使用说明书

HB40X 智能电压表

- 兼容输入DCV：500V，100V，10V，1V；ACV：500V，100V，10V，1V
- 零值，满值，小数点可自由设定
- 多级数字滤波选择，有效滤除干扰，有效消除非临界跳字
- 实现报警，控制输出，变送输出
—，主要技术指标
1．工作电源：AC85～260V（DC85～360V）$/ 3 W$
2．显示范围：直流：－1999～9999；交流：0～9999
3．测量精度：直流： $\pm 0.8 \%+3 d$ ；交流： $\pm 1.0 \%+5 \mathrm{~d}$
4．响应频率： $40 \sim 400 \mathrm{~Hz}$
5．超限显示：＂EEEE＂或＂－EEE＂
6．继电器触点容量：AC220V／3A
7．继电器触点寿命： 10^{5} 次
8．变送输出精度：$\pm(0.8 \%+3 d) 12$ 位
9．使用环境： $0 \sim+50^{\circ} \mathrm{C} ; \leqslant 85 \% \mathrm{RH}$
10．外形尺寸及开孔尺寸（见下表）

型 号	数码管尺寸	外形尺寸 (mm)	开孔尺寸 (mm)
HB402	0.36 （英寸）	$48 \times 48 \times 82$	$45^{+1} \times 45^{+1}$
HB404	0.56 （英寸）	$96 \times 48 \times 82$	$92^{+1} \times 44^{+1}$
HB405	0.56 （英寸）	$72 \times 72 \times 104$	$68^{+1} \times 68^{+1}$
HB406	0.80 （英寸）	$96 \times 96 \times 82$	$91^{+1} \times 91^{+1}$
HB408	0.80 （英寸）	$160 \times 80 \times 80$	$152^{+1} \times 76^{+1}$
HB409	1.00 （英寸）	$120 \times 120 \times 130$	$111^{+1} \times 111^{+1}$

二，面板说明（以HB404为例）

（1）J1报警指示灯（2）J2报警指示灯（3）设定／确认键 （4）位选键（5）减小键／参数向上选择键
（6）增加键／参数向下选择键
7 仪表显示窗口
三，参数设定说明

输入信号编号表（仪表出厂时编号设为4）：

输入信号	输入信号编号	输入信号范围	备注
直流电压 DCV	\square	$-100 \sim 500 \mathrm{~V}$	注5
	1	－20～100V	
	E	－2～10V	
	\exists	－0．2～1V	
交流电压 ACV	4	$0 \sim 500 \mathrm{~V}$	
	5	$0 \sim 100 \mathrm{~V}$	
	5	$0 \sim 10 \mathrm{~V}$	
	7	0～1V	

（二）设定量程显示参数（进入方法：按（1）后，输入密码以GE）
1．量程显示参数介绍

参数提示符	参数名称	参数意义	选项或设定范围	出厂值	备注
$F_{L L}$	PvL	零值	$-1999 \sim 9999$	0	注1
$F_{L H}$	PvH	满值	$-1999 \sim 9999$	500.0	注2
$\square \square L$	dot	小数点位置	$0 \sim 3$	1	注3
$F_{H L L}$	FILt	数字滤波系数	$0 \sim 3$	0	注4
$E_{\square G}$	End				

2．参数定义说明
注1．零值（PvL）：输入信号为 0 时的对应显示值，可用于零点修正或初值偏移。通常情况下，此值设定为 0000 。
注2．满值（PvH）：输入信号为正向最大时的对应显示值。
设定的满值不同，其相应的分辨力也不同。满值越小，
分辨力越低，显示越稳定。以配接 $6 \mathrm{KV} / 100 \mathrm{~V}$ 的互感器为
例，满值设定见下表。

满值设定	小数点位置	仪表显示	分辨力
0600	2	6.00	10 V
6000	0	6000	1 V

注3．小数点位置（ dot ）：小数点位置任意设定。
注4．数字滤波系数（FILt）：可设为 $0, ~ 1, ~ 2, ~ 3$ 。其中 0 表示无数字滤波， 1 弱， 2 中， 3 强。滤波系数越大，显示越稳定，滞后越大。
注5．直流信号可测负值，测量范围为正向量程的 20% 。直流信号测量范围的计算公式：［（零值－满值）$\times 20 \%$～满值］。
如：零值 $=0$ ，满值 $=500$ ，则直流信号测量范围为：$-100 \sim 500$ 。
3．量程显示参数的设定方法

设定要点：
1）按（8F）进入设定状态；
2）使用位选键 \ominus ，减小键 Θ ，增加键 Θ 输入密码；
3）使用参数向上选择键 \ominus 或参数向下选择键 Θ 选择新参数；
4）按（8tr）确认。
（三）设定仪表报警参数（设定方法：按厅后，输入密码以［口1）
1．仪表报警参数组介绍

参数提示符		参数提示符说明	参数设定范围	出厂值
RHI	AH1	继电器J1吸合值	－1999～9999	10.0
BLI	AL1	继电器」1释放值		20.0
AHE	AH2	继电器J2吸合值		30.0
－ $\mathrm{LE}^{\text {c }}$	Al2	继电器J2释放值		40.0
End	End	结束		

2．报警参数的设定方法与量程显示参数的设定方法相同
3．继电器吸合值，释放值的设定说明（以AH1，AL1为例） $A H 1$ 为继电器吸合值，AL 1 为继电器释放值
（1）设定 AH $1=A L 1$ ，继电器无效。
（2）设定 $A H 1>A L 1$ ，当测量值 $\geqslant A H 1$ 时，继电器吸合；当测量值 $\leqslant A L 1$ 时继电器释放。继电器动作情况见图 1 ，常用于上限报警。
（3）设定 $A H 1<A L 1$ ，当测量值 $\leqslant A H 1$ 时，继电器吸合；当测量值 $\geqslant A L 1$ 时继电器释放。继电器动作情况见图2，常用于下限报警。
（4）吸合值不等于释放值，其之间的区域构成回程不动作区。通常回程不动作区为 $3 \sim 5$ 个字。

图1

图2
（四）设定仪表变送参数（设定方法：按 凩 后，输入密码吅けコ）
1．仪表变送参数组介绍

参数提示符	参数提示符说明	设定范围	出厂值	
$a b t G$	obty	变送输出类型	$4-20 ; 0-20$	$4-20$
$a b L$	obL	变送低限对应的显示值	$-1999 \sim 9999$	000.0
$\square \square H$	obH	变送高限对应的显示值	$-1999 \sim 9999$	500.0
$E a G$	End	结束		

2．参数定义说明
（1）．变送输出类型选择（obty）：根据变送输出需要，可选择 $4-20 \mathrm{~mA}$ 或 $0-20 \mathrm{~mA}$ 。
（2）．变送输出下限值（obL）：变送输出为 0 mA 或 4 mA 时对应的显示值。
（3）．变送输出上限值（ obH ）：变送输出为 20 mA 时对应的显示值。设定的上限值不同，其相应的分辨力也不同。上限值越小，变送输出的分辨力越低。
四，端子图
HB402：48X48
HB404：96X48

coll				
		78	89	910
	11			13
	12			14
	112	$2 \mid 3$	34	45
		－${ }_{-000}{ }^{1}$	$\stackrel{1}{\square}$	$\sqrt{2}$

HB405：72X72

HB406：96X96

$\begin{aligned} & \text { 変 }-9 \\ & \text { 䄖 }+10 \\ & \hline \end{aligned}$	2	
＋11	3	\cdots
J2－12	4	－500V
13	5	－100V
$\ulcorner 14$	6	－10V
J1－15	7	－1V
－16	8	公共端

五，HB40X系列仪表命名
本系列仪表按仪表外形尺寸分：402，404，405，406，408，409；按输入信号分为：电压表，电流表。
$\mathrm{HB} \square \square \square-\square \mathrm{V}$ ：电压信号，直流： $500 \mathrm{~V}, ~ 100 \mathrm{~V}, ~ 10 \mathrm{~V}, ~ 1 \mathrm{~V}$

六，应用举例
例：用户需要测量交流电压 $0 \sim 380 \mathrm{~V}$ ，要求被测电压高于 $400 V$ 时上限报警，被测电压低于 $360 V$ 时下限报警，并将 $0 \sim 380 \mathrm{~V}$ 的电压变成 $4 \sim 20 \mathrm{~mA}$ 变送输出，系统供电电源为AC220V，仪表开孔尺寸为 $92 \times 44(m m)$ 。

1．仪表选型：仪表选用HB404TB－V智能电压表
2．仪表接线：输入端子接 6 号和 10 号
3．参数设定：
1）输入密码 0089 ，设定输入信号编号如下：
输入信号编号 P－Sn＝4（AV：0～500V）；
2）输入密码 0036 ，设定量程显示参数如下：
零值 $\mathrm{PvL}=000.0$ ；
满值 $\mathrm{PvH}=500.0$ ；
小数点位置 $\operatorname{dot}=1$（显示范围： $0.0 \sim 500.0$ ）；数字滤波系数 FILt 可根据现场干扰酌情设定。
3）输入密码 0001 ，设定报警参数如下：
电压上限报警吸合值 $A H 1=400.0 V$ ；
电压上限报警释放值AL1＝399．7V；
电压下限报警吸合值AH2 $=360.0 \mathrm{~V}$ ；
电压下限报警释放值AL2＝360．3V；
4）输入密码 0042 ，设定变送输出参数如下：
变送输出类型选择obty $=4 \sim 20 \mathrm{~mA}$ ；
变送输出下限值obL＝0000；
变送输出上限值 $\mathrm{ObH}=3800$ ；

订货须知

继电器报警，变送功能为可选功能，订货时须明确注明。

