# **Boost LED DRIVER N[: 555**

### **General Description**

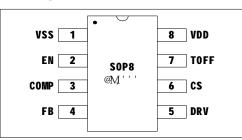
M

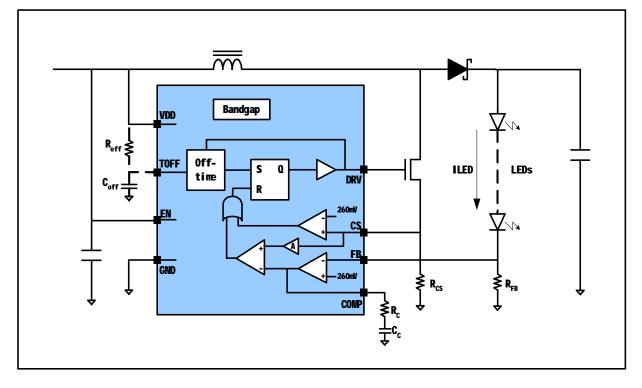
The N[:555 is a high efficient boost type LED driver IC.

The N[: 555 uses fixed off-time control scheme and 2MHz switching frequency can be achieved. The off-time can be set by an external capacitor and resistor.

The LED current can be set by an exteranal resistor.

# **Applications**


Ÿ LED driving


## **Block Diagram**



- $\ddot{Y}$  Wide LED current range: 5mA to 2A
- Ϋ Wide input voltage range: >2.5V
- Ϋ Up to 90% efficiency
- Ϋ Up to 2MHz switching frequency

### **Package**





1/6

# Pin Assignment

| Pin No. | Pin Name | Description            |
|---------|----------|------------------------|
| 1       | VSS      | Ground                 |
| 2       | EN       | Chip Enable            |
| 3       | COMP     | Compensation           |
| 4       | FB       | Voltage feedback       |
| 5       | DRV      | Driver                 |
| 6       | CS       | Current sensing        |
| 7       | TOFF     | Off time selection     |
| 8       | VDD      | Power supply (2V-6.5V) |

# **Absolute Maximum Ratings**

| Туре    | Symbol   | Description                         | Value        | Unit |
|---------|----------|-------------------------------------|--------------|------|
| Voltage | Vmax     | Maximum voltage on VDD pins         | 8            | V    |
|         | Vmin-max | Voltage range on EN, CS and FB pins | -0.3-VDD+0.3 | V    |
| Thermal | Tmin-max | Operation temperature range         | -20-85       | °C   |
|         | Tstorage | Storage temperature range           | -40-165      | °C   |
| ESD     | VESD     | ESD voltage for human body model    | 2000         | V    |

# **Electronic Characteristics**

| Parameter               | Symbol          | Test Condition | Min | Тур | Max | Unit |
|-------------------------|-----------------|----------------|-----|-----|-----|------|
| Power supply            | VDD             |                | 2.5 |     | 6.5 | V    |
| CS pin feedback voltage | V <sub>CS</sub> |                | 250 | 260 | 270 | mV   |
| FB pin feedback voltage | V <sub>FB</sub> |                | 250 | 260 | 270 | mV   |
| Operation current       | IDD             |                |     | 0.5 | 1   | mA   |

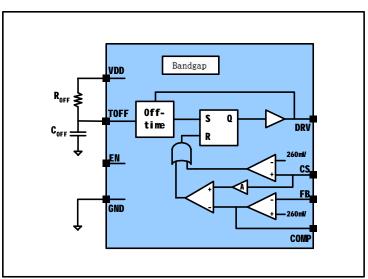
深圳立业电子

| Off time (without $R_{\text{OFF}}$ and $C_{\text{OFF}})$ | T <sub>OFF0</sub> |                      |     | 640 |     | ns |
|----------------------------------------------------------|-------------------|----------------------|-----|-----|-----|----|
| Standby current                                          | IDDQ              |                      |     |     | 1   | uA |
| EN pin high level voltage                                | V <sub>ENH</sub>  |                      | 2.0 |     |     | v  |
| EN pin low level voltage                                 | V <sub>ENL</sub>  |                      |     |     | 0.8 | v  |
| DRV Rising Time                                          | T <sub>RISE</sub> | 500pF cap on DRV pin |     |     | 50  | ns |
| DRV Falling Time                                         | T <sub>FALL</sub> | 500pF cap on DRV pin |     |     | 50  | ns |

### **Detail Description**

The N[: 555 works in two states:

- $\ddot{Y}$  ON State: the external switch is on until one of the comparators outputs a high level voltage, the N[: 555 goes to OFF state.
- $\ddot{Y}$  OFF State: the external switch remains off until a fixed off time and the outputs of the two comparators are low, the N[ : 555 goes to ON state and repeat the ON and OFF process.


#### **Fixed Off-Time**

The fixed off time  $T_{OFF}$  is determined by  $R_{OFF}$  and  $C_{OFF}$  as:

$$T_{OFF} = 0.51 \bullet \frac{100 K \Omega \bullet R_{OFF}}{R_{OFF} + 100 K \Omega} \bullet (C_{OFF} + 12 \, pF)$$

If TOFF pin is left open, the typical value of T<sub>OFF</sub> is:

$$T_{OFF} = 612ns$$





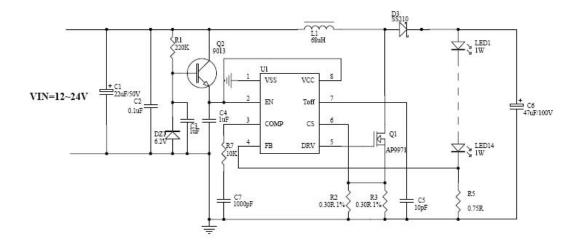


The T<sub>OFF</sub> can be reduced by adding R<sub>OFF</sub> and be increased by adding C<sub>OFF</sub>.

It works like a traditional current mode PWM DC-DC converter except that the off time is fixed and the working frequency is variable due to the values of VIN and VOUT. The comparator connected to CS pin is used for current limiting and the one connected to FB is used for voltage feedback.

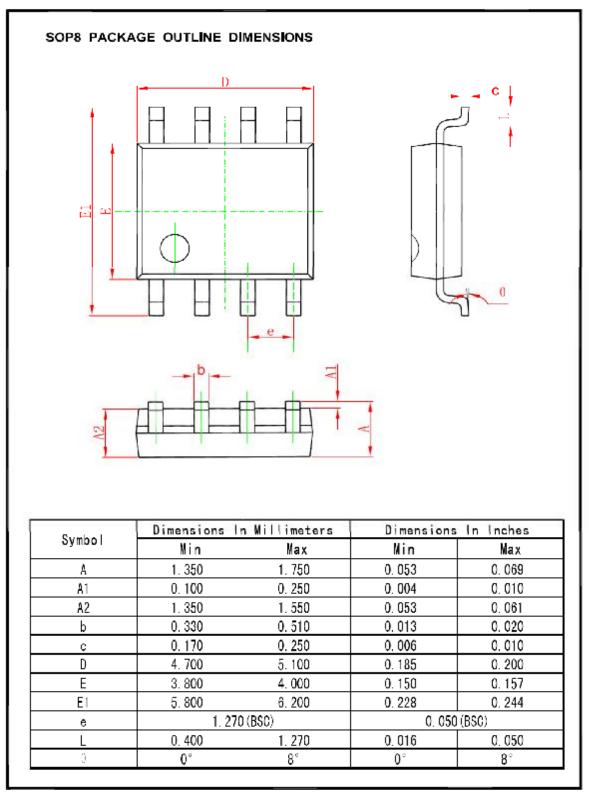
#### Setting LED Current

The LED current is set by the external resistor R<sub>FB</sub>:


#### **Compensation**

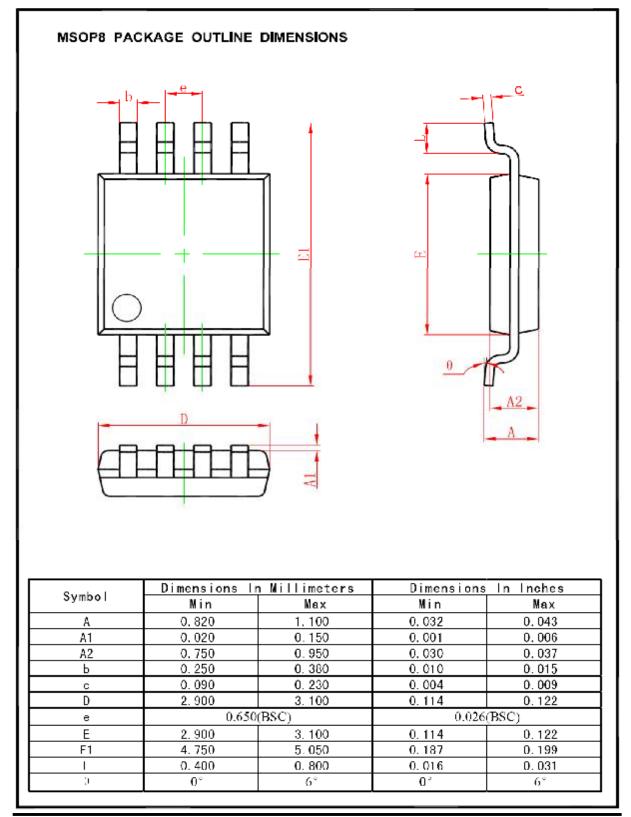
The output (COMP) of the transconductance error amplifier is used to compensate the regulator control loop. The system uses two poles and one zero to stabilize the loop.

$$f_{p1} = \frac{1}{\pi \times R_{LOAD} \times C_{OUT}}$$
$$f_{p2} = \frac{G_{EA}}{2 \times \pi \times C_C \times A_{VEA}}$$
$$f_{z1} = \frac{1}{2 \times \pi \times C_C \times R_C}$$
$$AVDC = \frac{1.5 \times A_{VEA} \times VIN \times R_{LOAD} \times V_{FB}}{VOUT^2}$$


Where,  $A_{VEA}$ =200V/V and  $G_{EA}$ =30uV/A.

**Typical Application** 






## **Package Information**



深圳立业电子

(L)



6/6