可编程声光色散滤波器AOPDF的 光谱相移测量和残留角色散测量

A. Börzsönyi¹, A. P. Kovács¹, M. P. Kalashikov², M. Merő³, <u>K. Osvay¹</u>

¹匈牙利Szeged大学光学与量子学学院 ²德国柏林Max Born 研究院 ³匈牙利Szeged大学HAS激光物理研究小组

上海贝丁汉工业自动化设备有限公司独家代理 <u>www.beidinghan.com</u> 手机13564994396

- •目的-解决可编程声光色散滤波器 (Dazzler®)中的问题
- 采用空间光谱分辨干涉技术
- 检测Dazzler装置设定的光谱相移的精度
- 检测Dazzler装置整形的角偏差和色散情况
- 结论

目的

对光束脉冲的光谱相位 柔性控制的需要:

周期量级激光系统 目标的脉冲持续时间: -光谱相位的调整 高强度啁啾脉冲放大CPA激光 时域对比: -光谱相位的调整 -残留角色散

一套有效的解决方案:

可编程声光色散滤波器 (AOPDF)

Tournoise, Opt.Comm. 140 (1997) 245

版本一:角色散度强 Dazzler®新型商业化设计

> 没有测量角色散的报告 光谱相位控制的精度: 一个报告;分辨率低 (使用FROG: 100fs²)

需要直接回答的问题

用于调整群延迟色散GDD和三阶色散TOD的 可编程声光色散滤波器(Dazzler)的 精度至少可以是多少? 衍射光束的有残留角色散吗?

空间分辨光谱干涉技术

空间分辨光谱干涉条纹公式

空间分辨光谱干涉技术来测量相对光谱相位... ... 介于参考和采样脉冲之间

 $\Delta \varphi(\omega) = \varphi_{\rm R}(\omega) - \varphi_{\rm S}(\omega) =$

光学材料和啁啾镜的色散

Bor et al., Opt.Comm. **78** (1990) 109 Calatroni et al., Opt.Comm. **157** (1998) 202 Osvay et al., Appl.Phys.B **87** (2007) 457 Börzsönyi et al., Appl.Opt. **47** (2008) 4856

啁啾脉冲放大CPA系统的色散管理

Kovács et al., App.Phys. B **80** (2005) 165 Osvay et al., Appl. Phys. B **89** (2007) 565

非线性处理

Durfee at al., CLEO 2009, CThDD5 Osvay et al., CLEO 2009, CMu7 Kovács et al., OL 20 (1995) 788

脉冲持续时间的测量

Meshulach et al., JOSA B **14** (1997) 2095 Parys et al., J.Opt.A **7** (2005) 249 Bowlan et al., OE **14** (2006) 11892

全线性CEP 偏移的确定

Osvay et al., OL **32** (2007) 3095 Görbe et al., Appl.Phys.B **95** (2009) 273

群延迟色散GDD精度 < 1% ,三阶色散TOD精度 <3%, 对于低 噪声传感器和脉冲,宽度>50nm.

Börzsönyi et al., Opt. Commun. 281 (2008) 3051

角色散的定义

传播方向

相位波前

球形(高斯)光束

平面波

角色散传播方向的测量

相前角色散的测量

反转光束马赫-曾德干涉仪

Varjú et al., Appl.Phys.B 74 (2002) S259

DAZZLER装置的光谱相位

群延迟色散 (GDD)

测量值

0.29

1.95

2.33

3.60

4.98

9.17

19.85

29.40

40.89

50.49

100.05

201.74

302.55

403.97

505.92

1011.9

		GDD) [fs²]
	光谱相位	设定值 1	测量 0.2
_		2	1.9
ase Shift [rad	6 T	3	2.3
		4	3.6
	4 – 300 fs ²	5	4.9
	400 fs ²	10	9.1
Ph	$2 - 500 \text{ fs}^2$	20	19
ral		30	29
Specti		40	40
	0	50	50
	0.77 0.8 0.83	100	10
	νανειείησαι [μπ]	200	20
		300	30

使用 Dazzler装置 (3.4%)的GDD精度 <1fs² (1-100fs²时),低于 1% (>100fs²时)

400

500

1000

TOD [fs ³]		
测量值		
1025.1		
2032.1		
3143.9		
4100.3		
5008.6		
9961.0		
20572		
32053		
41447		

使用 Dazzler装置 (3.4%)的TOD精度 受测量误差(2.5%)的限制,最高 20000fs³.

角的影响 |: *常规发现* … 测试两个 Dazzler装置 (b. 2003 & 2008)

传播方向 a.d. = 相位波前 a.d. 角色散没有改变 -对于声音的能量 – 在GDD & TOD设置给定的情况 -对于孔的位置和宽度

取决于预热时间

角的影响 II: GDD 调谐 必要的说明

振荡器和 cw光束: Dazzler装置处于cw状态 放大器光束: Dazzler装置处于脉冲状态 (10Hz)

CW光束的热效应 (GDD – 消耗功率)

> 放大光束的非线性影响 (包括 n₂ – 梯度系数) 上海贝丁汉工业自动化设备有限公司独家代理 www.beidinghan.com

结论

- •采用空间分辨光谱干涉技术 SSRI来测量两个Dazzler装置的光 谱相移、角偏差和角色散.
- GDD和TOD的精度分别优于 1% 和3.4 %.
- •角偏差和角色散:

随 GDD在cw模式下的设定而改变 – 热效应 在脉冲模式下不受影响.

- •角色散:小的净色散, 对于多数激光系统可以忽略不计.
- 脉冲强度在 Dazzler装置上受限制: 使用预置放大器.

