

ZBL-T73D 楼板厚度检测仪 使用说明书

I

目 录

本i	说B	明书中的约定	
第	1	章	概述1
	1.1	简介	
	1.2	主要功能及特	病1
		1.2.1	主要功能1
		1.2.2	主要特点1
	1.3	主要技术指标	32
	1.4	注意事项	
		1.4.1	使用说明书3
		1.4.2	工作环境要求:3
		1.4.3	存储环境要求4
		1.4.4	其他要求4
	1.5	仪器的维护及	2保养4
		1.5.1	电源4
		1.5.2	充电5
		1.5.3	充电电池5
		1.5.4	清洁5
	1.6	责任	6
第	2	章	仪器描述

2.1 仪器组成	; ,	7
2.1.1	发射、接收探头	7
2.1.2	配件	10
2.2 楼板厚度	检测原理	11
第3章	公用模块介绍	13
3.1 输入方法		13
3.1.1	字符及数字的输入	13
3.1.2	选择性输入	15
3.2 文件管理		15
3.2.1	文件列表	16
3.2.2	FTP 上传	19
3.2.3	数据上传日志	22
第4章	楼板厚度检测软件	23
4.1 软件简介		23
4.2 软件功 能	介绍	24
4.2.1	文件管理	25
4.2.2	参数设置	25
4.2.3	开始测试	31
4.3 快速操作	指南	36
4.3.1	测试前准备	36
4.3.2	新构件的测试	37
4.3.3	数据后处理	
附录1 现场检测	测时的注意事项	40

ш

本说明书中的约定

- 1. 灰色背景、带黑色方框的文字
- 2. 表示界面上的一个按钮,如:确定钮。
- 3. 仪器面板上的按键均用【】表示,如:【存储】键。
- 白色背景、带黑色方框的文字表示 Windows 软件菜单命令, 其中"→"表示菜单级间的分割符,如文件→打开表示文件 菜单下的打开菜单项命令。
- 灰色背景、不带方框的文字表示屏幕上选项或菜单名称。如 选择参数设置中的构件选项。
- 6. 标志 资 为需要特别注意的问题。
- 除了本说明书中介绍的内容之外,用户在使用仪器的过程中, 会自动显示一些提示信息,请按提示信息操作。
- 本说明书中的软件界面及照片仅用作示意,随着软件升级和
 产品的不断改进可能会发生变化,恕不另行通知。

扫描以下二维码可下载安装平板端软件:

川参注意:本软件仅支持 Android 系统的平板。

扫描以下二维码可访问我公司官网、关注我公司微信公众号:

公司官网

微信公众平台

第1章 概述

1.1 简介

ZBL-T730 楼板厚度检测仪(以下简称"测厚仪"),是一种 便携式、使用无损检测方法对混凝土或其它非铁磁体介质的厚度 进行测量的仪器。

测厚仪主要由由主机(平板电脑)及发射、接收探头组成。 使用时,发射探头和接收探头分别放置在楼板的两相对测试面, 分别发射和接收电磁场,接收探头将采集到的信号值通过蓝牙发 送给主机,主机根据接收到的信号强度,实时计算出楼板厚度值 并进行显示、存储。用户可以通过随机提供的U盘,将数据转存 到计算机中,利用配套的分析软件进行更详细的分析处理。

1.2 主要功能及特点

1.2.1 主要功能

测量楼板、剪力墙、梁、柱等混凝土结构及其他非铁磁体介 质的厚度。

1.2.2 主要特点

1) 接收探头自带智能指示灯,实时定位,智能导航;

2) 主机与接收探头之间采用无线连接,摆脱"有线"束缚;

- 3) 人体工程化设计,接收探头搭配延长杆,测试人员不必 弯腰、下蹲,走到哪儿,测到哪儿;
- 4) 延长杆与探头间采用柔性万向联轴节设计,使用方便;
- 支持中文输入,可设置楼号、楼层、单元号等信息,并 现场拍照,记录测点位置,实现现场"无纸化"。
- 主机通过 WiFi 接入互联网后,可自动检查软件更新,实 现在线升级;
- 7) 文件按检测现场→构件分级管理,直观、方便,可以方 便地查看、删除检测现场或构件的测试数据;
- 支持安装有 Android4.0 及以上系统的平板电脑,搭配 7 寸以上液晶屏,屏幕分辨率大于 1280×800,性能优越, 操作方便;
- 9) 仪器操作简单,一切从实际工程检测的需要出发,易学易用,几分钟即可学会使用;
- 10) 可将仪器内部的检测数据通过 U 盘转存到计算机, 使用 Windows 软件进行数据分析。

1.3 主要技术指标

T730 楼板厚度检测仪的主要性能指标见表 1.1。

表 1.1 主要技术指标

项目	指标			
测试范围(mm)	30~860			
最大允许误差	30 mm ~ 200mm	±1		

(mm)	201 mm~600mm	±2
	601 mm~860mm	±3
横向测试距离	≥1m	
存储容量	260 万个构件	
供电方式	内置可充电锂电池 (接收 池额定能量均为 14.8W	牧、发射探头的电 'h)
连续工作时间	≥15 小时	
接收探头体积	\emptyset 116 mm × 142mm	
接收探头重量	580g(含锂电池)	
发射探头体积	\emptyset 100mm × 87mm	
发射探头重量	330g(含锂电池)	

1.4 注意事项

1.4.1 使用说明书

为了更好地使用本检测仪,请您在使用仪器前仔细阅读使用 说明书。

1.4.2 工作环境要求:

环境温度: 0℃~40℃

相对湿度: <90%RH

不得长时间阳光直射

防腐蚀:在潮湿、灰尘、腐蚀性气体环境中使用时,应采取 必要的防护措施。

1.4.3 存储环境要求

环境温度: -20℃~+60℃

相对湿度: <90%RH

不用时请将仪器放在包装箱中,在通风、阴凉、干燥环境下 保存,不得长时间阳光直射。

若长期不使用,应定期通电开机检查。

1.4.4 其他要求

1.4.4.1 避免进水。

1.4.4.2 避免磁场

避免在强磁场环境下使用,如大型电磁铁、变压器附近。

1.4.4.3 防震

在使用及搬运过程中,应防止剧烈震动和冲击。

1.5 仪器的维护及保养

1.5.1 电源

本仪器采用内置专用可充电锂电池进行供电,使用时请注意 电量指示,如果电量不足时,则应尽快采用外部电源(交流电源 或外部充电电池)对本仪器供电,否则可能会造成突然断电导致 测试数据丢失甚至损毁系统;如用交流电源供电,则应确保外接 电源为 AC220±10%V,否则会造成 AC-DC 电源模块甚至仪器 的损坏。禁止使用其他电池、电源为本仪器供电。

1.5.2 充电

用本仪器配套的 AC-DC 电源模块为内部电池充电时,只需 将电源插头端接到 AC220±10%V 的插座中,直流输出端接到仪 器的电源插口中即可。当电源适配器的充电指示灯为红色时,表 示正在对内置电池充电;当指示灯为绿色时,则表示电池已充满。

《▲◆◆ 注意:为了保证完全充满,请保持连续充电 6~8 小时, 同时不要在超过 30℃的环境下对仪器充电。

仪器长期不用,充电电池会自然放电,导致电量减少,使用 前应再次充电。充电过程中仪器和 AC-DC 电源会有一定发热, 属正常现象,应保持仪器、AC-DC 电源或充电器通风良好,便 于散热。

《《《》注意:不得使用其它电源适配器对仪器充电,否则有可能对仪器造成破坏。

1.5.3 充电电池

充电电池的寿命为充放电 500 次左右,接近电池充放电寿命时,如果发现电池工作不正常(根本充不上电、充不满或充满之后使用时间很短),则很可能是充电电池已损坏或寿命已到,应与我公司联系,更换新的电池。禁止将电池短路或靠近高温热源。

1.5.4 清洁

每次使用完本仪器后,应该对主机、传感器等进行适当清洁, 以防止水、泥等进入接插件或仪器,从而导致仪器的性能下降或

损坏。

《 注意: 请勿将仪器及配件放入水中或用湿布擦洗!

₩<>>注意: 请勿用有机溶剂擦洗仪器及配件!

请用干净柔软的干布擦拭主机。

请用干净柔软的毛刷清理插座。

1.6 责任

6

本仪器为精密检测仪器,当用户有以下行为之一或其它人为 破坏时,本公司不承担相关责任。

- (1)违反上述工作环境要求或存储环境要求。
- (2)非正常操作。
- (3) 在未经允许的情况下擅自打开机壳,拆卸任何零部件。
- (4)人为或意外事故造成仪器严重损坏。

第2章 仪器描述

2.1 仪器组成

T730 楼板厚度检测仪主要由发射探头、接收探头、平板电脑及配件(包括充电器、延长杆等)组成。

2.1.1 发射、接收探头

发射探头是一个独立的部件,如图 2.1 所示,通过内置可充 电锂电池供电,主要用于发射稳定的交变电磁场。接收探头(如 图 2.2 所示)用于接收电磁信号,在检测时将采集到的信号值通 过无线发送给主机。

图 2.1 发射探头

图 2.2 接收探头

2.1.1.1 电源开关

用于打开/关闭发射、接收探头的电源。

2.1.1.2 电源插座

电量不足时给设备充电:将随机配备的充电器的输入插头连接 200~240V 交流电源、输出插头接入此口,为仪器供电,同时为内部电池充电。

2.1.1.3 工作指示灯

用来标识当前设备的工作状态,指示灯为绿色时表示工作正 常,变为橙色时表示电量低,需要及时充电。

注意:工作指示灯为橙色时,表示电量过低。必须插入电源充电,否则会影响设备正常工作。

2.1.1.4 方向指示灯

用于指示发射探头所在方位,从而指示接收探头的移动方向。 接收探头共有前、后、左、右四个指示灯,测试时,将与电源插

8

座同侧的指示灯朝前(此即为前指示灯)。

方向指示灯有以下种状态:

- 1) 一个指示灯亮:指示接收探头朝亮灯的方向移动;
- 2) 两个指示灯亮:指示接收探头朝两灯夹角的方向移动;
- 3) 四个指示灯亮:指示接收探头已到达发射探头正上方区 域;
- 4) 四个指示灯全灭:指示接收探头超出测试范围。

2.1.1.5 柔性接头

用于与延长杆连接。

2.1.1.6 平板电脑

接收探头可以与安装有 Android4.0 及以上操作系统的 PAD (如图 2.3 所示)配合使用,用于接收采集到的数据并进行显示、分析、存储。

图 2.3 平板电脑

注意:实际的 PAD 可能与示意图有所差别,请以实物为准。

2.1.2 配件

2.1.2.1 充电器

发射探头、接收探头、平板电脑均配有充电器,充电时将充 电器的输入插头连接 200~240V 交流电源、输出插头接入仪器的 电源插口可供电,同时为其内部电池充电。平板电脑的充电详见 其说明书。

2.1.2.2 延长杆

10

图 2.4 延长杆

延长杆主要用于与接收探头、发射探头相连,可根据楼层的 高度调整其长度。延长杆一般由多节组成(如图 2.4 所示),,使 用前请根据需要将其首尾相连,然后与发射或接收探头通过顶部 的柔性接头相连,必须将螺纹旋紧,以使连接牢固。使用完后先

11

将探头拧下,然后将延长杆再拆卸成单节。

2.1.2.3 对讲机

由于现场检测时,发射探头在楼板的底面,而接收探头在楼 板的顶面,测试人员必须通过对讲机进行交流,以便迅速找准测 量区域。

2.1.2.4 其他附件

详见仪器装箱单。

2.2 楼板厚度检测原理

图 2.5 测试原理图

仪器利用电磁波幅值衰减的原理来测量楼板厚度。发射探头 发射出稳定的交变电磁场,根据电磁理论,电磁场的强度随着距 离衰减,接收探头接收电磁场,并将电磁场的强度值通过无线发 送给主机,主机根据接收到的信号强度值实时计算楼板的厚度并

进行显示、存储。

12

测量时,发射探头置于被测楼板的一面(即底面),并使其表面与楼板贴紧;接收探头置与被测楼板的另一相对面(即顶面),如图 2.5 所示,接收探头在发射探头对应的位置附近移动,寻找当前厚度值最小的位置,楼板厚度值即是上述过程中的最小值。

第3章公用模块介绍

3.1 输入方法

在本软件中,多处用到字符及数字的输入、选择性输入等, 为避免重复描述,在此先进行统一介绍。

3.1.1 字符及数字的输入

在需要输入字符(如工程名称、构件名称等)时,点击其后的编辑框,则弹出图 3.1a 所示软键盘(系统自带)。同时可能会 弹出图 3.1c 所示浮动输入框,标题栏显示待输入的项目名称,编 辑框中则显示当前字符。

操作方法如下:

- 点击某一字符或数字所在按钮,则在上面的编辑框中逐 一显示所点字符或数字;
- 若要在已输入字符的某一字符前插入一个字符,则首先 点击该字符的前面位置,将光标插入其前面后再点击要 插入的字符即可。
- 点击<
 钮,则删除光标位置前面的一个字符;在中文输入时,先删除拼音字母,拼音字母删除完后,再删除编辑框中的字符。长按
 钮可以快速删除。
- 4) 点击[▲]钮,则切换到大写状态,点击任一字符后自动切 换到小写状态;若想锁定大写状态,则双击[▲]钮。

13

14

		$\langle 1 \rangle$	ŧ	拼音▼	英	文 文	:	
q	2 W	e B	r ⁴	t s	° y	U T	° I	о р о
	ã s	s c	k l	f (g H	3 1	j k	Ì
	Z	×	Č	- v	b	n (m	$\langle \times \rangle$
123	En 中	!					? •	◎ 符 下一项

a)英文字母

		<	[>		拼	音		英	文 ▼		3		\sim
1	2	Γ	3		4	5	Ι	6	7	,	8	9	0
	!	@	Γ	#	\$		%		&	*	;	()
符	,	Ι	/		-	_	Ι	:	;		?	<	×
	返回					_		_			,	下—	项

b)字符及数字

图 3.1 字符软键盘

5) 点击中钮,则切换至中文输入状态,同时,该按钮变为 En,此时可以用拼音输入汉字。输入拼音后,在顶部显

示待选汉字(待选汉字较多时,可以点击)钮显示其他 汉字),点击要输入的汉字所在的位置即可输入该汉字; 点击En钮,则该按钮变为中,恢复至图3.1a所示状态。

- 6) 点击下一项钮,则输入有效并跳到下一个编辑框;
- 7) 点击 2 钮,则关闭软键盘。

3.1.2 选择性输入

3.1.2.1 下拉列表选择

当某些项目的值有多个可选项时,其后会出现一下拉列表控件,如:^{五号},此时点击此控件右边的▼钮,则会在下拉列表中列出所有选项,点击某一选项即可。

3.1.2.2 单选按钮

当某些项目的值仅有两个可选项时,其后会出现单选按钮, 如: ^{200%},此时点击此钮即可选中该项。

3.1.2.3 复选框

当某些项目的值仅有是、否两个可选项时,会以复选框出现, 如: □ [|]梁A_1,此时点击该复选框,在其前面的方框中出现"√" 则表示选中该项。

3.2 文件管理

文件管理主要用于查看已测的检测现场及构件文件,并可选 择检测现场或文件后复制到 U 盘或进行删除。

在软件主界面点击文件钮,则弹出如图 3.2 所示的文件管理

15

界面,包含<mark>文件、FTP 上传、数据上传日志</mark>三个属性页。

3.2.1 文件列表

*			文件			
白 文件	检测现场	文件	文件名称	创建时间	上传时间	
ID FTP上传	test	4个	000005	16-08-22 10:22		
	testyy	1个	000004	16-08-22 10:21		
小」数据上传日志			000003	16-08-22 10:21		
			000002	16-08-18 15:45		ľ
■ 已用空间: 6% ■ 可用空间: 94%	打开		删除		上传	

a)检测现场及文件列表

图 3.2 文件管理界面

b)数据查看

在文件管理界面点击左侧的文件钮,则在界面右侧列表显示 已测检测现场及文件,如图 3.2a 所示,界面左半部分为检测现场 列表,右半部分为当前检测现场中的所有文件列表,界面下部为 功能按钮区。

3.2.1.1 操作方法

- 点击检测现场列表中的某一检测现场后,在右边显示该 检测现场中所有的文件;点击文件列表中的某一文件所 在行,则选中该文件。
- 点击列表表头可以排序,不同列的排序方法不同,名称 列按字母排序,时间列按时间先后排序,文件大小列按 文件大小排序,多次点击可切换升序和降序两种排序方 式。
- 点击列表表头的第一列的复选框,可以勾选所有检测现 场或构件文件。
- 在检测现场或文件列表中点击某一检测现场或文件前面 的复选框,则可以勾选该检测现场或文件;点击需要选 择的检测现场或文件即可勾选多个检测现场或文件。
- 5) 当列表中的内容超过一屏时,会在列表框的右侧出现竖 向滚动条,拖动滚动条则可以翻屏,也可以在列表区域 上、下滑动进行翻屏。

3.2.1.2 查看数据

在文件列表区选中一个文件后双击,则显示该文件中保存的 测试数据及其统计信息,如图 3.2b 所示。

点击数据列表区左上角的 🤝 钮,则可返回文件列表页面。

3.2.1.3 打开文件

在文件列表区选中一个文件后点击打开钮,则将所选文件打 开并返回至主界面,显示该文件中存储的数据等。当未选择文件 时,打开钮无效。

3.2.1.4 检测现场及文件的删除

勾选一个或多个检测现场后点击删除钮,则将所选检测现场 及其中的所有文件删除;若勾选一个或多个文件后点击删除钮, 则将所选文件删除。当未勾选检测现场或文件时,删除钮无效。

删除检测现场或文件之前均会询问"是否要删除所选检测现场或文件吗?",按是钮则删除,否钮则不删除。

《《《》注意:数据删除后将无法恢复!删除之前应确保待删除的数据已经备份到计算机上。当一个检测现场下的所有文件均删除后,则自动将该检测现场删除。

3.2.1.5 文件的上传

18

在检测现场列表中勾选一个检测现场,点击上传钮,则将该 检测现场中所有文件上传至检测管理系统。

在文件列表中勾选一个或多个文件,点击上传钮,则将所选 文件上传至检测管理系统。

当未勾选检测现场或文件时,上传钮无效。

《《《》 注意:检测管理系统是北京智博联公司开发的一套用于 对无损检测全过程进行管理的系统,只有购买了该系统的用户才

可以将检测数据上传,详参该系统的使用说明书。

3.2.1.6 返回

点击 钮,则退出文件管理,返回至主界面。

3.2.2 FTP 上传

该功能用于将已测试的检测现场及构件文件上传到 PC 机上。 在文件管理界面点击左侧的 FTP 上传钮,则在界面右侧显示如图 3.3 所示对话框,可以设置局域网内待访问的用户名、密码等信息。

*	FTP上传	
亡 文件	局域网FTP服务	
U FTP上传	用户名 zbl	
	密码 1234	
	服务器状态 运行中	
	URL: ftp://192.168.1.136:2121/	
	Wifi状态 bjzbl	
	停止	
■ 已用空间: 6% ■ 可用空间: 94%		

图 3.3 FTP 上传

3.2.2.1 用户名及密码

设置客户端(局域网内的计算机)访问 PAD 中数据时使用的用户名及密码,此项为必填项,FTP 客户端登录时需要校验该用户是否有权限访问数据。

注意:缺省的用户名为:zbl,密码:1234。

3.2.2.2 服务状态

局域网 FTP 服务未启用时,服务状态显示"已经停止";若 FTP 服务启用后,显示"正在运行"。

3.2.2.3 访问地址

计算机端通过链接访问地址,可查看并下载测试的数据。

在局域网 FTP 服务未启用时,访问地址显示为"--"; FTP 服务启用后,访问地址显示格式为: <u>ftp://xxx.xxx.xxx.xxx.xxx/</u>, 如 ftp://192.168.1.220:2121/。

3.2.2.4 Wifi 状态

Wifi 状态显示当前连接的网络名称,无连接时显示为"不可用"。点击连接的网络名称,如"zbl-1"即可进入网络设置界面,选择要使用的网络连接。

注意: FTP 是 Internet 上用来传送文件的,常用的工具有: FTP 软件,IE 浏览器、资源管理器等,启动 FTP 服务时必须使用局域网网络,否则无法生成访问地址。

3.2.2.5 拷贝数据

设置完后点击开始钮,则系统自动生成该局域网的计算机访问地址,服务状态显示"正在运行",此时在局域网内任意计算机上打开资源管理器,并在其地址栏中输入访问地址(如:

ftp://192.168.1.136:2121/)并回车确认,则弹出对话框要求输入用户名及密码(图 3.3 中所设置的用户名及密码),输入正确后点击确定钮,则可查看设备存储卡中的工程文件夹及文件,如图 3.4 所示。

🔄 ftp://192.168.1.162:21	21/ - ∎icrosoft	Internet E	
文件(E) 编辑(E) 查看(V) 收	藏 (A) 工具 (T) 帮助	1 (H)	
🔇 后退 🔹 🕥 🕘 🏂 🔎	搜索 🕞 文件夹 [TII- K Folder S	Sync
地址 (1) 👰 ftp://192.168.1.162::	2121/	•	🖌 🔁 转到
文件夹 ×	名称 🔺	大小	类型
 ● 桌面 ● 表的文档 ● 表的文档 ● 表的文档 ● 表的文档 ● 表的文档 ● 表的文档 ● 初上邻居 ● 回收站 ● 0901 ● bosskey ● CF210x_Windows_Drivers ● CSharpUpload ● 例 DataSPTrans 	☐8-31-1 ☐9-1 ☐9-1-2 ☐ test		文件夹 文件夹 文件夹 文件夹
<	<		>
	用户: zbl	😜 Internet	

a)文件夹列表

b)文件列表

图 3.4 使用 FTP 拷贝数据

22

在源管理器中选中需要拷贝的检测现场(文件夹)或构件文件,然后进行复制、粘贴就可以将仪器内部的数据拷贝到计算机中。

3.2.3 数据上传日志

在文件管理界面点击左侧的数据上传日志钮,则在界面右侧 显示数据文件上传检测管理系统的日志,包括检测人员、备案号、 文件名称、上传时间等信息,如图 3.5 所示。

			数据上传日志				
	文件	检测人员	备案号	文件	结果	上传时间	
IJ		llm	000001	test/9-2-1.ZTW	已存在	16-09-07 17:46:08	
		llm	000001	test/000009.ZTW	已存在	16-09-07 17:46:08	
$[\uparrow]$	数据上传日志	llm	000001	test/0903_flood_2. ZTW	已存在	16-09-07 17:46:07	
		llm	000001	test/9-3-3.ZTW	已存在	16-09-07 17:46:07	
		llm	000001	test/9-3-2.ZTW	已存在	16-09-07 17:46:07	
		llm	000001	test/9-3-1.ZTW	已存在	16-09-07 17:46:07	
		llm	000001	test/0000012.ZT W	已存在	16-09-07 17:46:07	
_		llm	000001	test/0000011.ZT W	已存在	16-09-07 17:46:07	
	己用空间: 7% 可用空间: 93%	llm	000001	test/0000010.ZT W	已存在	16-09-07 17:46:07	

图 3.5 数据上传日志

选中一条日志时长按,会弹出<mark>删除</mark>功能按钮,确定后可将当 前选中的日志手动删除。

第4章 楼板厚度检测软件

4.1 软件简介

楼板测厚软件主界面,如图 4.1 所示,该界面主要由以下三部分组成:标题栏、功能按钮区、雷达图区。

图 4.1 楼板测厚软件主界面

1. 标题栏

位于界面的顶部,左侧显示仪器型号;右侧从左至右依次显 示蓝牙连接状态、PAD 电量。

当探头的蓝牙未配对时,蓝牙图标会不停闪烁,等待配对; 配对成功后蓝牙图标停止闪烁。

2. 功能按钮区

功能按钮区停靠在界面的右侧,主要由参数设置、厚度测量、 文件管理、保存文件等一系列功能按钮组成,如图 4.1 所示,每 个按钮可以实现一个常用功能,当按钮颜色呈置灰状态时表示当 前状态下该功能无效。

3. 雷达图区

位于主界面的左半部分,切分为五个小区域,分别显示不同 的内容:

- 1) 左上角显示当前检测现场、构件名称、设计厚度;
- 右上角以进度条方式显示磁场信号的强度,指示条越长, 信号值越大,厚度越小,反之信号值越小,厚度越大。
- 中心显示雷达图,在测试过程中,会显示放射状的光束 指示移动方向,同时靶心会显示当前的厚度值(即信号 值对应的厚度值),当接收探头进入发射探头的正上方区 域附近时,靶心会显示高亮的白色圆圈。
- 4) 左下角显示已保存到内存的测量数据总数;
- 右下角显示当前测点的判读厚度值,也就是当前测点的 厚度最小值。

4.2 软件功能介绍

本软件主要有文件管理、参数设置、厚度测量、数据保存等 多项功能,在本章将对其进行详细介绍。

24

4.2.1 文件管理

在软件主界面点击文件管理按钮,则进入文件管理界面,可 查看、上传、删除已测的检测现场及文件,详参 3.2 节。

4.2.2 参数设置

在主界面右侧的功能按钮区,点击参数设置钮,弹出如图 4.2 所示界面,包括楼板参数、评估参数、设备参数、关于我们四个 属性页,每一参数的缺省值为上一次设置的值。

设置参数后所设参数实时生效,所有参数设置完毕后,则返 回主界面可进行测试。

4.2.2.1 楼板参数

◆			楼板参数		
\oplus	楼板参数	检测现场:	test	新建	
\mathbb{O}	评估参数	构件名称:	000002	新建	
X	设备参数	构件类型:	- 现浇板 ▼	测点位图	
		设计厚度:	50	mm	\bigcirc
W		楼号:	5		
		单元号:	2		\bigtriangledown
		楼层:	1		
		1 自动上传	到检测管理系统	网络不再提示	>

图 4.2 参数设置 - 楼板参数

1. 新建检测现场

点击检测现场编辑框后的新建钮,则弹出输入框及字符输入 软键盘,输入工程名称后,将以检测现场名称创建文件夹,其后 测试的所有构件的文件均保存在此文件夹中。创建文件夹时,若 发现同名检测现场已存在,则提示"该检测现场已存在,是否合 并?",选择是钮,则合并,选择否钮,则弹出检测现场名称输入 框要求重新输入检测现场名称。

2. 新建构件

当测试完一个构件后,要测试下一构件时,可以点击构件名称后的新建钮,则会自动弹出对话框及字符软键盘,输入待测构件的名称。

输入构件名称后,如果发现同名构件,则提示"构件已经存 在",点击确定钮,则弹出软键盘让用户重新输入。

3. 测点位置示意图

点击<mark>测点位图钮,弹出如图 4.3 所示界面,用户可以设置待 检测楼板的测点位置示意图。可进行以下操作:</mark>

- 1) 点击长宽设置钮,弹出对话框输入待测构件的截面尺寸;
- 2) 在界面上点击任意位置,则出现一个小圆点(此圆点即 为测点),同时会在当前点坐标处显示其坐标值;
- 3) 如果要删除某一测点,可以按住该圆点后斜向滑动即可;
- 4) 点击清空钮,则将图中所有圆点删除。

图 4.3 测点位置示意图

4. 选择构件类型

点击<mark>构件类型</mark>后的下拉列表框,在列出的构件类型中选择一 种即可。

《《李注意:构件类型的选择将与合格判定相关。

5. 设计厚度

点击<mark>设计厚度</mark>后的编辑框,在弹出的软键盘中输入实际的楼 板设计厚度值即可。

《《李注意:设计厚度主要用于判定测试厚度是否合格。

6. 楼板位置信息

点击<mark>楼号、单元号、</mark>楼层后的编辑框,在弹出的软键盘中输入相应参数即可。这些参数主要用于记录被测楼板的相关信息。

7. 其他参数

如果用户使用了我公司开发的工程检测管理系统进行数据的 实时上传及管理,在现场检测时,可以勾选"自动上传到检测管 理系统"项,则在检测完一个构件后,会自动将检测数据上传到 管理系统。不勾选该项,则不自动执行数据的上传。

如果勾选"没有网络不再提示"项,则在找不到网络的情况 下不会弹出提示信息,否则会弹出相关提示。

•			评估参数						
\oplus	楼板参数	构件类型	允许下偏差(mm)	允许上偏差(mm)					
B	评估参数	现浇板	-5	8					
	PT IN 22 3A	现浇墙	-5	8					
X	设备参数	现浇梁	-7	10					
0	关于我们	现浇柱	-5	8					
		预制板	-5	5	_				
		预制墙板	-5	5					
		预制梁	-7	10	>				

4.2.2.2 评估参数

图 4.4 参数设置 - 评估参数

点击评估参数标签,则切换到该属性页,如图 4.4 所示,可 以设置不同构件类型的评定标准(允许上偏差、允许下偏差)。点 击缺省值钮,则将所有参数恢复成出厂时的值。

这些参数主要用于判定测试厚度是否合格,一般无需经常设

置,设置好后即可始终不变。

4.2.2.3 关于我们

此模块的主要功能是对仪器内部的软件及相关文件进行自动 更新。

点击关于我们标签,则切换到该属性页,如图 4.5 所示,显 示当前软件版本信息及修改记录。

•		关于我们			
\bigoplus	楼板参数	版本信息	V2.0.026-20160908		
\mathbb{O}	评估参数	软件升级	检测新版本		
X	设备参数	修改记录:			
	关于我们	版本: V2.0.026-20160908 1、将合格率以及平均厚度的精度修改为小数点后一位;			
		版本: V2.0.025-20160907 1、在检测人员登陆界面登陆服务器时增加等待进度框;			
		版本:V2.0.024-20160907 1、修改了更新程序放在亦庄服务器的位置;			
		版本: V2.0.023-20160907 1、从未连接过蓝牙时,不自动重连;			

图 4.5 关于我们

当平板电脑连接到 Internet 之后,点击检查新版本钮,如果 发现新版本,则提示"检测到新版本,立即更新吗?",点击现在 更新钮,启动新版本下载,下载完成后点击完成钮就可启动新版 本的安装;点击下次更新钮则不升级。

4.2.2.4 设备参数

点击设备参数标签,则切换到该属性页,如图 4.6a 所示

•		设备参数		
⊕	楼板参数	仪器型号: ZBL-T730		
Ø	评估参数	仪器编号: T31605031		
×	设备参数	蓝牙名称: T31605031		
0	■====================================			
-		曲线方程: 1		
			<	
		重新获取仪器信息 厚度校准		

a) 仪器信息

	J.	厚度校准		
实际值(mm)	测量值(mm)	实际值(mm)	测量值(mm)	
50	50	100	100]
150	150	240	240]
260	260	400	400	
600	600	800	800	
请保持蓝牙设务协	于开机状态。勿	关闭蓝牙设备!		
修改校准			退出	
			~ 1	

b) 厚度校准

图 4.6 参数设置 - 设备参数

1. 获取仪器信息

点击重新获取仪器信息钮,可以获取仪器编号、蓝牙名称、 固件版本等信息,如图 4.6a 所示。

2. 厚度校准

点击厚度校准钮,弹出如图 4.6b 所示厚度校准界面。

厚度校准值出厂都已设置好,如果发现实际测量误差很大,可以用校准试块对其进行校准,根据实际测量值进行输入,然后 点击修改校准值,弹出密码浮动输入框,输入完密码"123456", 点击确定钮则修改校准值,点击取消钮则退出。

4.2.3 开始测试

4.2.3.1 建立连接

图 4.7 蓝牙设备列表

在开始测试之前, PAD 须先与接收探头建立连接:点击界面 右上角的聲图标,则进入蓝牙设备列表界面(如图 4.7 所示),选 中要使用的接收探头(如: T31511001),即可进行连接,连接 成功后,返回到主界面,返回到主界面,右上角显示 PAD 的电池 电量及聲图标;若连接失败,则聲图标不停闪烁,提示用户未连接 成功。

如果蓝牙设备列表中未列出待连接的接收探头,则点击搜索 其它蓝牙设备钮,系统会自动搜索其它蓝牙设备,搜索到设备后, 选择要配对的设备,完成配对后,蓝牙图标将停止闪烁。

₩ 注意:

- 只有与接收探头连接成功才可以正常采集数据,否则无 法正常测试。
- 2) 接收探头在蓝牙设备列表中的名称为"T3+批次编号"
 (如T31511001),连接时密码为:1234。
- 3) 如果标题栏右侧的³图标一直闪烁,则表示未建立连接, 须查看接收探头是否打开。
- 如果 PAD 与接收探头曾经配对成功过,则在进入软件 时,会自动配对。

4.2.3.2 厚度测量与停止

32

接收探头与平板电脑建立连接成功之后,测试人员将发射探 头用延长杆顶在楼板底面某测点位置,另一测试人员在楼板顶面 将接收探头移动至发射探头正上方半径1米以内的位置。

a)动态测量

b)停止测量

图 4.8 信号采集

点击厚度测量钮,在测厚软件的雷达图区会实时显示当前厚度值 (如图 4.8a 所示),将接收探头与充电插座同侧的方向指示

灯朝前,根据指示灯或者雷达图的指示移动接收探头,当接收探 头的四个方向指示灯全亮(或者雷达图区的靶心高亮)时,表示 接收探头已经进入发射探头正上方区域,此时缓慢移动接收探头, 找到厚度的最小值,如图 4.8b 所示。在自动判读模式下,仪器会 自动锁定最小值作为厚度值,并自动保存到内存;手动判读模式 下,在找到人为判断的最小厚度值后需点击雷达图区的靶心位置 或点击保存测点钮以保存该厚度值到内存。

在测试并保存一个测点后,将发射探头移到下一个测点,重 复上述步骤即可。如此反复,直到测试完当前构件的所有测点, 点击停止测量钮,则停止测量。

注意:判读模式包括自动判读、手动判读两种,缺省为
 手动判读。点击
 手动判读钮,则切换到手动判读模式,按钮变为
 自动判读钮。

4.2.3.3 文件的保存

测试完当前构件的所有测点后,点击保存文件钮则可将当前 构件的所有测试数据保存为文件。文件被保存在以当前检测现场 名称创建的文件夹下,文件名称为构件名称。

注意:在测试过程中,测试数据仅保存到内存,必须点击保存文件钮才会将测试数据以文件形式保存到 SD 卡;如果不点击保存文件钮而强制退出软件,数据将会丢失。

4.2.3.4 测试下一构件

测试完一个构件后,如果要测试下一构件,则必须先新建构 件,新建构件有两种方式:

34

- 在主界面右侧的功能按钮区点击新建构件钮,弹出图
 4.9所示的对话框,输入新的构件名称、设计厚度等后
 确定即可;
- 点击主界面的参数设置钮进入楼板参数界面,点击构件
 名称后的新建按钮,详参第4.2.2.1节。

78L-T730		20				중 ≵ 🔲	
	构件名称:	000002	构件类型:	现浇板	-	~ //	
检测现场: te 构件名称: 0(设计厚度:	50	楼号:	5		退出	
夜灯厚度. つ	单元号:	2	楼层:	1		参数设置	
		取消		确定		新建构件	
							\bigcirc
	<[>	拼音▼	英文		\odot		
1 2 Q W	e e	r t	⁶ y	7 U	⁸ İ	° ° p	
ã	s d	l f	g h	*j	k	Ì	\sim
↑ Z	- ×	Č V	b	'n	m	$\overline{\mathbf{X}}$	
123 ^{En} 中	1			?		◎ 符 下一项	>

图 4.9 新建构件

系统会自动将当前数据清除并新建文件,在清除前会检查当 前数据是否已保存。如果发现当前数据未保存,则会弹出提示框 询问"当前测试数据未保存,是否保存!",点击是钮,则保存弹 出新建构件名称浮动窗口;点击否钮,则不保存弹出新建构件名 称浮动窗口,点击取消不保存不弹出新建构件名称。

在新建构件后,点击厚度测量钮即可进行测试。

4.2.3.5 退出

点击主界面的退出钮,则退出测试主界面。

注意:在退出软件时,会检查当前文件是否已保存。如 果发现当前文件未保存,则会弹出提示框询问"当前测试数据未 保存,是否保存?",点击是钮,则保存;点击否钮,则不保存; 点击取消钮,则关闭提示框,不进行其他操作。

4.3 快速操作指南

4.3.1 测试前准备

4.3.1.1 布置测点

按照规范的要求,在待测构件表面选择若干测点,对测点进 行编号并记录测点位置(平面示意图)。

测点应尽量远离钢梁等大体积金属物体,距离大于 10cm 以上。要求测试面应为混凝土原浆面,并应清洁、平整,不应有浮浆以及麻面。

4.3.1.2 连接探头与延长杆

根据现场环境,组装两段合适长度的延长杆。将组装好的两 段延长杆分别与发射探头、接收探头顶部的柔性接头相连,确保 连接牢固。

4.3.1.3 开机

36

按下发射、接收探头的电源开关约1秒钟,发射探头启动后 电源指示灯亮;接收探头启动后电源指示灯亮,约2秒后方向指

示灯顺序点亮,随即熄灭。

按下主机(平板)的【 ^① 】键启动平板,进入 android 桌面。在桌面点击"楼板厚度检测"图标进入测试软件主界面,同时软件会自动与接收探头建立连接,连接成功后,主界面右上角^多图标停止闪烁,详参 4.2.3.1 节。

4.3.2 新构件的测试

4.3.2.1 参数设置

在主界面点击参数设置按钮,弹出参数设置对话框,在楼板 参数属性页输入检测现场名称、构件名称、设计厚度等参数,评 估参数属性页的所有参数均可不进行设置而直接采用默认值,设 置完成后,点击标题栏顶部左侧的 钮返回至主界面。详参第 4.2.2 节。

4.3.2.2 厚度测量

- 测试人员将发射探头用延长杆顶在楼板底面某测点位置, 另一测试人员在楼板顶面将接收探头移动至发射探头正 上方半径1米以内的位置;
- 点击厚度测量钮,在测厚软件的雷达图区会实时显示当前厚度值;
- 将接收探头与充电插座同侧的方向指示灯朝前,根据指示灯或者雷达图的指示移动接收探头,当接收探头的四个方向指示灯全亮(或者雷达图区的靶心高亮)时,表示接收探头已经进入发射探头正上方区域;

- 缓慢移动接收探头,找到厚度的最小值。手动或自动判 读后将该值保存到内存。
- 5) 将发射探头移到下一个测点,重复第1至4步。
- 6) 重复第1至5步,直到测试完当前构件的所有测点,点击停止测量钮,则停止采集。
- 7) 点击保存文件按钮,将当前构件的测试数据保存到文件。

至此即完成一个构件的厚度测试,重复以上步骤对其他构件 进行测试,直到测试完所有构件。详细测试过程参见第4.2.3节。

4.3.3 数据后处理

完成现场测试之后,可将保存在仪器内部的检测数据通过 FTP 上传到计算机中,用 Windows 平台下的楼板测厚数据处理 软件对所有检测数据进行分析处理并出具检测报告。详参《楼板 测厚数据处理软件使用说明书》。

4.3.3.1 数据分析处理

- 通过 ftp 将仪器中的检测现场文件夹及其所有文件拷贝 到计算机中。
- 运行"楼板测厚数据处理软件"。如果没有安装该软件, 请先从随机附带光盘中找到安装文件或从我公司网站的 "下载中心"下载该软件的安装文件,然后进行安装。
- 选择文件→打开文件菜单项,在弹出的"打开文件"对 话框中找到待处理的数据文件,点击打开钮,则将该文 件打开并在界面上显示测试数据列表、折线图等。

39

- 4) 如果需要,可以重新设置设计厚度、构件信息及评定参数等,设置完后,点击评定→单件评定菜单项。
- 5) 点击文件→保存菜单项将处理后的数据文件保存。
- 6)选择文件→生成位图菜单项,将当前文件中所有构件的 测试结果保存为图片。
- 7) 选择文件→打印菜单项,将所有构件的测试结果打印输出。
- 8)选择<u>工具→生成报告</u>菜单项,可以自动生成检测报告的 初稿,将结果图片文件插入到报告中,即完成检测报告。

4.3.3.2 数据删除

在分析完所有数据确认没有问题之后,即可将 PAD 内部的 数据删除掉,以节约磁盘空间。

进入楼板测厚软件界面,点击文件管理钮进入文件管理界面, 勾选待删除的检测现场,然后点击删除钮,则将所选检测现场及 其中的所有文件删除。详参第 3.2.1 节。

附录1 现场检测时的注意事项

在利用 ZBL-T730 楼板厚度检测仪进行现场检测时,为了使 检测结果更加准确,应该遵循一定的检测方法及原则,否则就会 出现较大的偏差。在检测中应该注意以下事项:

- 延长杆与发射、接收探头联接牢固,以确保发射、接收 探头在使用过程中不会从高空跌落,导致发射、接收探 头的损坏。
- 测试过程中,应该确保发射探头表面始终紧贴被测构件
 (楼板等)的测试面,否则测试值会产生误差。
- 测试过程中,应确保接收探头与发射探头电量充足,否则也可能产生误差。使用时如果探头电量不足,其工作指示灯为变为红色,此时应尽快采用外部电源供电。此外,如果边充电边测试,则测试值会产生误差。
- 4. 现场测试时,测量点应尽量避开钢筋。当被测构件中的 钢筋与发射探头表面平行(如图 F1.1a 所示)且在发射 探头上方时,钢筋距离发射探头表面越近,则影响越大 (测试值偏大)。当被测构件中的钢筋与发射探头表面垂 直(如图 F1.1b 所示)且在发射探头上方时,钢筋距离 发射探头中心位置越近,则影响越大(测试值偏小)。试 验表明,垂直钢筋的影响较平行钢筋的影响要大得多, 所以测量点位置绝对不能存在垂直钢筋。当发现某测点 的测量值与其他测点的值(或设计厚度值)相差较大时,

则可能是垂直钢筋的影响,应该换一个测点进行测试。

a)钢筋平行于发射探头表面 b)钢筋垂直于发射探头表面

图 F1.1 钢筋与发射探头的位置图

- 5. 现场测试时,测量点应尽量远离电线。
- 6. 现场测试时,测量点应尽量远离其他铁磁介质。
- 避免在强磁场环境下使用,如大型电磁铁、变压器、电 焊机等附近。
- T730 楼板厚度检测仪使用的环境温度应该为 0℃ ~
 40℃,如果环境温度超出此范围,则厚度检测值可能会 有误差,特别是测试厚度大于 400mm 的构件时,环境 温度的影响较大。
- 9. 对某一个测点进行测量时,最好遵循以下步骤:

1) 确定测量区域

测量时,测试人员持主机和接收探头在被测楼

板上方,另一人持发射探头在被测楼板下方,测试 人员通过对讲机通知下方人员将发射探头支撑在 被测楼板上,使探头表面与楼板下表面(底面)贴 紧;测试人员在发射探头对应的位置附件移动接收 探头,观察信号值变化,当出现信号值时,表示接 收探头已进入测量区域(接收探头位于发射探头正 上方半径1米以内的位置)。

2) 快速定位

在测量区域内,将接收探头与充电插座同侧的 方向指示灯朝前,根据指示灯或者雷达图的指示移 动接收探头,当接收探头的四个方向指示灯全亮 (或者雷达图区的靶心高亮)时,表示接收探头已 经进入发射探头正上方区域。

3) 精确定位

42

缓慢移动接收探头,找到厚度的最小值,此时 判读厚度值即是楼板厚度测量结果。

电话: 010-51290405 传真: 010-51290406 网址: http://www.zbl.cn 版本: Ver2.0-20160912

