回到运行状态。

线路电阻补偿参数计算方法如下:

线路电阻补偿参数 = 电源输出电压 - 负载端电压 负载电流 ×1000

注: 只有 20kVA 及以上功率的电源有此状态。

4.2.5 故障状态

当出现故障时,启动自动保护功能并进入故障状态,此时停止输出,报警指示灯闪亮, 发出报警声,功率窗口显示报警代码。按停止键,消除报警声,再次按停止键,返回待机 态。排除故障后可再次启动。

故障代码说明见表 4-3。

表 4-3 故障代码说明

故障代码	故障原因
0001	过流、过热
0002	过载

4.3 操作注意事项

1、闭合输入开关前,确保接线正确无误。

2、闭合输出开关前,检查电源输出的电压和频率是否正确,以免烧坏负载。

3、电源在运行状态时,高档锁定标志设为"AUTO"时,输出电压可在1~150V或151~ 300V 范围内增减; 高档锁定标志设为"HOLD"时, 输出电压可在 1~300V 范围内增减。

4、电源功率显示窗口显示负载实测有功功率值。

5、当功率窗口显示"000X"并有声光报警信号时,电源进入自动保护状态,并在功率 窗口显示故障代号。此时,按一下停止键可消除报警声,再按一下停止键可返回到待机状 态。此时,应根据故障代号查明故障原因并予以排除。

6、断开输入开关前,请先停止输出。

4.4 快捷操作

4.4.1 电压调节:

1、按 120V/220V 键,可以循环输出 120V 和 220V (待机切换)。

2、在运行状态下,按切换键,切换到调节电压状态(U指示灯亮),按增键或减键可以 调节输出电压,步幅为1V。

3、在运行状态下,按切换键,切换到电压上下浮状态(△U指示灯亮),按增键或减键 可以调节电压上下浮(上下浮值在待机状态下,按预置键设定)。

4.4.2 频率调节

1、在待机状态下,按 50Hz/60Hz 键,循环选择取 50Hz 或 60Hz;

2、在待机状态下,按 2F/4F 键,循环选取 50Hz 或 60Hz 的 2 倍和 4 倍频;

3、在运行状态下,按切换键,切换到调节频率状态(f指示灯亮),按增键或减键可以调 节输出频率,步幅为0.1Hz。

4.4.3 快捷组操作

1. 在待机状态下,按两个快捷组键,可以在多个快捷组之间切换,输出电压和频率的 预置值将会随着改变。

2. 在待机状态下,按预置键,可以进入当前所使用的快捷组参数的设定状态。在该状态下,可以分别设置本组的频率、电压、上浮值和下浮值。

第五章 串行通信协议

1、本机 RS232 地址设置与上位机所选地址一致!

2、本机 RS232 波特率设置与上位机所选波特率一致!

3、上位机按照"下传命令数据格式"发送命令!

否则通信将不能实现!

5.1 握手协议

由主机和从机组成的测控网络中(图 5-1 所示),一次通信是首先由主机的下传命令发起的,以从机的应答结束。所以握手协议采用单向握手协议,即仅在从机的上传数据中有关于接收主机数据是否正确的信息,主机根据此信息确定是否重发控制命令。而主机在收到从机的上传数据后,可根据其所带的校验字,来判断上传数据是否正确,如有误,则向从机重发命令。

图 5-1 握手协议

5.2 通信数据格式

本协议采用数据帧的格式在主机与从机之间进行数据传送,数据帧包括"下传命令"和 "上传应答"两大类的格式。

5.2.1 下传命令数据格式

帧头	有效字节数	从机地址		命令<参数>串	校验和	帧尾
7BH	1 字节	XXH	XXH	命令<=参数>*	XXH	7DH

- (1) 帧头: 1 字节, 固定为 7BH, 即'{'的 ASCII 码。
- (2) 有效字节数:1字节,数值为地址码+命令<参数>串+校验和的字节总数,16进制数。
- (3) 从机地址: 2字节(16进制数)。

0001H~00FEH(即 1~254)为有效地址空间,其他地址空间保留。

- (4) 命令<参数>串语法:
 - a) 命令: 英文字母的 ASCII 码组成一个命令,长度最大为 8 个字母;命令按功能分为 控制命令、查询命令和设置命令。
 - b) 参数:参数均用 ASCII 码表示,详见命令举例。
 - c) 规定:

控制类命令: 以字母'C'开头;

设置类命令: 以字母'S'开头;

查询类命令: 以字母'R'开头;

- d) 命令格式:
 - 控制类: 命令*
 - 设置类: 命令=参数*
 - 查询类: 命令*
- e) 分隔符:
 - <=> 命令与参数之间的分隔符(等号)
 - <*> 命令串结束分隔符(星号),任何一条指令(包括下传数据也上传应答数据) 在校验和前都应有此符号

<,>参数间的分隔符

- (5) 校验和:1 字节(16 进制数),是对所发送数据校验的结果。校验采用水平校验,即 有效字节数+从机地址+命令+参数的和,长度为双字节,取低位字节为校验和。
- (6) 帧尾: 1 字节, 固定为 7DH, 即'}'的 ASCII 码。

5.2.2 上传数据格式

(1) 无效命令应答数据格式

应答格式如下:

帧头	有效字节数	从机地址		应答内容	校验和	帧尾
7BH	1个字节	XXH	XXH	无效命令=?*	XXH	7DH

命令:无效命令。

参数:命令无效符号:?,即 ASCII 码为 3FH。

- 应答格式: 命令=?
- 说明:告诉主机此命令对本机无效,要求主机更正后重新发送数据帧,同时目标从机 将本次接收到的数据帧丢弃。

(2) 控制和设置类命令的应答数据格式

本机对上位机发送来的控制和设置类命令具有相同的应答数据格式:

帧头	有效字节数	从机地址		应答内容	校验和	帧尾
7BH	1个字节	ХХН	ХХН	命令=执行状 态;*	ХХН	7DH

命令: 主机下发的命令。

参数:执行状态,1个字节。

=(ASCII 码: 3DH) ---表示命令执行正确。

!(ASCII 码: 21H) ---表示命令在仪表的当前状态属非法操作。

应答内容格式:"命令=="或命令"=!"

(3) 查询命令执行状态响应信息

响应信息格式如:

帧头	有效字节数	从机地址		应答内容	校验和	帧尾
7BH	1个字节	XXH	XXH	命令=参数*	XXH	7DH

命令: 主机下发的查询命令。

参数:返回数据。

格式: 命令=参数 (详见 5.4 中的举例);

5.3 通信时序

如图 7-2 所示,本机与上位机之间通信时序可描述如下:

(1) 上位机 (PC) 依照 7.2 节规定的格式向下位机传送命令数据帧,同时本测试仪的处理器会接收上位机发来的数据。

(2) 当本测试仪接收命令完成后,会解析上位机发送来的命令,

- a)命令分析:判断接收到的数据长度、下位机地址、校验和、命令个数是否正确;
 若出现错误,丢弃接收到的数据,若正确,判断接收到的命令对本机是否有效,
 若无效,发送"无效命令应答信息",若有效,开始执行命令;
- b)执行命令:从机根据接收到的命令执行相应的操作,命令执行完毕后,分别按照 "控制命令、设置命令执行状态响应信息"或"查询命令执行状态响应信息"规 定的格式组合成数据帧上传数据。
- (3) 上位机接收到本机的应答数据后,对数据进行用户所期望的处理。
- (4) 上位机对本机的应答数据处理完毕后,即可再次发送命令,开始新一轮的通信。

图 5-2 RS232 通信时序图

5.4 通信命令及应答数据格式详注

通讯参数	参数值
波特率	1200、2400、4800、9600bps(可设)
起始位	1
数据位	8
停止位	1

第五章 串行通信协议

奇偶校验位	无校验
从机地址	1-254

5.4.1 控制类命令

CST

注释: 启动命令,执行该命令后,仪表进入运行状态

格式:

帧头	有效字节数	从机地址		命令	校验和	帧尾
7BH	07	00H	0CH	CST*	ХХН	7DH

即 : 7B 07 00 0C 43 53 54 2A 27 7D

应答: 7B 0A 00 0C 43 53 54 3D 3D 3B 2A DF 7D

注:本协议中从机地址均以012为例。

CSP

注释:停止命令,执行该命令后,仪器进入待机状态

格式:

帧头	有效字节数	从机地址		命令	校验和	帧尾
7BH	07	00H	0CH	CSP*	ХХН	7DH

即 : 7B 07 00 0C 43 53 50 2A 23 7D

应答: 7B 0A 00 0C 43 53 50 3D 3D 3B 2A DB 7D

5.4.2 设置类命令

SNO

注释:设置电源的预置参数

格式:

帧头	有效字节数	从机地址		命令[参数]	校验和	帧尾
7BH	18H	00H	0CH	SNO =参数串*	XXH	7DH

参数说明:

电压	频率	上浮值	下浮值	快捷组	高档锁定
三字节	四字节	两字节	两字节	一个字节	一个字节
用对应的	用对应的	用对应的	用对应的	用对应的	'0' 未锁定
ASCII 码表	'1'锁定高档				
示	示	示	示	示	

举例: 7B 1A 00 0C 53 4E 4F 3D 32 32 30 2C 32 30 30 30 2C 33 30 2C 33 30 2C 31 2C 30

2A D6 7D

- { 0 12 SNO=220, 2000, 30, 30, 1, 0 }
- 返回: 7B 0A 00 0C 53 4E 4F 3D 3D 3B 2A E5 7D

注:参数间以逗号隔开

5.4.3 查询类命令

RTE

注释:读电源状态命令

格式:

帧头	有效字节数	从机地址		命令[参数]	校验和	帧尾
7BH	07H	00H	0CH	RTE*	ХХН	7DH

即 : 7B 07 00 0C 52 54 45 2A 28 7D

下位机响应此命令的上传数据格式:

帧头	有效字节数	从机地址		命令<参数>	校验和	帧尾
7BH	0AH	00H	0CH	RTE=XX;* (参数为两字节 ASCII 码)	ХХН	7DH

应答参数说明:

参数	测量状态
'0'	待机状态
'1'	运行状态
'3'	故障状态

例:7B 0A 00 0C 52 54 45 3D 31 3B 2A D4 7D (运行状态)

RNT

注释:实际输出值查询命令

格式:

帧头	有效字节数	从机地址		命令[参数]	校验和	帧尾
7BH	07H	00H	0CH	RNT*	ХХН	7DH

即 : 7B 07 00 0C 52 4E 54 2A 31 7D

下位机响应此命令的上传数据格式:

帧头	有效字节数	从机地	址	命令<参数>	校验和	帧尾
7BH	1FH	00H	0CH	RNT=参数;*	XXH	7DH

第五章 串行通信协议

参数:

电压	电流	频率	功率
五字节	五字节	四字节	五字节
用对应的ASCII码	用对应的ASCII码	用对应的ASCII码	用对应的ASCII码
表示	表示	表示	表示

例: 7B 1F 00 0C 52 4E 54 3D 30 30 30 2E 30 2C 30 30 30 2E 30 2C 36 35 2E 30 2C 30 30 2E 30 30 3B 2A D8 7D

{ 0 12 RNT= 000.0, 000.0, 65.0, 00.00;* }

注意: 此命令在运行状态下有效, 参数间以逗号隔开

RNS

注释: 预置参数查询命令

格式:

帧头	有效字节数	从机地址		命令[参数]	校验和	帧尾
7BH	07H	00H	0CH	RNS*	ХХН	7DH

即 : 7B 07 00 0C 52 4E 53 2A 30 7D

下位机响应此命令的上传数据格式:

帧头	有效字节数	从机地	址	命令<参数>	校验和	帧尾
7BH	19H	00H	0CH	RNT=参数;*	XXH	7DH

参数:

电压	频率	上浮值	下浮值	快捷组	高档锁定
三字节	四字节	两字节	两字节	一个字节	一个字节
用对应的	用对应的	用对应的	用对应的	用对应的	'0' 未锁定
ASCII码表示	ASCII码表示	ASCII码表示	ASCII码表示	ASCII码表示	'1'锁定高档

例: 7B 1B 00 0C 52 4E 53 3D 31 35 30 2C 35 30 2E 30 2C 33 30 2C 33 30 2C 31 2C 30 3B 2A 18 7D

{ RNS=150,50.0,30,30,1,0;* } (150V, 50.0Hz, 上下浮值 30V, 组 1, 未锁定高档)

注意:此命令在待机或设置状态下有效,参数间以逗号隔开。

第六章 维护与品质保证

6.1 常见故障与维护

为了使电源长期稳定工作,良好的使用方法十分有益:

- 1、 电源工作时,保持散热畅通,空气流通,散热好。
- 2、 注意输出电流不要超过最大输出电流或超负荷运行。
- 3、 关机前要先停止输出。
- 4、 报警维护。

表 6-1 常见故障与解决办法

故障现象	可能故障原因	解决办法
王和后王自云	(1)没接通电源	(1)检查仪器电源电压是否正常
川机口儿业小	(2) 电源电压不正常	
	(1)负载启动电流过大(例如:	(1)减少负载(如可采用负载分批投切),
	感性负载的起动)	或增大电源容量
	(2) 输出端短路	(2)检查短路故障予以排除
01 报警	(3) 电源进线线径偏小或线路	(3)根据容量选择合适的输入电源线径,
	电阻太大	及检查输入接线是否松动
	(4)环境温度偏高及散热不畅	(4)降低环境温度,散热风扇排风检查
	导致功率器件过热	及风道清理
	(1)负载电流过大	(1)减少负载
0.2 北 敬	(2)负载电流波峰系数过大(例	(2) 降低整流负载电流波峰系数(如在
02 报誓	如:整流性负载)	整流负载回路中串联电抗器)或增大电源
		容量

6.2 品质保证

1、艾诺仪器公司保证所生产制造的产品均经过严格的品质确认,出厂产品质量保证 期为十二个月,在此期间确有缺陷,均免费给予修复。

除此担保声明之外,艾诺公司不作任何形式的、明确的或暗示的保修保证;任何情况 下,艾诺对间接、特殊的或继起的损失不承担任何责任。

2、对于用户自行更改线路、功能而造成的故障或超过质量保证期的产品,以及不可 抗力造成的故障及损毁,本公司不提供免费保修服务,视实际状况收取维修费。