AMC7150

1

1.5A Power LED Driver

DESCRIPTION

AMC7150 is a PWM power LED driver IC. The driving current from few milliamps up to 1.5A. It allows high brightness power LED operating at high efficiency from 4Vdc to 40Vdc. Up to 200KHz external controlled operation frequency. External resistor controlled the maximum output current to single LED or a LED string.

FEATURES

- > Only 5 external components required.
- > Output driving current up to 1.5A.
- ➤ 4V~40V wide operation voltage range.
- ➢ High efficiency
- **ESD** protection HBM 2KV
- > TO-252 5-pin power package.

深圳市立业电子有限公司

AMC7150 1.5A Power LED Driver

BLOCK DIAGRAM

PIN DESCRIPTION				
Pin Number	Pin Name	Pin Function		
4	OUT	Driver output pin.		
2	IS	Peak current senses pin.		
5	СТ	Oscillator timing capacitor.		
1	VCC	Input Voltage 4V ~ 40V		
3	GND	Ground		

POWER DISSIPATION TABLE								
Package	$\theta_{\rm JA}$	Derating factor (mW/°C)	$T_A \leq 25^{\circ}C$	$T_A=70^{\circ}C$	$T_A = 85^{\circ}C$			
	(°C W)	$T_A \ge 25^{\circ}C$	Power rating (mW)	Power rating (mW)	Power rating (mW)			
TO-252-5	80	12.5	1560	1000	812			
NT (

Note :

Junction Temperature Calculation: $T_J = T_A + (P_D \ x \ \theta_{JA}).$

 P_{D} : Power Dissipation, T_{A} : Ambient temperature, θ_{JA} : Thermal Resistance-Junction to Ambient The θ_{JA} numbers are guidelines for the thermal performance of the device/PC-board system. All of the above assume no ambient airflow.

AMC7150 1.5A Power LED Driver

ABSOLUTE MAXIMUM RATINGS				
Input Voltage, VCC	-0.3V to 40V			
Output Voltage, OUT	-0.3V to 40V			
Maximum Junction Temperature, T _J	150°C			
Storage Temperature Range	-40°C to 150°C			
Lead Temperature (soldering, 10 seconds)	260°C			

Note:

Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.

RECOMMENDED OPERATING CONDITIONS						
Parameter	Symbol	Min	Тур	Max	Unit	
Supply Voltage	VCC	4		40	V	
Output current	I _{OUT}			1.5	А	
Operating free-air temperature range	Та	-40		85	°C	

ELECTRICAL CHARACTERISTICS

VCC=5V, Ta=25°C. (Unless otherwise noted)							
Parameter	Symbol	Condition	Min	Тур	Max	Unit	Apply Pin
Supply Current	I _{CC}	VCC=4~40V			4	mA	VCC
Output Drop-out Voltage	V _{DP}	I _{OUT} =1A, V _{IS} -V _{OUT}		1	1.3	V	OUT
Output Leakage Current	I _{LK}	$V_{IS}-V_{OUT}=40V$		0.01	10	μA	
Current Sense Voltage	V _{CS}	VCC- V _{IS}	270	300	330	mV	IS
Maximum duty cycle	T _{DC}	V _{IS} =VCC		85		%	СТ
CT Charge Current	I _{CH}			35		uA	

Application Information

Low Voltage DC/DC Application

The AMC7150 was design for power LED driving application. Only 5 external components was required for low voltage application. Fig.1 shows the typical application circuit for input voltage range from 4V to 40V. Buck power conversion topology was used and total forward voltage (at expecting current) of the LED string should lower than supply voltage.

Input Bypass Capacitor

The input by-pass capacitor C_{IN} holds the input voltage and filtering the switching noise of AMC7150.

Flywheel Diode

The fast recovery diode was recommended for flywheel diode D_F.

Inductor

The Inductor L storages energy during switch turn-on period and discharge driving current to LEDs via flywheel diode while switch turn-off. In order to reduce the current ripple on LEDs, the L value should high enough to keep the system working at continue mode that Inductor current won't fall to zero.

LED Driving Current

The peak current I_{PK} flow though LEDs was decided by:

I_{PK}= 300mV/ Rsense

The average current on LEDs was decided by the peak-to-peak ripple current that decided by inductor L. Assume the target average current 550mA on LEDs and ripple current 100mA then the Rsense should be:

Rsense= $300 \text{mV} / (550 \text{mA} + 0.5*100 \text{mA}) = 0.5 \Omega$

The Rsense value should higher than $200 \text{m}\Omega$ so that driving current won't over the recommended maximum driving current 1.5A.

深圳市立业电子有限公司

AMC7150 1.5A Power LED Driver

PACKAGE

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	2.200	2.400	0.087	0.094	
A1	0.000	0.127	0.000	0.005	
b	0.400	0.600	0.016	0.024	
с	0.430	0.580	0.017	0.023	
c1	0.430	0.580	0.017	0.023	
D	6.350	6.650	0.250	0.262	
D1	5.200	5.400	0.205	0.213	
E	5.400	5.700	0.213	0.224	
e	1.270) TYP	0.050 TYP		
e1	2.540 TYP		1.000 TYP		
L1	9.500	9.900	0.374	0.390	
L2	1.400	1.780	0.055	0.070	
L3	2.550	2.900	0.100	0.114	
V	3.800	REF	0.150 REF		

PRODUGT PREVIEW