

使用 Tristar II 氪气选项测量药物粘合剂

使用氪气的优势

等温线是在一定温度下一定压力范围内测量材料气体吸附量获得的。将注入到管中初始量的气体Vi,减去达到平衡后管内剩余气体量Ve得到材料吸附的气体量。对于低比表面积的材料,初始进气量和平衡剩余量之间的差别(Vi-Ve)非常小难于测量精确,误差大。通常对于低比表面积材料,增加样品量以增加(Vi-Ve)。然而这种方法受样品管和材料物理性质的限制。另外一种方法即是改变分析气体。

氪气是低比表面积测量的最优选择。在77K,氮气的饱和蒸汽压为760torr,而氪气的饱和蒸汽压仅为 2.5torr。由于一定空间内时,压力与分子数或摩尔数成比例*,1个氪气分子相当于300个氮气分子。当吸附量非常小时,存在分子的数量降低为1/300会显著减小误差值。(*液氮温度下,必须使用氪气非理想因子)

分析参数

UPS方法<846>比表面积基于低温气体吸附和BET比表面积计算。本测试使用的相对压力(P/P0)范围限制在0.05<P/P0<0.15。UPS方法<846>同样要求相关系数(或者拟合度)大于0.9975,所有数据需要符合标准。

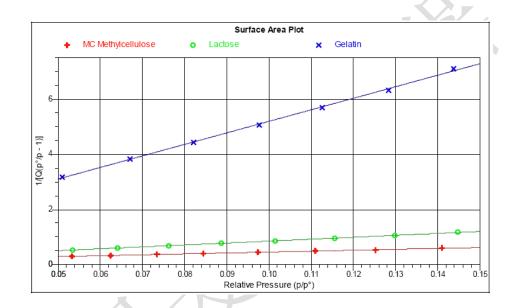
测试条件如下:

样品量:~0.3 克

制备: 40 ℃ 脱气 4 小时.

Free space: 测量

相对压力: 0.05 至 0.3 (数据分析使用 0.05 到 0.15)


平衡: 相对压力 1.0 , 10 s

回填: 开始时回填

分析结果

下列为三个样品的多点 BET 表面积分析数据和曲线。

	Surface Area (m²/g)		
Test	ММС	Lactose	Gelatin
1	1.6398	0.7945	0.1319
2	1.6426	0.7767	0.1171
3	1.6245	0.7681	0.1132
4	1.6228	0.7597	0.1040
5	1.6185	0.7554	0.0987
6	1.5787	0.7488	0.0920
7	1.5989	0.7396	0.1076
8	1.5794	0.7348	0.0912
Average	1.6132	0.7597	0.1070
Standard Deviation	0.0249	0.0198	0.0137

