
TR-5000 Series F Test Language 1/86

Better Testing Better Quality ©Test Research, Inc.

TR-5000 Series

程式語言

Test Research, Inc.
April, 2004

TR-5000 Series F Test Language 2/86

Better Testing Better Quality ©Test Research, Inc.

Overview.. 3
Terminology .. 4
Test Program Structure.. 5

Identifier... 6

Data Types .. 8

Constants .. 9

Variable Declarations... 10

Operators .. 10

Expressions... 13

Statements .. 14

Analog Testing.. 15
Analog Test Statements... 16

Digital Testing ... 18
UUT Pin Definitions ... 18

Nail State Specification Routines... 20

Digital Test Keywords .. 21

Digital Test Statements .. 22

Non-Test (Utility) Keywords... 47
Utility Statements... 48

Functional Instrumentation Statements ... 71
GPIB Statements ... 72

RS-232 Statements ... 79

TR-5000 Series F Test Language 3/86

Better Testing Better Quality ©Test Research, Inc.

Overview
The TR-8000 series test language is high-level and similar to the C programming
language. A test program can be primarily divided into three sections,

The header section consists of UUT part definition, pin assignments, global
constant definitions, and global variable declarations,
The function definition section consists of table allocations and user-defined
routine definitions,
The main execution section consists of a sequence of test language statements
that defines the plan of a test to be performed. The beginning of this section is
the sole entry point of a test being run.

Like C, all test language statements are primarily composed of routines, expressions,
and control-flow commands that direct the order in which statements are performed. A
minor difference is statements are categorized as two types, digital test statements
and utility statements. A digital test statement (test step) exclusively consists of nail
state specification routines forming digital test patterns, test-specific looping and
branching commands, and fail flag routines used to identify fail types for further
implementation Otherwise, statements are utilities for test fail examination, test data
process, test plan control, etc.

Routines break large tasks with different functions into smaller ones, thus clarifying
the whole program and easing the pain of making changes. A routine consisting of a
sequence of digital test steps is a test block or sub-block and called only in the main
program or within a test block. A routine utilized to perform computations other than
digital tests is a subroutine and can be called within other subroutines or in the main
program. The TR-8000 series test language also provides standard routines such as
nail state specification routines, fail examination routines, table data manipulation
routines, file access routines, and so on, for executing digital test patterns and
processing test data and results in programmer-defined test blocks and utility
subroutines.

TR-5000 Series F Test Language 4/86

Better Testing Better Quality ©Test Research, Inc.

Terminology
The following terms are used to indicate specifically syntactic meanings in syntax
descriptions of entire manual.

� All boldfaced style words are reserved in the test language.
� The syntactic items surrounded by left and right brackets ([]) may be omitted or

included only one time.
� All syntactic items delimited by slashes (/) can be applied to the syntax

associated.
� The syntactic items, which are sentences enclosed by < and >, are a list of

syntactically identical statements.
� The syntactic items, which are composed of hyphenated words, are terminal

symbols. A terminal symbol could be an identifier, a constant value, or a literal.
� All symbols not listed above in syntax statements are delimiters in the test

language.
� The test language is case-insensitive.

TR-5000 Series F Test Language 5/86

Better Testing Better Quality ©Test Research, Inc.

Test Program Structure
The skeletons of a test program are depicted as follows:

PROGRAM program-name ;

[PART device-part-name ;]

[INPUT / OUTPUT / BIDIR <pin specifications list>]

[GROUP <group assignments list>]

[CONST <constant definitions list>]

[VAR <variable declarations list>]

[<table declarations and definitions list>]

[<digital test block declarations and definitions list>]

[<non-test subroutine declarations and definitions list>]

MAIN

<statements list>

END .

TR-5000 Series F Test Language 6/86

Better Testing Better Quality ©Test Research, Inc.

Identifier
An identifier is a sequence of letters and digits of any length. The first character must
be a letter, and the underscore “_” counts as a letter. Identifiers are case-insensitive,
for example, INTVAL and IntVal are identical identifiers. The test language
reserves the following identifiers for specific use as Keywords, and must not be used
otherwise.

BIDIR BINARYFILE BLOCK BLOCKSUB

BOM BYTE CHAR CONST

DLY DO DOWNTO ELSE

END EXPECT FL FLM

FLOAT FOR G1 G2

G3 G4 G5 GOTO

GROUP HIN HLIM IF

INPUT INTEGER JF JP

LLIM LON LOOP LPT

MAIN MEAS MODE OFFSET

ON OUTPUT PART PROGRAM

RPT SUBROUTINE TABLE TABLEPTR

TEXTFILE THEN TO VAR

WHILE

The test language also reserves the following identifiers as Standard Routines
(routines written by another high-level language instead of the test language and
embedded in TR-8000 series system), and must not be used.

CLOSE DATE DG DH

DL DX FAIL FAILCLR

FLAGFAIL FLAGTESTFAIL KDOFF KDON

LOADBYTE LOADTABLE MC MD

MDLY MJ ML MQ

MR MV OPEN READ

READLN RESULTTABLE SAVEBYTE SAVETABLE

SG SH SL SX

UDLY USETABLE WRITE WRITELN

TR-5000 Series F Test Language 7/86

Better Testing Better Quality ©Test Research, Inc.

A user-defined identifier is an identifier excluding keywords and standard routine
names listed above.

TR-5000 Series F Test Language 8/86

Better Testing Better Quality ©Test Research, Inc.

Data Types
The test language supports three classes of data types; they are scalar, array, and file
types, which are described as follows.

Scalar Type Description
CHAR A signed single byte usually used to hold one character in the local

character set.
BYTE An unsigned single byte.
INTEGER A signed integer.
DWORD An unsigned integer of size 4 bytes.
FLOAT A signed floating point.

An array type is composed of a scalar type name followed by left and right brackets in
which the array size is specified. For example, INTEGER[10] is an integer array of
size 10. A string is an array of characters, for example, CHAR[10] is a character
array capable of holding up to 10 characters in a string. The first element of an array is
located at index 1. An array index can be any integer expression, which includes
integer variables and integer constants. Accessing an element of an array is an array
identifier followed by left and right brackets in which specific index is evaluated.

Example
S is a 12-character array and assigned with the string ’hello, world’. Referencing
to S[1] gets the character ’h’, S[2] gets ’e’, S[3] gets ’l’, etc.

A file is a source or destination data stream associated with a disk or other peripheral.
The test language provides two specific data types for recording whatever information
is necessary to control the stream.

File Type Description
TEXTFILE A text stream containing a sequence of printable ASCII characters,

including new line escape characters and an end-of-file character.
BINARYFILE A binary stream containing a sequence of raw bytes, which are the

data stored in memory.

TR-5000 Series F Test Language 9/86

Better Testing Better Quality ©Test Research, Inc.

Constants
An integer constant like 8001 is an INTEGER. The value of an integer can be
specified in binary or hexadecimal instead of decimal. A leading 0B or 0b on an
integer constant means binary; a leading 0H or 0h means hexadecimal. For example,
decimal 8001 can be written as 0B1111101000001 or 0b1111101000001 in binary
and 0H1F41 or 0h1f41 in hex.

A floating-point constant like 8001.1 is a FLOAT.

A character constant is a CHAR, written as one character within single quotes, such
as ’T’. The value of a character constant is the numeric value of the character in the
character set of the machine. For example, in the ASCII character set the character
constant ’8’ has the value 56, which is unrelated to the numeric value 8. Therefore, a
character constant also counts as an integer and can participate in any integer
operations. For example, the statement, CH=INT+’0’;, converts the numeric values
0 ~ 9 to character constant values ‘0’ ~ ‘9’.

A string constant, or string literal, is a sequence of one more characters surrounded
by single quotes, as in ’TR-5001 ICT’. The quotes are not part of the string, but
serve only to delimit it. The escape sequence \’ represents the single-quote
character in a string, for example, the string constant

’\’TR-5001\’ ICT’

is output as
’TR-5001’ ICT

Constants are defined using the keyword CONST followed by a list of constant value
assignments, as in the following format.

CONST <constant-value-assignment-list>

Field Description
<constant-value-
assignment-list>

A list of assignment statements delimited by semicolons.

Example
CONST
 FILENAME=’test.out’;
 STARTADDR=0H1000;

TR-5000 Series F Test Language 10/86

Better Testing Better Quality ©Test Research, Inc.

Variable Declarations
Variables are user-defined identifiers and must be declared before use. A declaration
specifies a type, and contains a list of one or more variables of that type, as in the
following format.

VAR <declaration-list>

Field Description
<declaration-list> A list of declarations, which are composed of list of variable

identifiers followed by a colon then a type, delimited by
semicolons.

Example
VAR
 LOWER,UPPER,STEP:INTEGER;
 C:CHAR;
 LINE:CHAR[1000];

Operators
Arithmetic Operators
The binary arithmetic operators are

+ addition
- subtraction or unary negation
* multiplication
/ division
% modulus

Integer division truncates any fractional part. The modulus operator % cannot be
applied to float-point operands. The binary + and – operators have the same
precedence, which is lower than the precedence of *, /, and %, which is in turn lower
than unary -. Arithmetic operators associate left to right.

Relational and Logical Operators
The relational operators are

TR-5000 Series F Test Language 11/86

Better Testing Better Quality ©Test Research, Inc.

> greater than
>= greater than or equal to
< less than
<= less than or equal to

They all have the same precedence. Just below them in precedence are the equality
operators:

= equal to
<> not equal to

Relational operators have lower precedence than arithmetic operators, thus an
expression like I<LIM-1 is taken as I<(LIM-1), as would be expected. Below
equality operators in precedence are the logical operators:

&& logical AND
|| logical OR

The precedence of && is higher than that of ||. Expressions connected by && or || are
evaluated left to right, and evaluation stops as soon as the truth or falsehood of the
result is determined. For example, a conditional expression:

IF I<=LIM && C<>’ ’ THEN

 STR[I]=C;

The expression I<=LIM must be tested first and the next expression C<>’ ’ stops
testing as if this test fails.

By definition, the numeric value of a relational or logical expression is 1 if the relation
is true, otherwise, 0 if the relation is false. Usually, such an expression is also called a
Boolean expression.

The unary negation operator ! logically inverts the result of a Boolean expression,
that is, converts a non-zero operand into 0, and a zero operand into 1.

Bit-wise Operators
The bit-wise operators are

TR-5000 Series F Test Language 12/86

Better Testing Better Quality ©Test Research, Inc.

& bit-wise AND
| bit-wise OR
^ bit-wise exclusive OR (XOR)
<< left shift
>> right shift
~ bit-wise NOT (1’s complement)

The bit-wise operators provide for bit level manipulation, and only can be applied to
integral operands, that is, CHAR, BYTE, and INTEGER. The following example is to
extract the high and low nibbles of a byte.

VAR
 BYTEVAL:BYTE;
 BYTESTR:CHAR[2];

SUBROUTINE EXTRACT;
{
 BYTESTR[1]=(BYTEVAL>>4)+’0’;
 BYTESTR[2]=(BYTEVAL&0H0F)+’0’;
};

Given that the BYTEVAL is the numeric value AA in hex, the BYTESTR is the string ‘AA’
after executing the SUBROUTINE EXTRACT.

Assignment Operator
The assignment operator is =, which is symbolically identical to the equality operator,
but serves to different operations. The expression at the right-hand side of the
assignment operator is first evaluated, and the value of this expression replaces that
of the object referred to by the left-hand side variable. For example, I=I+1, given that
the value of I is 1, the value of I would be 2 after evaluating the expression.

TR-5000 Series F Test Language 13/86

Better Testing Better Quality ©Test Research, Inc.

Expressions
An operational expression is a list of operands connected by operators, and is
evaluated as a value in accordance with the precedence and associativity of
operators applied. Only variables having scalar data types are valid operands in
operational expressions due to scalar operators. A primary operational expression has
single operand without any operators applied, such as, a constant, a string literal, and
an identifier, are all primary expressions. The data type of a primary expression is
identical to that of the operand associated. A parenthesized expression is an
expression enclosed by left and right parentheses, having the highest precedence in
evaluation. For example, the expression, C=A+B*3, and C is 7 given that A is 1 and B
is 2, but C is 9 for the expression, C=(A+B)*3, due to higher precedence of
parentheses than that of multiplication.

The data type of the value evaluated by an expression depends on the data type of
operands involved. The types of operands should be converted to a common type as
an operator has operands of different types. The type conversions follow the rules
listed below.

The scalar types, array types, and file types cannot be converted to one another.
The INTEGER, BYTE, and CHAR can be freely converted.
Only INTEGER can be converted to FLOAT.
The FLOAT cannot be converted to INTEGER, BYTE, and CHAR.

A routine call is an expression called the routine name designated by SUBROUTINE or
BLOCK or BLOCKSUB. Such an expression has single operand and returns no value,
so no operators are applied.

TR-5000 Series F Test Language 14/86

Better Testing Better Quality ©Test Research, Inc.

Statements
An expression such as X=100 or I=I+1 or PRINTRESULT followed by a semicolon
becomes a statement, as in

X=100;
I=I+1;
PRINTRESULT;

The semicolon is a statement terminator in the test language. Braces { and } are used
to group statements together into a compound statement, which are syntactically
equivalent to a single statement. The braces around multiple statements after an IF
THEN, ELSE, FOR TO DO, WHILE DO are an obvious example when these statements
have to be executed for that condition.

TR-5000 Series F Test Language 15/86

Better Testing Better Quality ©Test Research, Inc.

Analog Testing
The test language implements these statements to make analog components
measurements and tests.

Test Language Analog Measurement Functions
MR Resistance (ohms)
MC Capacitance (farads)
ML Inductance (Henries)
MJ Jumper (open/short)
MD Diode (volts)
MQ Transistor (volts)

In addition to the analog test statements that control the test devices, the test
language also contains statements to have the user customize the test program.
These test statements include flow control and data manipulation statements; refer to
the Utility Statements for further details.

Analog tests can be exclusively executed within the component test steps.

TR-5000 Series F Test Language 16/86

Better Testing Better Quality ©Test Research, Inc.

Analog Test Statements
MR / MC / ML / MJ / MD / MQ

Type
Standard routine

Description
Use the MR, MC, ML, MJ, MD, and MQ statements to set up the analog instruments
for analog devices measurements, store the results to user-defined variables, and test
the results against limits. Refer to the C-1 Analog Test Theory for detailed information
about analog instrumentation resources and analog test algorithms.

Syntax
[pass-fail =] MR/MC/ML/MJ/MD/MQ (<parameter list>) ;

Field Description
pass-fail Optional. An integer variable used to store the test result.

The variable pass-fail is set to 1 if a failure is detected;
otherwise, the variable is set to 0 for passing the test.
A list of parameter value assignments delimited by colons,
referring to the format below.

parameter-identifier = parameter-value ,

Allowable parameter identifiers are PART, BOM, EXPECT,
OFFSET, HLIM, LLIM, MODE, HIN, LON, DLY, G1, G2,
G3, G4, G5, RPT, and MEAS. PART, EXPECT, MODE,
HIN, and LON are required for all types of statements.
BOM is required in MD and MQ statements. All other
parameters are optional.

Identifier Value
PART A string literal representing a device name

listed in the component test steps or
PINS.ASC file.

<parameter list>

EXPECT A string literal representing an expected
value measured.

TR-5000 Series F Test Language 17/86

Better Testing Better Quality ©Test Research, Inc.

 BOM A string literal required for MD and MQ
statements representing the turn-on voltage
applied to a diode or transistor; optional for
the other statements representing a value
listed in BOM.

 OFFSET Optional. A floating-point value representing
the compensation from a measured value.
Default is 0.

 HLIM
LLIM

Optional. An integer value representing the
tolerance in percentage of an expected
value. Default is –1 for ignoring the limits.

 MODE Specifies an integer value to apply specific
analog instrument to a DUT.

 HIN/LON An integer value representing the
source/sink nail of a DUT.

 DLY Optional. An integer value representing the
delay in milliseconds before starting to
measure. The maximum value is 500ms
with a default of 0.

 G1/G2/G3/
G4/G5

Optional. An integer value representing a
guarding nail with a default of 0.

 RPT Optional. An integer value representing the
maximum retest times if a DUT fails the
test.

 MEAS Optional. Measurement result is stored in
the floating-point variable specified by this
parameter.

Refer to the Program Development B-1-7 MDA Debug for detailed descriptions about
these parameters.

Example
MR(PART='R1',EXPECT='4',HLIM=8,LLIM=8,MODE=0,HIN=2,LON=1);
MR(PART='R3',EXPECT='100K',HLIM=3,LLIM=3,MODE=1,HIN=14,LON=1);
MC(PART='C5',EXPECT='10n',HLIM=8,LLIM=8,MODE=2,HIN=28,LON=29,
DLY=4);
MD(PART='ZD1',BOM='0.7V',EXPECT='0.75V',HLIM=10,LLIM=10,MODE=0
,HIN=49,LON=48);
MQ(PART='Q1-BCE',BOM='1.5V',EXPECT='0.095V',HLIM=10,MODE=3,
HIN=52,LON=53,G1=48);

TR-5000 Series F Test Language 18/86

Better Testing Better Quality ©Test Research, Inc.

Digital Testing

UUT Pin Definitions
A test language program used to test an IC should reference to one or more pins of
that IC. This reference is made possible through a list of pin specifications in the
following format:

pin-type-designator <pin ID assignment list>

Field Description
pin-type-designator Three keywords used to define the type of an IC pin:

INPUT, OUTPUT, and BIDIR.
A list of pin to number or pin to test nail assignment
expressions delimited by semicolons, referring to the
format below.

pin-name = test-nail / pin-number ;

pin-name User-defined identifier. All pins must be

associated with a unique name.
test-nail A positive integer representing the number

of digital resources connected to a pin.

<pin ID assignment
list>

pin-number A string literal representing the pin number.

Example
INPUT
 WE=’A1’;
 OE=’B1’;
 CE=’C1’;

OUTPUT
 STAT=1130;

BIDIR
 D0=’A3’;
 D1=’11’; // 11 is a pin number instead of a test nail

Grouping pins with the same types facilitates the program coding and improves the
program readability, specifically for bus pins. The test language supports the syntax

TR-5000 Series F Test Language 19/86

Better Testing Better Quality ©Test Research, Inc.

for group definitions as follows:

GROUP <group pins assignment list>

Field Description

A list of pins to group assignment expressions delimited by
semicolons in the following format:

group-name = (<pin name list>) ;

group-name User-defined identifier. All groups must be

associated with a unique name.

<group pins
assignment list>

<pin name
list>

A list of defined pin names delimited by
commas. The pins listed from left to right
correspond to the bit sequence from MSB
to LSB.

Example
GROUP
 DATABUS=(D7,D6,D5,D4,D3,D2,D1,D0);
 ADBUS=(FWH3,FWH2,FWH1,FWH0);

Note that the maximum number of pins contained in a group is 32.

TR-5000 Series F Test Language 20/86

Better Testing Better Quality ©Test Research, Inc.

Nail State Specification Routines
The nail state specification routines listed below are used within BLOCK/BLOCKSUB
to specify the drive/sense and logic states of nails.

DH DL DX DG
SH SL SX SG

The valid parameters for DH/DL/SH/SL are pin names or nail numbers or both. The
only available parameters for DG/SG are group names designated by GROUP. The
DX/SX can take them all as parameters. Use an asterisk as a unique parameter to
indicate all pins specified as parameters. Commas are delimiters to separate
individual parameters.

The detailed states of nails specified by above commands are described in the
following table.

Drive States

DH Drive High Enable driver and place nail in a high state
DL Drive Low Enable driver and place nail in a low state
DX Drive Don’t Care Disable and place drivers in a high-impedance state
DG Drive Group Enable group of drivers and place related nails in

specified states
Sense States

SH Sense High Enable sensor and expected nail state is sensed high
SL Sense Low Enable sensor and expected nail state is sensed low
SX Sense Don’t Care Ignore these sense states
SG Sense Group Enable group of sensors and expected nails states

are sensed in specified states

TR-5000 Series F Test Language 21/86

Better Testing Better Quality ©Test Research, Inc.

Digital Test Keywords
Keywords listed below define a user-customized digital test block/sub-block. The
implementation (a sequence of digital test statements) for a block/sub-block is
delimited using left and right braces. Definitions are provided later in the manual.

BLOCK BLOCKSUB

The following keyword is used to allocate a binary data segment and map it to a set of
pins with drive/sense state assigned.

TABLE

Use the following keyword to declare a pointer to a table. Reference different
segments of a table by the pointers to reduce the table count.

TABLEPTR

The control-flow commands designated by the following keywords are exclusively
used within BLOCK/BLOCKSUB to specify the order in which digital test steps are
executed.

JP JF
FL FLM LOOP

The limitations for these keywords are as follows:

The BLOCKSUB is called only in the BLOCK,
The TABLE/TABLEPTR can only be referenced in the BLOCK,
The BLOCK is called only in the main program.

TR-5000 Series F Test Language 22/86

Better Testing Better Quality ©Test Research, Inc.

Digital Test Statements

BLOCK
Type
Keyword

Description
The BLOCK keyword defines and executes a segment of a digital test or a complete
one. Any valid digital test statements within the BLOCK delimited by left and right
braces define each step taken by the driver/sensor resources. The drive states of
nails are incremental within and across blocks. The sense states of nails imply the
‘Don’t-Care’ state unless they are specifically mentioned at the statement as being
SH/SL/SG.

Syntax
BLOCK label ;
{

<valid digital test statements>
} ;

Field Description
label User-defined identifier for the block. All blocks should be

associated with a unique name.
<valid digital test
statements>

Composed of any valid test command keywords, including
table access pointers designated by TABLE/TABLEPTR
and subroutine calls designated by BLOCKSUB.

Example
TABLE ADDRTAB : 0H20000;
{
 DH(AD17,AD16,. . .,AD2);
};

TABLE DATATAB : 0H80000;
{
 DH(D31,D30,. . .,AD17,AD16,. . .,D0);
};

TABLEPTR BANK1 = DATATAB;
.
BLOCKSUB INIT;
{

TR-5000 Series F Test Language 23/86

Better Testing Better Quality ©Test Research, Inc.

 DL(*);

};

BLOCK PROGRAMMING;
{
 INIT; // call to sub-block and execute the test

 // enable bank1 and bank2
 DH(F1TST,F2TST);

 FL 2048
 {
 ADDRTAB+; // reference the table

 DH(F1ALE,F2ALE,PROG,XE);
 DL(F1ALE,F2ALE);
 DX(ADDRBUS);

 BANK1+; // reference the table
 DH(F1DLE);
 DL(F1DLE);

 DX(DATABUS);
 DH(YE);;;;;;;;;;;; // delay to program the data

 DL(YE);
 DL(PROG,XE);

 };

 // disable bank1 and bank2
 DL(F1TST,F2TST);
};
.
MAIN

 PROGRAMMING; // call to block and execute the test

END.

TR-5000 Series F Test Language 24/86

Better Testing Better Quality ©Test Research, Inc.

BLOCKSUB
Type
Keyword

Description
The BLOCKSUB keyword defines and executes a segment of a digital test, which is
common to different blocks. Any valid digital test statements in the BLOCKSUB
delimited by left and right braces define each step taken by the driver/sensor
resources. The drive states of nails are incremental within and across sub-blocks. The
sense states of nails imply the ‘Don’t-Care’ state unless they are specifically
mentioned at the statement as being SH/SL/SG. Call to blocks or sub-blocks and
reference to tables are not permitted in the BLOCKSUB.

Syntax
BLOCKSUB label ;
{

<valid digital test statements>
} ;

Field Description
label User-defined identifier for the sub-block. All sub-blocks

should be associated with a unique name.
<valid digital test
statements>

Composed of any valid test command keywords, excluding
table access pointers designated by TABLE/TABLEPTR
and subroutine calls designated by BLOCK/BLOCKSUB.

Example
BLOCKSUB CHECKSTATUS;
{

 DL(SCK) DH(SI);
 DH(SCK); DL(SCK);

 FLM 10000
 {
 DH(SCK); DL(SCK);

 SL(SO) FLAGFAIL(301); // 1: busy, 0:ready
 DL(SCK);
 };
 DH(CS);
};

TR-5000 Series F Test Language 25/86

Better Testing Better Quality ©Test Research, Inc.

DG / DH / DL / DX
Type
Standard routine

Description
Use these routines to form digital Drive test statements, in turn, being translated to
digital test steps, which are separated by semicolons. Individual semicolons in a
statement list represent test steps kept from the previous one. Take an asterisk as the
parameter of DH/DL/DX to specify the states for all pins designated by INPUT and
BIDIR.

Syntax
DH / DL / DX (<valid parameters>) … ;
DG (group_name = value , …) … ;

Field Description
<valid parameters > Pin names designated by INPUT, OUTPUT, BIDIR, or nail

numbers. Individual parameters are delimited using
commas. Group names designated by GROUP are
permitted only for DX. Use an asterisk as the unique
parameter.

group_name User-defined identifier designated by GROUP
value A positive integer or integer constant designated by

CONST represents logic states.

Example
INPUT
 CTRL=1234;

OUTPUT
 STAT=1024;

BIDIR
 D3=1111;
 D2=1112;
 D1=1113;
 D0=1114;

GROUP
 DBUS=(D3,D2,D1,D0);

TR-5000 Series F Test Language 26/86

Better Testing Better Quality ©Test Research, Inc.

BLOCK TEST;
{
 DH(*);

/*
drive all pins designated by INPUT and BIDIR to high,
that is, nail 1234 and nails 1111~1114 are driven high

 */

 DL(CTRL);;;;
 /*

the pin CTRL is driven low and keeps driving low
 on the next three steps
 */

 DG(DBUS=0HA);
 /*

the states of D3~D0 are driven
 high low high low (1010)

*/

 DX(DBUS); // drive D3~D0 to high-impedance
 // that is, to turn off the drivers D3~D0

};

The nail states through the block execution are shown as follows:

NAIL NUMBER Nail State
Test Step 1234 1111 1112 1113 1114 1024

Step 1 1 1 1 1 1 X
Step 2 0 1 1 1 1 X
Step 3 0 1 1 1 1 X
Step 4 0 1 1 1 1 X
Step 5 0 1 1 1 1 X
Step 6 0 1 0 1 0 X
Step 7 0 X X X X X

Note:
1 stands for driving high, 0 stands for driving low, X stands for turning off the driver or
ignoring the result.

TR-5000 Series F Test Language 27/86

Better Testing Better Quality ©Test Research, Inc.

FAILCLR
Type
Standard routine

Description
Use FAILCLR routine to clear all or the specified fail flags, which are set by FLAGFAIL
routines within a BLOCK. All fail flags taken as parameters of FLAGFAIL routines
through the whole program are initialized to clear automatically prior to the beginning
of the main test designated by MAIN.

Syntax
FAILCLR ;
FAILCLR (<fail flag number list>) ;

Field Description
<fail flag
number list>

A list of positive integers and integer constants
representing fail flags. Individual parameters are delimited
using commas.

Example
MAIN
 FAILCLR;

 IF FAIL(101) THEN
 {
 FAILCLR(101);

 };

END.

TR-5000 Series F Test Language 28/86

Better Testing Better Quality ©Test Research, Inc.

FAIL
Type
Standard routine

Description
Use FAIL routine to return the pass/fail state of a numbered flag. 1 represents the pass
state, and 0 represents the fail state.

Syntax
FAIL (n)

Field Description
n A positive integer or integer constant designated by

CONST. 0 is reserved for system fail flag.

Example
MAIN

 IF FAIL(102) THEN
 {
 WRITELN(LPT,’CHECK ID FAILED’);
 FLAGTESTFAIL(PROGRAMFAIL);
 };

END.

TR-5000 Series F Test Language 29/86

Better Testing Better Quality ©Test Research, Inc.

FL
Type
Keyword

Description
The FL keyword provides the loop function in a BLOCK/BLOCKSUB. The sequence of
statements to be repeated is delimited using the left and right braces. A loop count
indicates the maximum number of times a loop is executed. Other exit condition
implied from the FL is “exit if failed”. The fail state at the end of the loop is determined
as long as any statement in the sequence fails.

Syntax
FL count
{

<sequence of statements>
} ;

Field Description
count A positive integer or integer constant designated by

CONST
<sequence of
statements>

Any test statements based on the valid test keywords

Example
BLOCK TEST;
{

 FL 100
 {

 DH(CLK);
 SL(SO) FLAGFAIL(101);
 /*

the fail flag 101 is set as SO is sensed high
 and the loop stops iterating at the end of the
 current execution.
 */

 DL(CLK);

 };

};

TR-5000 Series F Test Language 30/86

Better Testing Better Quality ©Test Research, Inc.

FLAGFAIL
Type
Standard routine

Description
The FLAGFAIL routine sets the flag numbered by n when related digital test statement
fails. The FLAGFAIL can be appended to any individual test statement, which
executes a digital test step, within a BLOCK. Examine the flag status to identify which
test steps failed at BLOCK completion.

Syntax
FLAGFAIL (n) ;

Field Description
n A positive integer or integer constant designated by

CONST. 0 is reserved for system fail flag.

Example
TABLE RDDATATAB : 0H80000
{
 SH(D8,D7,D6,D5,D4,D3,D2,D1,D0);
};

BLOCK TEST;
{

 SL(STAT) FLAGFAIL(102);

 RDDATATAB+ FLAGFAIL(103);

};

MAIN

 USETABLE(RDDATATAB);
 TEST; // execute the block

 IF FAIL(103) THEN
 {
 WRITELN(’VERIFY FAILED’);

 }

END.

TR-5000 Series F Test Language 31/86

Better Testing Better Quality ©Test Research, Inc.

FLAGTESTFAIL
Type
Standard routine

Description
The FLAGTESTFAIL routine fails the test statement without requiring a hardware
measurement. Without FLAGTESTFAIL there is no way to set a failure for evaluating
variables.

Syntax
FLAGTESTFAIL ;

Example
MAIN

 IF FAIL(100) THEN
 FLAGTESTFAIL;

END.

The test step shown below is the result after executing the IF statement.

TR-5000 Series F Test Language 32/86

Better Testing Better Quality ©Test Research, Inc.

FLM
Type
Keyword

Description
The FLM keyword provides the loop function in a BLOCK/BLOCKSUB. The sequence
of statements to be repeated is delimited using left and right braces. A loop count
indicates the maximum number of times a loop is executed. Other exit condition
implied from the FLM is “exit if passed”. The fail state at the end of the loop is
determined as long as any statement in the sequence fails.

Syntax
FLM count
{

<sequence of statements>
} ;

Field Description
count A positive integer or integer constant designated by

CONST
<sequence of
statements>

Any test statements based on the valid test keywords

Example
BLOCK TEST;
{

 FLM 100
 {

 DH(CLK);
 SL(SO) FLAGFAIL(101);
 /*
 the loop stops iterating as SO is sensed low
 the fail flag 101 will be cleared while repeating
 the execution (SO is sensed high)
 */

 DL(CLK);

 };

};

TR-5000 Series F Test Language 33/86

Better Testing Better Quality ©Test Research, Inc.

JF
Type
Keyword

Description
The JF keyword transfers the program execution sequence to the specified label
when the related test statement fails within a BLOCK/BLOCKSUB. The scope of the
label must be in the same level as the one of JF, that is, jumping into, out of, or
between BLOCK/BLOCKSUB sections are not permitted. Neither does jump into, out
of, or between loop statements.

Syntax
JF label ;

Field Description
label User-defined identifier on the statement to which the

program transfers

Example
BLOCK TEST;
{

 FL 100
 {

 SG(HIBYTE=0HAA) JF ENDVERIFY;

 ENDVERIFY:

 };

};

TR-5000 Series F Test Language 34/86

Better Testing Better Quality ©Test Research, Inc.

JP
Type
Keyword

Description
The JP keyword transfers the program execution sequence to the specified label
when the related test statement passes within a BLOCK/BLOCKSUB. The scope of
the label must be in the same level as the one of JP, that is, jumping into, out of, or
between BLOCK/BLOCKSUB sections are not permitted. Neither does jump into, out
of, or between loop statements.

Syntax
JP label ;

Field Description
label User-defined identifier on the statement to which the

program transfers

Example
BLOCK TEST;
{

 SG(DBUS=0H6D) JP ENDTEST;

ENDTEST:

};

TR-5000 Series F Test Language 35/86

Better Testing Better Quality ©Test Research, Inc.

KDOFF / KDON
Type
Standard routine

Description
Use KDOFF and KDON routines to close and open the specified digital relays of pins.
All digital relays of pins designated by INPUT, OUTPUT, and BIDIR are initialized to
close automatically prior to the beginning of the main test, and reset to open at the
end of the test.

Syntax
KDOFF / KDON (<valid parameters>) ;

Field Description
<valid parameters> Pin names designated by INPUT, OUTPUT, BIDIR, or nail

numbers. Individual parameters are delimited using
commas.

Example
MAIN
 KDON(F1ALE,F2ALE,. . .,XE);

 KDOFF(F1ALE,F2ALE,. . .,XE);
END.

TR-5000 Series F Test Language 36/86

Better Testing Better Quality ©Test Research, Inc.

LOADTABLE
Type
Standard routine

Description
The LOADTABLE routine loads data from a binary file or a table file used in on-board
flash programming to an allocated memory in which logic states (test patterns) of the
specified drive/sense pins reside. This permits On-The-Fly programming for various
items like a board serial number or changing the contents of a programmable device
without creating a new test program.

Syntax
LOADTABLE (table-name , data-file) ;

Field Description
table-name User-defined identifier designated by TABLE/TABLEPTR
data-file A string literal or string constant designated by CONST

represents the file name of a binary or TAB file.

Example
CONST
 DATAFILENAME=’data.bin’;

TABLE DATATAB : 0H4;
{
 SH(D8,D7,D6,D5,D4,D3,D2,D1,D0);
};
.

MAIN

 LOADTABLE(DATATAB,DATAFILENAME);
 USETABLE(DATATAB);

END.

After loading data from the binary file DATAFILENAME to the table DATATAB, actual
data calculated while calling USETABLE in the table is shown below.

TR-5000 Series F Test Language 37/86

Better Testing Better Quality ©Test Research, Inc.

Data in the binary file:

00000000h: 43 6F 70 79
.

Data representing the test patterns and steps in the table:

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0Table Data
Test Step D7 D6 D5 D4 D3 D2 D1 D0

Step 1 L H L L L L H H
Step 2 L H H L H H H H
Step 3 L H H H L L L L
Step 4 L H H H H L L H

Notes:
1. L stands for expected state is sensed low, H stands for expected state is sensed

high.
2. Each table reference executes one step, for example, first occurrence of the table

reference runs the step 1, that is, comparing the data read from UUT with the
expected pattern “01000011”.

3. The plus symbol appended to the table reference, for example, DATATAB+,
increases the table pointer to the next step after current execution. The table
pointer stops at the last step for further increments.

4. The minus symbol appended to the table reference, for example, DATATAB-,
decreases the table pointer to the prior step after current execution. The table
pointer stops at the first step for further decrements.

5. The table reference statement cannot be placed in the same statement as any nail
state specifications, control-flow commands, and any other table references. Only
FLAGFAIL routine can be used in the same statement with the table reference.

6. The appropriate USETABLE or RESULTTABLE must be called somewhere in the
main program before referencing the table.

TR-5000 Series F Test Language 38/86

Better Testing Better Quality ©Test Research, Inc.

LOOP
Type
Keyword

Description
The LOOP keyword provides the unconditional loop function in a BLOCK/BLOCKSUB.
The sequence of statements to be repeated is delimited using the left and right braces.
A loop count indicates the maximum number of times a loop is executed. The pass or
fail state of the loop is determined at the end of the loop. A failure occurs if any
statement in the sequence fails.

Syntax
LOOP count
{

<sequence of statements>
} ;

Field Description
count A positive integer or integer constant designated by

CONST
<sequence of
statements>

Any test statements based on the valid test keywords

Example
BLOCK TEST;
{

 LOOP 100
 {

 DH(CLK);
 SL(SO) FLAGFAIL(101);
 /*

the fail flag 101 is set as SO is sensed high
 however, the loop continues iterating until the
 loop count expires
 */

 DL(CLK);

 };

.
};

TR-5000 Series F Test Language 39/86

Better Testing Better Quality ©Test Research, Inc.

RESULTTABLE
Type
Standard routine

Description
The RESULTTABLE routine loads a table pointer designated by TABLE/TABLEPTR to
the first test step of a TABLE. This also permits loading a table pointer to the specified
test step offset from the first one. Use the RESULTTABLE statement accompanied
with table reference statements to write result patterns read from UUT into a TABLE.
The RESULTTABLE can only be created with sense pins.

Syntax
RESULTTABLE (table-name [, step-offset]) ;

Field Description
table-name User-defined identifier designated by TABLE/TABLEPTR
step-offset Optional parameter. An integer or integer constant

designated by CONST represents the test step offset from
the first step (the beginning of a TABLE).

Example
TABLE DATATAB : 0H40000;
{
 SH(D8,D7,D6,D5,D4,D3,D2,D1,D0);
};
.

MAIN

 RESULTTABLE(DATATAB);

 SAVETABLE(DATATAB,’outdata.bin’);

END.

TR-5000 Series F Test Language 40/86

Better Testing Better Quality ©Test Research, Inc.

SAVETABLE
Type
Standard routine

Description
The SAVETABLE routine writes RESULTTABLE data to a binary file for further
manipulation. Only sense data resides in a RESULTTABLE.

Syntax
SAVETABLE (table-name , data-file) ;

Field Description
table-name User-defined identifier designated by TABLE/TABLEPTR
data-file A string literal or string constant designated by CONST

represents a binary file name.

Example
CONST
 OUTFILENAME=’outdata.bin’;

TABLE DATATAB : 0H40000;
{
 SH(D8,D7,D6,D5,D4,D3,D2,D1,D0);
};
.

MAIN

 RESULTTABLE(DATATAB);

 SAVETABLE(DATATAB,OUTFILENAME);

END.

TR-5000 Series F Test Language 41/86

Better Testing Better Quality ©Test Research, Inc.

SG / SH / SL / SX
Type
Standard routine

Description
Use these routines to form digital Sense test statements, in turn, being translated to
digital test steps, which are separated by semicolons. Individual semicolons in a
statement list represent test steps kept from the previous one. The nail states are not
incremental and go to Don’t-Care (X) state.

Syntax
SH / SL / SX (<valid parameters>) … ;
SG (group-name = value , …) … ;

Field Description
<valid parameters> Pin names designated by INPUT, OUTPUT, BIDIR, or nail

numbers. Individual parameters are delimited using
commas. Group names designated by GROUP are
permitted only for DX. Use an asterisk as the unique
parameter.

group-name User-defined identifier designated by GROUP
value A positive integer or integer constant designated by

CONST represents expected logic states.

Example
INPUT
 CLK=1024;

BIDIR
 D3=1111;
 D2=1112;
 D1=1113;
 D0=1114;

GROUP
 DBUS=(D3,D2,D1,D0);

BLOCK TEST;
{
 DL(CLK,D3,D2,D1) DH(D0);

TR-5000 Series F Test Language 42/87

Better Testing Better Quality ©Test Research, Inc.

 DH(CLK);
 DL(CLK) DX(D3,D2,D1,D0);
 DH(CLK) SG(DBUS=0H5);
 DL(CLK);
 DH(CLK) SL(D3,D1) SH(D2,D0);
 DX(CLK);
};

The nail states through the block execution are shown as follows:

NAIL NUMBER Nail State
Test Step 1024 (CLK) 1111 (D3) 1112 (D2) 1113 (D1) 1114 (D0)

Step 1 0 0 0 0 1
Step 2 1 0 0 0 1
Step 3 0 X X X X
Step 4 1 L H L H
Step 5 0 X X X X
Step 6 1 L H L H
Step 7 X X X X X

TR-5000 Series F Test Language 43/86

Better Testing Better Quality ©Test Research, Inc.

TABLE
Type
Keyword

Description
Use the TABLE keyword to allocate a binary data segment representing digital test
steps of each in turn being mapped to a set of pins with drive/sense state specified.
The TABLE can be only referenced by the TABLE name (implied a pointer to the
TABLE) or the pointers designated by TABLEPTR within a BLOCK. A plus appended
to a table pointer advances a pointer to the next test step after the current test step
completion. A minus appended to a table pointer decreases a pointer to the previous
test step after the current test step completion. The first pin listed is used as the most
significant bit (MSB), and the last as the least significant bit (LSB), in mapping to data
loaded from or saved to a binary file.

Syntax
TABLE name : size ;
{

DH / SH (<pin map list>) ;
} ;

Field Description
Name User-defined identifier for the table. All tables should be

associated with a unique name. By default, the name is a
pointer to the table.

Size A positive integer or integer constant designated by
CONST representing the TABLE size in bytes.

<pin map list> Pin names exclusively designated by INPUT, OUTPUT, or
BIDIR. DH stands for the pins in a list to be drivers. SH
stands for the pins in a list to be sensors. Actual logic
high/low states of pins base on the binary value in a table.
Individual pins in a list are delimited using commas.

TR-5000 Series F Test Language 44/86

Better Testing Better Quality ©Test Research, Inc.

Example 1
TABLE DATATAB : 0H80000;
{
 DH(D15,D14,D13,D12,D11,D10,D9,D8,D7,D6,D5,D4,D3,D2,D1,D0);
};

The size of a TABLE is calculated in the unit of byte. For example, the size of a TABLE
allocated to accommodate programming data for a 512KB flash is 524288 bytes
(80000 in hexadecimal), and is independent of the number of pins assigned to a
TABLE.

Example 2
TABLE ADDRTAB : 0HB00000;
{
 DH(A22,A21,A20,A19,A18,A17,A16,A15,A14,A13,A12,A11,A10,A9,A8,A7,A6,A5,A4,A3,A2,A1);
};

The size of a TABLE allocated to accommodate programming addresses for an 8M
bytes flash with 22-bit address bus and 16-bit data bus is calculated as follows.

For any flash address, it occupies 22-bit memory segment in the TABLE. And it
takes 4194304 address iterations (222) completing programming all data
locations on the flash. Thus, the memory size allocated to a TABLE is
92274688 bits, that is 11534336 bytes (B00000 in hexadecimal), near 11M
bytes.

To access, load, and save such a huge TABLE would degrade the system
performance, and is strongly not recommended. For TABLE size reduction, a TABLE
can be split into smaller pieces without adding any overheads to the test. For example,
the TABLE ADDRTAB can be divided as follows to reduce significantly the TABLE size
from 11M bytes to about 1K bytes.

TABLE ADDRTAB : 0H100;
{
 DH(A8,A7,A6,A5,A4,A3,A2,A1);
};

TABLE ADDRTAB : 0H100;
{
 DH(A16,A15,A14,A13,A12,A11,A10,A9);
};

TABLE ADDRTAB : 0H100;
{
 DH(A22,A21,A20,A19,A18,A17);
};

TR-5000 Series F Test Language 45/86

Better Testing Better Quality

TABLEPTR
Type
Keyword

Description
Use the TABLEPTR keyword to declare a table pointer to a table designated by
TABLE. A table referenced by more than one table pointer is permitted.

Syntax
TABLEPTR name = table-name ;

Field Description
name User-defined identifier for the table pointer. All table

pointers should be associated with a unique name.
table-name A name designated by TABLE.

Example
TABLE DATATAB : 0H80000;
{
 DH(D15,D14,D13,D12,D11,D10,D9,D8,D7,D6,D5,D4,D3,D2,D1,D0);
};

TABLEPTR BANK1 = DATATAB;
TABLEPTR BANK2 = DATATAB;

BLOCK TEST;
{

 FL 0H20000
 {
 BANK1+;

 BANK2+;

 };

};
.

MAIN

 LOADTABLE(DATATAB,’data.bin’);
 USETABLE(BANK2);
 USETABLE(BANK1,0H20000);
 TEST;

END.

TABLE DATATAB

Flash

Bank1
(256kb)

Bank2
(256kb)

Data for
Bank2
BANK1
DATATAB
BANK2
Table Pointers
©Test Research, Inc.

Data for
Bank1

TR-5000 Series F Test Language 46/86

Better Testing Better Quality ©Test Research, Inc.

USETABLE
Type
Standard routine

Description
The USETABLE routine loads a table pointer designated by TABLE/TABLEPTR to the
first test step of a TABLE. This also permits to load a table pointer to the specified test
step offset from the first one. Use the USETABLE statement accompanied with table
reference statements to execute test steps in a TABLE.

Syntax
USETABLE (table-name [, step-offset]) ;

Field Description
table-name User-defined identifier designated by TABLE/TABLEPTR
step-offset Optional parameter. An integer or integer constant

designated by CONST represents the test step offset from
the first step (the beginning of a TABLE).

Example
See the example in the TABLEPTR statement.

TR-5000 Series F Test Language 47/86

Better Testing Better Quality ©Test Research, Inc.

Non-Test (Utility) Keywords
The keyword listed below defines a user-customized utility subroutine. The
implementation for a subroutine is delimited using left and right braces.

SUBROUTINE

The following control-flow command keywords are exclusively used within a
SUBROUTINE or the main program to specify the order in which computations are
performed.

IF-THEN-ELSE
FOR-TO-DO WHILE-DO
GOTO GOTO-ON

The following two keywords specify the unique execution entry point of a test program
and the test plan is bounded. A dot must be appended to END to denote the end of a
program.

MAIN-END .

TR-5000 Series F Test Language 48/86

Better Testing Better Quality ©Test Research, Inc.

Utility Statements

CLOSE
Type
Standard routine

Description
The CLOSE statement closes a stream explicitly established by an OPEN statement.
A stream closed cannot be accessed at all in all subsequent I/O statements. Any
opened files must be closed before the end of the program.

Syntax
CLOSE (file-descriptor) ;

Field Description
file-descriptor A TEXTFILE or BINARYFILE variable.

Example
See the example in the OPEN statement.

TR-5000 Series F Test Language 49/86

Better Testing Better Quality ©Test Research, Inc.

FOR-TO-DO
Type
Keyword

Description
The FOR-TO-DO statement iterates a single or compound statement within specified
bounds. Refer to Syntax below, the FOR loop first evaluates initial-value and assigns
it to loop-index. Then it compares loop-index against final-value, and terminates the
iteration if loop-index has been over final-value. Thus, loop-body may be executed
zero times in the condition of initial-value is initially greater than final-value. The
loop-index is increased by one. The nested FOR loop statements are permitted.

Syntax
FOR loop-index = initial-value TO final-value DO loop-body ;

Field Description
loop-index INTEGER/CHAR variable
initial-value INTEGER/CHAR expression
final-value INTEGER/CHAR expression
loop-body Single statement or compound statement

Example
FOR I=CURRENTLINE+1 TO MAXLINES DO
 WRITELN(LOGFILE);

FOR I=1 TO EPPIDSIZE DO
{
 WRITE(LOGFILE,STRBUF[2*I-1]);
 WRITE(LOGFILE,STRBUF[2*I]);
 WRITE(LOGFILE,’ ’);
};

TR-5000 Series F Test Language 50/86

Better Testing Better Quality ©Test Research, Inc.

GOTO
Type
Keyword

Description
The GOTO statement unconditionally transfers the execution flow of a program to a
specified label. A labeled statement must be in the same scope as GOTO statement.
That is, GOTO that branches into, out of or between subroutines is not permitted. Also,
GOTO that branches into, out of or between compound statements is not permitted.
The label must be unique for the entire program.

Syntax
GOTO label ;

Field Description
label User-defined identifier on the statement to which a

program transfers

Example
.
GOTO ENDOFTEST;
.
ENDOFTEST:
.

TR-5000 Series F Test Language 51/86

Better Testing Better Quality ©Test Research, Inc.

GOTO-ON
Type
Keyword

Description
The GOTO-ON statement transfers the execution flow of a program to a specified
label depending on the pass/fail condition of a flag. Refer to Syntax below, the
condition-value is a Boolean value (true or false) and can be evaluated using standard
routines, FAIL or PASS.

Syntax
GOTO label ON condition-value ;

Field Description
label User-defined identifier on the statement to which a

program transfers
condition-value A Boolean value evaluated by FAIL or PASS

Example
XXXCHECKID;
GOTO YYY ON FAIL(XXXIDFAIL);
.
GOTO ENDOFTEST;
YYY:
YYYCHECKID;
GOTO ENDOFTEST ON FAIL(YYYIDFAIL);
.
ENDOFTEST:
.

TR-5000 Series F Test Language 52/86

Better Testing Better Quality ©Test Research, Inc.

IF-THEN-ELSE
Type
Keyword

Description
The IF-THEN-ELSE statement, where the ELSE part is optional, is a conditional
statement and used to express decisions. Refer to Syntax below, the condition-value
is evaluated; if it is true (that is, if condition-value has a non-zero value), then-body is
executed. If it is false (condition-value is zero) and if there is an ELSE part, else-body
is executed instead. It is permitted to concatenate IF-THEN-ELSE statements in
series to form a multi-way decision. The condition-values are evaluated in order; if any
condition-value is met, the then-body associated with it is executed and this
terminates the whole chain. If none of condition-values is satisfied, the else-body is
executed if it exists.

Syntax
IF condition-value THEN then-body [ELSE else-body] ;
IF condition-value THEN
 then-body
ELSE IF condition-value THEN
 then-body
ELSE IF condition-value THEN
 then-body
[ELSE else-body] ;

Field Description
condition-value Any Boolean expression
then-body Single statement or compound statement
else-body Optional statement. Single statement or compound

statement

TR-5000 Series F Test Language 53/86

Better Testing Better Quality ©Test Research, Inc.

Example
// integer value to hexadecimal character conversion
IF VAL>=0 && VAL<=9 THEN
 CH=VAL+’0’
ELSE IF VAL=10 THEN
 CH=’A’
ELSE IF VAL=11 THEN
 CH=’B’
ELSE IF VAL=12 THEN
 CH=’C’
ELSE IF VAL=13 THEN
 CH=’D’
ELSE IF VAL=14 THEN
 CH=’E’
ELSE
 CH=’F’;

IF FAIL(100) THEN
{
 FAILCLR(100);
 WRITELN(’Manufacturer ID Failed’);
};

TR-5000 Series F Test Language 54/86

Better Testing Better Quality ©Test Research, Inc.

MDLY
Type
Standard routine

Description
The MDLY statement suspends the program execution for the specified time interval
in milliseconds. Once the delay interval is expired, the program execution resumes
automatically.

Syntax
MDLY (time-interval) ;

Field Description
time-interval A positive integer or integer constant designated by

CONST representing the delay interval in milliseconds.

Example
MAIN

 MDLY(1000); // delay 1 sec

END.

TR-5000 Series F Test Language 55/86

Better Testing Better Quality ©Test Research, Inc.

MV
Type
Standard routine

Description
The MV statement applies the analog voltmeter to measure the DC voltage on any
two points, pin1 and pin2, referring to Syntax below. The range of the voltage can be
measured for the voltmeter is 0V ~ 100V or –50V ~ 50V. The voltmeter is auto-ranging
according to the expected-voltage value specified.

Syntax
MV (expected-voltage , pin1 , relay1 , pin2 , relay2) ;

Field Description
expected-voltage A floating-point value representing the expected voltage

measured.
pin1, pin2 A nail number or pin name designated by INPUT, OUTPUT,

or BIDIR representing the pin under measurement.
relay1, relay2 A character literal or constant representing the analog bus

used to connect the test nail to the analog voltmeter. The
analog buses are: ’A’, ’B’, and ’G’.

Example
BLOCK OUT3V;
{
 DH(VID3,VID2) DL(VID1,VID0); // 1100:3V
};

MAIN
 OUT3V;
 MDLY(100);
 VOLT=MV(3.3,O3V,’A’,1,’G’);
 IF VOLT>3.6 || VOLT<3.0 THEN
 WRITELN(’3V OUTPUT FAILED’);
END.

TR-5000 Series F Test Language 56/86

Better Testing Better Quality ©Test Research, Inc.

OPEN
Type
Standard routine

Description
The OPEN statement establishes a stream over which data can be read from or
written to a specified file using READ/READLN or WRITE/WRITELN statements.
Refer to Syntax below, file-descriptor is a file variable and used to access the file
specified by a file-name in all subsequent I/O statements. The file-mode defines I/O
operation for a file as read, write, or append. The maximum 10 files are permitted to
open simultaneously in TR-8000 series system.

Syntax
OPEN (file-descriptor , file-name , file-mode) ;

Field Description
file-descriptor A TEXTFILE or BINARYFILE variable.
file-name A string literal or constant designed by CONST.

A character literal or constant designed by CONST.
Allowable modes include as follows.

file-mode

‘r’
‘w’
‘a’

open file for reading only,
create file for writing; discard previous contents if any,
append; open or create a file for writing at end of file.

Example
CONST
 FILENAME=’c:\test.log’;

VAR
 STREAM:TEXTFILE;

MAIN
 OPEN(STREAM,FILENAME,’a’);

 CLOSE(STREAM);
END.

TR-5000 Series F Test Language 57/86

Better Testing Better Quality ©Test Research, Inc.

STRCAT
Type
Standard routine

Description
This function concatenates a copy of a source string to the end of a target string, and
returns the string length after concatenation.

Syntax
[string-length =] STRCAT (target-string , source-string) ;

Field Description
target-string A character array variable holds the target string to which a

source string is appended.
source-string A string to be concatenated to the end of a target string.
string-length Optional. An integer variable holds the string length of

modified target string.

Example
VAR

 STRING:CHAR[100];

.

STRING[0]=0;

STRCAT(STRING,’THIS IS’);

STRCAT(STRING,’A STRING’);

The content of the variable STRING at this point is THIS IS A STRING.

TR-5000 Series F Test Language 58/86

Better Testing Better Quality ©Test Research, Inc.

STRCHR
Type
Standard routine

Description
This function locates the first occurrence of the specified character in a string, and
returns the index of the located character, or 0 if the character does not occur in a
string.

Syntax
[index =] STRCHR (string-to-search , character-to-find) ;

Field Description
string-to-search A string that will be searched for the specified character.
character-to-find A character for which to search in the specified string.
index Optional. An integer variable holds the index of the located

character.

Example
VAR

 INDEX:INTEGER;

.

INDEX=STRCHR(’THIS IS A STRING’,’S’);

The value of the variable INDEX is 4.

INDEX=STRCHR(’THIS IS A STRING’,’Y’);

The value of the variable INDEX is 0.

TR-5000 Series F Test Language 59/86

Better Testing Better Quality ©Test Research, Inc.

STRLEN
Type
Standard routine

Description
This function computes the length of the specified string. The number of characters,
that precede the terminating ASCII NUL byte 0, is returned. The size of a character
array is returned if a string stored in an array contains no terminating ASCII NUL byte.

Syntax
[length =] STRLEN (string) ;

Field Description
string A string that will have its length computed.
length Optional. An integer variable holds the resulting string

length computed by the function.

Example
VAR

 STRING:CHAR[10];

 LENGTH:INTEGER;

.

STRING=’TR-5001 ATE’;

LENGTH=STRLEN(STRING);

The value of the variable LENGTH is 10.

STRING[1]=0;

LENGTH=STRLEN(STRING);

The value of the variable LENGTH is 0.

TR-5000 Series F Test Language 60/86

Better Testing Better Quality ©Test Research, Inc.

STRNCPY
Type
Standard routine

Description
This function copies not more than a specified amount of characters from partial
source string to a target string, and returns the number of characters actually copied
to a target string.

Syntax
[number-copied =] STRNCPY (source-string , copy-from , copy-number ,

target-string) ;

Field Description
source-string A string from which a specified amount of characters will be

copied into a target string.
copy-from An integer number representing the beginning index of a

sub-string in a source string. For example, the string,
TR-5001 ATE, the sub-string begins at index 9 is ATE.

copy-number An integer number representing the maximum number of
characters that will be copied into a target string.

target-string A character array variable holds a string to which the
specified amount of characters from the source sub-string
will be copied.

number-copied Optional. An integer variable holds the number of
characters actually copied to a target string.

Example
VAR

 TARGET:CHAR[100];

.

STRNCPY(’TR-5001 ATE’,1,7,TARGET);

The string TARGET is TR-5001.

TR-5000 Series F Test Language 61/86

Better Testing Better Quality ©Test Research, Inc.

STRRCHR
Type
Standard routine

Description
This function locates the last occurrence of the specified character in a string, and
returns the index of the located character, or 0 if the character does not occur in a
string.

Syntax
[index =] STRRCHR (string-to-search , character-to-find) ;

Field Description
string-to-search A string that will be searched for the specified character.
character-to-find A character for which to search in the specified string.
index Optional. An integer variable holds the index of the located

character.

Example
VAR

 INDEX:INTEGER;

.

INDEX=STRRCHR(’THIS IS A STRING’,’S’);

The value of the variable INDEX is 11.

TR-5000 Series F Test Language 62/86

Better Testing Better Quality ©Test Research, Inc.

STRSCAN
Type
Standard routine

Description
This function converts input from the specified source string into a series of values
under the control of a formatting string. The format string contains format
specifications that indicate how to convert the input. The function returns the number
of input items successfully converted.

Syntax
[number-of-items =] STRSCAN (source-string , format , <target-list>) ;

Field Description
source-string A string from which the input to be converted is obtained.

A string representing the format that specifies the
admissible input sequences and how they are to be
converted for assignment. Each conversion specification
begins with a % and ends with a conversion character.
Valid conversion characters are as follows.

D integer. The integer may be in binary (leading
0b), decimal, or hexadecimal (leading 0h). For
example, 123, 0h123, 0b0101.

C character.
F floating-point number possibly containing a

decimal point, and an optional exponent field
containing an E or e followed by a possibly
signed integer. For example, 1.23, 1.3e2.

format

S string of non-white space characters.

target-list A list of variables, separated by commas, will receive the
converted input from a source string.

number-of-items Optional. An integer variable holds the number of input
items successfully converted.

Example
VAR

 IVAL:INTEGER;

TR-5000 Series F Test Language 63/86

Better Testing Better Quality ©Test Research, Inc.

 FVAL:FLOAT;

 STRING:CHAR[100];

.

STRSCAN(’1234 1.3e2 TR-5001 ATE’,’%D%F%S’,IVAL,FVAL,STRING);

The value of the variable IVAL is 1234.
The value of the variable FVAL is 130.0.
The value of the variable STRING is TR-5001.

TR-5000 Series F Test Language 64/86

Better Testing Better Quality ©Test Research, Inc.

STRSTR
Type
Standard routine

Description
This function locates the first occurrence of a sequence of characters (sub-string) in a
string, and returns the first character index of the located sub-string in a string, or 0 if
the sub-string does not occur in a string.

Syntax
[index =] STRSTR (string-to-search , sub-string-to-find) ;

Field Description
string-to-search A string that will be searched to locate the specified

sub-string.
sub-string-to-find A string that will search for in the specified string.
index Optional. An integer variable holds the first character index

of the matched sub-string in a string, or 0 if the sub-string is
not found.

Example
VAR

 INDEX:INTEGER;

.

INDEX=STRSTR(’TR-5001 IS ATE’,’8001’);

The value of the variable INDEX is 4.

TR-5000 Series F Test Language 65/86

Better Testing Better Quality ©Test Research, Inc.

SUBROUTINE
Type
Keyword

Description
The SUBROUTINE statement defines a user-customized utility routine, which is
composed of a sequence of utility statements delimited by left and right braces.
Variable declarations and constant definitions are permitted and exclusively accessed
within a SUBROUTINE. Subroutines are called only in the main program.

Syntax
SUBROUTINE name [(<valid arguments>)] ;
[CONST <constant definitions>]
[VAR <variable declarations>]
{

<valid utility statements>
} ;

Field Description
name User-defined identifier for a SUBROUTINE. All subroutines

must be associated with a unique name.
<valid arguments> A list of declared variables used in a SUBROUTINE can be

called by value or by reference. Individual declared
variables are delimited using semicolons.

<constant definitions> A list of defined constants accessed only in a
SUBROUTINE.

<variable declarations> A list of declared variables accessed only in a
SUBROUTINE.

<valid utility statements> Optional statement. Single statement or compound
statement.

TR-5000 Series F Test Language 66/86

Better Testing Better Quality ©Test Research, Inc.

Example
SUBROUTINE TOHEX(VAL:INTEGER; VAR CH:CHAR);
{
 IF VAL>=0 && VAL<=9 THEN
 CH=VAL+’0’
 ELSE IF VAL=10 THEN
 CH=’A’
 ELSE IF VAL=11 THEN
 CH=’B’
 ELSE IF VAL=12 THEN
 CH=’C’
 ELSE IF VAL=13 THEN
 CH=’D’
 ELSE IF VAL=14 THEN
 CH=’E’
 ELSE
 CH=’F’;
};

SUBROUTINE LOGRESULT;
VAR
 BYTEBUF:BYTE[20];
 STRBUF:CSTRING[40];
 I,J,HINIBBLE,LONIBBLE:INTEGER;
 LOGFILE:TEXTFILE;
{
 SAVETABLE(DATATAB,BYTEBUF);
 J=1;
 FOR I=1 TO 20 DO
 {
 HINIBBLE=BYTEBUF[I]>>4;
 LONIBBLE=BYTEBUF[I]&0HF;
 TOHEX(HINIBBLE,STRBUF[J]);
 J=J+1;
 TOHEX(LONIBBLE,STRBUF[J]);
 J=J+1;
 };

 OPEN(LOGFILE,’result.log’,’a’);
 FOR I=1 TO 20 DO
 WRITE(LOGFILE,STRBUF[2*I-1],STRBUF[2*I],’ ’);
 WRITELN(LOGFILE);
 CLOSE(LOGFILE);
};

TR-5000 Series F Test Language 67/86

Better Testing Better Quality ©Test Research, Inc.

UDLY
Type
Standard routine

Description
The UDLY statement suspends the program execution for the specified time interval in
microsecond. Once the delay interval is expired, the program execution resumes
automatically. The maximum delay time in microsecond is 65536.

Syntax
UDLY (time-interval) ;

Field Description
time-interval A positive integer or integer constant designated by

CONST representing the delay interval in microsecond.

Example
MAIN

 KDON(PIN1,PIN3,PIN5,PIN7);
 UDLY(500); // delay 500us

END.

TR-5000 Series F Test Language 68/86

Better Testing Better Quality ©Test Research, Inc.

WHILE-DO
Type
Keyword

Description
The WHILE-DO statement iterates a single or compound statement as long as the
condition-value is true, referring to Syntax below. The condition-value is evaluated
each time at the start of this iteration, and if satisfied, the loop-body is executed,
otherwise, terminates the WHILE statement. Like FOR loop statement, the loop-body
may be executed zero times if the condition-value is initially evaluated as a false
condition. The nested WHILE statements are permitted.

Syntax
WHILE condition-value DO loop-body ;

Field Description
condition-value Any Boolean expression
loop-body Single statement or compound statement

Example
I=1;
WHILE I<20 DO
{

 I=I+1;
};

TR-5000 Series F Test Language 69/86

Better Testing Better Quality ©Test Research, Inc.

WRITE / WRITELN
Type
Standard routine

Description
The WRITE/WRITELN statement writes a string (stream of ASCII characters) to the
standard output (monitor) or a device specified by a device-descriptor, referring to
Syntax below. Allowable device includes a line printer designated by LPT or a text file
opened by using OPEN statement. The parameter-list is a list of string literals, scalar
variables, and string variables, which are delimited by commas. The WRITELN
statement automatically appends a new line escape character at end of a string,
causing the next WRITE/WRITELN statement to write the data stream in a line next to
the current line.

Syntax
WRITE / WRITELN ([device-descriptor ,] <parameter-list>) ;

Field Description
device-descriptor Optional. The default device is a monitor. LPT is a reserved

identifier representing the line printer connected to the
system.

parameter-list A list of string literals and valid variables to be written to the
specific device. The valid data type of variables are scalar
types and CSTRING.

TR-5000 Series F Test Language 70/86

Better Testing Better Quality ©Test Research, Inc.

Example
CONST
 FILENAME=’test.out’;

SUBROUTINE TOASCII(INTVAL:INTEGER;VAR ASCIIVAL:INTEGER);
{
 ASCIIVAL=INTVAL+’0’;
};

SUBROUTINE TEST;
VAR
 ASCIIVAL:INTEGER;
 STREAM:TEXTFILE;
 I,J:INTEGER;
{
 OPEN(STREAM,FILENAME,’w’);
 WRITELN(STREAM,’Integer ASCII’);
 WRITELN(STREAM,’------- -----’);
 FOR I=0 TO 9 DO
 {
 TOASCII(I,ASCIIVAL);
 WRITE(STREAM,I);
 FOR J=1 TO 12 DO
 WRITE(STREAM,’ ’);
 WRITELN(STREAM,ASCIIVAL);
 }
 CLOSE(STREAM);
};

MAIN
 TEST;
END.

The contents of the file “test.out” are as follows at the execution completion of the
program.

TR-5000 Series F Test Language 71/86

Better Testing Better Quality ©Test Research, Inc.

Functional Instrumentation Statements
To provide the flexibility required for external functional instrumentation applications,
the test language recognizes two standard instrumentation bus protocols, GPIB and
RS-232. GPIB is also known as IEEE-488 Digital Interface for Programmable
Instrumentation. RS-232 is COM system in the PC.

TR-5000 Series F Test Language 72/86

Better Testing Better Quality ©Test Research, Inc.

GPIB Statements

IBFIND
Type
Standard routine

Description
This function obtains a handle associated with the name of a GPIB interface board
(communication between the host PC and a GPIB instrument). A handle is associated
with a board in the application program.

Syntax
[status =] IBFIND (NAME = name , HANDLE = handle) ;

Field Description
name A string representing the name of a GPIB control board.

The name prefixes GPIB following a number identifying a
board in the system, such as ‘GPIB0’.

handle An integer variable holds a handle associated with a GPIB
control board. The variable is associated with the board
specified in the whole test program.

status Optional. An integer variable holds the status returned from
the function call. A minus value and 0 represent an error; a
positive value represents the status with successful
execution.

Example
VAR

 STATUS,BD:INTEGER;

MAIN

 STATUS=IBFIND(NAME=’GPIB0’,HANDLE=BD);

 IF STATUS<=0 THEN GOTO ERROR;

ERROR:

 IF STATUS<=0 THEN

 FLAGTESTFAIL;

END.

TR-5000 Series F Test Language 73/86

Better Testing Better Quality ©Test Research, Inc.

IBDEV
Type
Standard routine

Description
This function obtains the device handle associated with the GPIB instrument specified.
The handle is associated with the instrument in the application program.

Syntax
[status =] IBDEV (BOARD = board-number ,

PAD = primary-address ,
[SAD = secondary-address ,]
[TIMEOUT = timeout ,]
HANDLE = handle) ;

Field Description
board-number An integer number identifying a GPIB control board.
primary-address An integer number representing the address of a GPIB

instrument.
secondary-address Optional. An integer number representing the secondary

address of a GPIB instrument.
Optional. The predefined integer constant specifies the
time limit of IO operations of a GPIB instrument. The valid
constants are as follows. The default is T10S.

timeout

TNONE
T10US
T30US
T100US
T300US
T1MS
T3MS
T10MS
T30MS
T100MS
T300MS
T1S
T3S

no limit
10 microsecond
30 microsecond
100 microsecond
300 microsecond
1 millisecond
3 millisecond
10 millisecond
30 millisecond
100 millisecond
300 millisecond
1 second
3 second

TR-5000 Series F Test Language 74/86

Better Testing Better Quality ©Test Research, Inc.

 T10S
T30S
T100S
T300S
T1000S

10 second
30 second
100 second
300 second
1000 second

handle An integer variable holds a handle associated with a GPIB
instrument. The variable is associated with the instrument
specified in the whole test program.

status Optional. An integer variable holds the status returned from
the function call. A minus value and 0 represent an error; a
positive value represents the status with successful
execution.

Example
VAR

 STATUS,ADR:INTEGER;

MAIN

 STATUS=IBDEV(BOARD=0,PAD=5,TIMEOUT=T1S,HANDLE=ADR);

 IF STATUS<=0 THEN GOTO ERROR;

ERROR:

 IF STATUS<=0 THEN

 FLAGTESTFAIL;

END.

TR-5000 Series F Test Language 75/86

Better Testing Better Quality ©Test Research, Inc.

IBONL
Type
Standard routine

Description
This function specifies whether the specified GPIB control board or instrument is to be
enabled (online) or disabled (offline) for operation. Taking an instrument offline can be
thought of as disconnecting its GPIB cable from other instruments. Putting a control
board or an instrument online causes the default configuration settings of a control
board or an instrument to be restored.

Syntax
[status =] IBONL (HANDLE = handle , ONLINE = is-online) ;

Field Description
handle A GPIB control board or instrument handle that is obtained

by IBFIND or IBDEV.
is-online A Boolean value representing whether a board or an

instrument is to be online. 1 is online; 0 is offline.
status Optional. An integer variable holds the status returned from

the function call. A minus value and 0 represent an error; a
positive value represents the status with successful
execution.

Example
VAR

 STATUS,ADR:INTEGER;

MAIN

 STATUS=IBDEV(BOARD=0,PAD=5,TIMEOUT=T1S,HANDLE=ADR);

 IF STATUS<=0 THEN GOTO ERROR;

 STATUS=IBONL(HANDLE=ADR,ONLINE=0); // Disable the instrument

ERROR:

 IF STATUS<=0 THEN

 FLAGTESTFAIL;

END.

TR-5000 Series F Test Language 76/86

Better Testing Better Quality ©Test Research, Inc.

IBWRT
Type
Standard routine

Description
This function writes a specified number of bytes to an instrument. An instrument is
automatically addressed before writing and un-addressed afterwards.

Syntax
[status =] IBWRT (HANDLE = handle ,

DATA = command ,
NWRITE = number-of-write-bytes
[, NWRITTEN = number-of-actual-write-bytes]) ;

Field Description
handle A GPIB instrument handle that is obtained by IBDEV.
command A string representing the command to be written to the

instrument. A string literal or character array is allowable.
number-of-
write-bytes

The number of bytes to write to an instrument. Usually, it is
the length of a string specified in DATA field.

number-of-
actual-write-bytes

Optional. An integer variable holds the number of bytes
actually transferred by the write operation.

status Optional. An integer variable holds the status returned from
the function call. A minus value and 0 represent an error; a
positive value represents the status with successful
execution.

Example
.

COMMAND=’ACA 21’; // Set AC voltage 21Vrms

STATUS=IBWRT(HANDLE=ADR,DATA=COMMAND,NWRITE=STRLEN(COMMAND));

IF STATUS<=0 THEN GOTO ERROR;

.

ERROR:

.

TR-5000 Series F Test Language 77/86

Better Testing Better Quality ©Test Research, Inc.

IBRD
Type
Standard routine

Description
This function reads a specified number of bytes from an instrument. An instrument is
automatically addressed before reading and un-addressed afterwards.

Syntax
[status =] IBRD (HANDLE = handle ,

NTOREAD = number-of-read-bytes ,
DATA = data-buffer
[, NREAD = number-of-actual-read-bytes]) ;

Field Description
handle A GPIB instrument handle that is obtained by IBDEV.
number-of-
read-bytes

The maximum number of bytes to read from an instrument.

data-buffer A character array holds the data read from an instrument.
The size of an array in bytes must be greater than or equal
to the number of read bytes specified in NTOREAD field.

number-of-
actual-read-bytes

Optional. An integer variable holds the number of bytes
actually transferred by the read operation.

status Optional. An integer variable holds the status returned from
the function call. A minus value and 0 represent an error; a
positive value represents the status with successful
execution.

Example
VAR

 BUFFER:CHAR[100];

.

STATUS=IBRD(HANDLE=ADR,NTOREAD=100,DATA=BUFFER);

IF STATUS<=0 THEN GOTO ERROR;

.

ERROR:

.

TR-5000 Series F Test Language 78/86

Better Testing Better Quality ©Test Research, Inc.

IBSTA
Type
Standard routine

Description
This function converts a status number returned by a GPIB function into a meaningful
status or error message.

Syntax
IBSTA (STATUS = number , MESSAGE = string-buffer) ;

Field Description
number An integer number representing a status or an error.
string-buffer A character array variable holds the meaningful message

for the status or error number specified.

Example
VAR

 MESSAGE,COMMAND:CHAR[100];

 STATUS,ADR:INTEGER;

.

COMMAND=’ACA 21’; // Set AC voltage 21Vrms

STATUS=IBWRT(HANDLE=ADR,DATA=COMMAND,NWRITE=STRLEN(COMMAND));

IF STATUS<=0 THEN GOTO ERROR;

.

ERROR:

IF STATUS<=0 THEN

{

 FLAGTESTFAIL;

 IBSTA(STATUS=STATUS,MESSAGE=MESSAGE);

 WRITELN(’GPIB ERROR:’,MESSAGE);

};

TR-5000 Series F Test Language 79/86

Better Testing Better Quality ©Test Research, Inc.

RS-232 Statements

OPENCOM
Type
Standard routine

Description
This function opens a COM port, and sets the port parameters as specified.

Syntax
[status =] OPENCOM (PORT = port-number

[, NAME = device-name]
[, BAUD = baud-rate]
[, PARITY = parity-mode]
[, NDATA = number-of-data-bits]
[, NSTOP = number-of-stop-bits]) ;

Field Description
port-number An integer number representing a COM port number to

operate on. A device name specified in NAME field
concatenates this number to truly represent a COM port.

device-name Optional. A string representing a prefix of a COM port
name, for example, COM1 for COM port 1 using
COMM.DRV. COMM.DRV that comes with MS Windows
recognizes “COM1” through “COM4” only. Refer to the
documentation for your Expended COM Port Board for
device names beyond COM4. Default is ‘COM’.

baud-rate Optional. An integer number representing the baud rate for
the port specified. Valid values are 110, 150, 300, 600,
1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400,
56000, 57600, 115200, 128000, 256000. Default is 9600
baud.

parity-mode Optional. A predefined integer constant representing the
parity mode for the port specified. Valid constants are
NONE, ODD, EVEN, MARK, SPACE. Default is NONE
parity.

number-of- Optional. An integer number representing the number of

TR-5000 Series F Test Language 80/86

Better Testing Better Quality ©Test Research, Inc.

data-bits data bits for the port specified. Valid values are 5, 6, 7, 8.
Default is 7 data bits.

number-of-
stop-bits

Optional. An integer number representing the number of
stop bits for the port specified. Valid values are 1 or 2.
Default is 1 stop bit.

status Optional. An integer variable holds the status returned from
the function call. A minus value represents an error; a
positive value represents the status with successful
execution.

Example
CONST

 PORTNO=1;

VAR

 STATUS:INTEGER;

.

// Configure COM1 as 9600 baud, none parity, 8 data bits, 2 stop

// bits

STATUS=OPENCOM(PORT=PORTNO,NDATA=8,NSTOP=2);

GOTO ERROR ON STATUS<0;

.

ERROR:

CLOSECOM(PORT=PORTNO);

TR-5000 Series F Test Language 81/86

Better Testing Better Quality ©Test Research, Inc.

CLOSECOM
Type
Standard routine

Description
This function closes a COM port.

Syntax
[status =] CLOSECOM (PORT = port-number) ;

Field Description
port-number An integer number representing a COM port number to

operate on.
status Optional. An integer variable holds the status returned from

the function call. A minus value represents an error; a
positive value represents the status with successful
execution.

Example
Refer to the example of OPENCOM.

TR-5000 Series F Test Language 82/86

Better Testing Better Quality ©Test Research, Inc.

COMRD
Type
Standard routine

Description
This function reads from input queue until the desired number of bytes has been read,
a timeout occurs, or termination byte is met, and returns an integer value indicating
the number of bytes actually read from queue.

Syntax
[status =] COMRD (PORT = port-number ,

NTOREAD = number-of-read-bytes ,
[TERM = termination-byte ,]
DATA = data-buffer) ;

Field Description
port-number An integer number representing a COM port number to

operate on.
number-of-
read-bytes

An integer number representing the number of bytes to
read from the selected port.

termination-byte Optional. A byte value used to terminate a read operation.
When termination byte is compared against a transferred
byte to determine the termination of a transfer, only the
valid bits (specified in NDATA field of OPENCOM) are
used. For example, for a 7-bit transfer, valid bits are 1 to 7.

data-buffer A character array variable holds the data read from the
selected port.

status Optional. An integer variable holds the status returned from
the function call. A minus value represents an error; a
positive value represents the number of bytes actually read
from the input queue.

Example
STATUS=COMRD(PORT=2,NTOREAD=100,DATA=BUFFER);

GOTO ERROR ON STATUS<0;

WRITELN(’ACTUALLY READ=’,STATUS,’BYTES’);

ERROR:

TR-5000 Series F Test Language 83/86

Better Testing Better Quality ©Test Research, Inc.

COMWRT
Type
Standard routine

Description
This function writes the specified number of bytes to the output queue of the selected
port, and returns an integer value indicating the number of bytes actually placed in
queue.

Syntax
[status =] COMWRT (PORT = port-number ,

DATA = data ,
NWRITE = number-of-write-bytes) ;

Field Description
port-number An integer number representing a COM port number to

operate on.
data A string representing the data to be written to the selected

port.
number-of-
write-bytes

An integer number representing the number of bytes to
write to the selected port.

status Optional. An integer variable holds the status returned from
the function call. A minus value represents an error; a
positive value represents the number of bytes actually
written to output queue.

Example
STATUS=COMWRT(PORT=2,DATA=’^~F’,NWRITE=3);

GOTO ERROR ON STATUS<0;

STATUS=COMWRT(PORT=2,DATA=’^~H’,NWRITE=3);

GOTO ERROR ON STATUS<0;

.

ERROR:

TR-5000 Series F Test Language 84/86

Better Testing Better Quality ©Test Research, Inc.

SETCOM
Type
Standard routine

Description
This function is used to control various parameters of the selected COM port.

Syntax
[status =] SETCOM (PORT = port-number

[, TIMEOUT = timeout]
[, XMODE = XON-XOFF-mode]
[, HWHANDSHAKE = CTS-mode]) ;

Field Description
port-number An integer number representing a COM port number to

operate on.
timeout Optional. A floating-point number representing a time limit

in second for input/output operations.
XON-XOFF-mode Optional. A predefined integer constant used to enable or

disable software handshaking by enabling or disabling
XON/XOFF sensitivity on transmission and reception of
data. Valid constants are XON or XOFF.
Optional. A predefined integer constant used to enable or
disable hardware handshaking mode. Hardware
handshaking is used to control the flow of data between the
sender and receiver so that the receiver’s input queue
does not overflow. Valid constants are as follows.

OFF Hardware handshaking is disabled.
The CTS line is ignored. The RTS
and DTR lines are raised the entire
time the port is open.

CTS-mode

CTS_RTS_DTR Hardware handshaking is enabled.
The CTS line is monitored. Both the
RTS and DTR lines are used for
handshaking.

TR-5000 Series F Test Language 85/86

Better Testing Better Quality ©Test Research, Inc.

 CTS_RTS Hardware handshaking is enabled.
The CTS line is monitored. The RTS
is used for handshaking. The DTR
line is raised the entire time the port
is open.

status Optional. An integer variable holds the status returned from
the function call. A minus value represents an error; a
positive value represents the status with successful
execution.

Example
CONST

 PORTNO=1;

VAR

 STATUS:INTEGER;

.

STATUS=OPENCOM(PORT=PORTNO,NDATA=8,NSTOP=2);

GOTO ERROR ON STATUS<0;

// Set timeout 5 seconds, enable software handshaking

STATUS=SETCOM(PORT=PORTNO,TIMEOUT=5.0,XMODE=XON);

GOTO ERROR ON STATUS<0;

.

ERROR:

CLOSECOM(PORT=PORTNO);

TR-5000 Series F Test Language 86/86

Better Testing Better Quality ©Test Research, Inc.

COMSTA
Type
Standard routine

Description
This function converts a status (an error) number returned by an RS-232 function into
a meaningful error message.

Syntax
COMSTA (STATUS = number , MESSAGE = string-buffer) ;

Field Description
number An integer number representing an error.
string-buffer A character array variable holds the meaningful message

for the error number specified.

Example
CONST

 PORTNO=1;

VAR

 STATUS:INTEGER;

 MESSAGE:CHAR[100];

.

STATUS=OPENCOM(PORT=PORTNO,NDATA=8,NSTOP=2);

GOTO ERROR ON STATUS<0;

STATUS=COMWRT(PORT=PORTNO,DATA=’^~F’,NWRITE=3);

GOTO ERROR ON STATUS<0;

.

ERROR:

CLOSECOM(PORT=PORTNO);

IF STATUS<0 THEN

{

 FLAGTESTFAIL;

 COMSTA(STATUS=STATUS,MESSAGE=MESSAGE);

 WRITELN(’RS232 ERROR:’,MESSAGE);

};

	Overview
	Terminology
	Test Program Structure
	
	
	
	
	
	MAIN

	Identifier
	Data Types
	
	
	Scalar Type
	Description
	Example
	File Type
	Description

	Constants
	
	
	Field
	Description
	Example

	Variable Declarations
	
	
	Field
	Description
	
	Example

	Operators
	
	
	Arithmetic Operators
	Relational and Logical Operators

	Expressions
	Statements

	Analog Testing
	
	
	
	Test Language
	Analog Measurement Functions

	Analog Test Statements
	
	
	
	
	
	
	MR / MC / ML / MJ / MD / MQ

	Field
	Description
	Identifier
	Value

	Digital Testing
	UUT Pin Definitions
	
	
	Field
	Description
	Example
	Field
	Description

	Nail State Specification Routines
	Digital Test Keywords
	Digital Test Statements
	BLOCK
	
	Type
	
	Description

	Syntax
	Field
	Description

	Example
	BLOCKSUB
	Syntax
	Field
	Description

	Example
	DG / DH / DL / DX
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description

	RESULTTABLE
	Field
	Description

	SAVETABLE
	Field
	Description

	SG / SH / SL / SX
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description

	Non-Test (Utility) Keywords
	Utility Statements
	
	
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description
	Field
	Description

	Functional Instrumentation Statements
	GPIB Statements
	RS-232 Statements

