频谱分析仪

GSP-930

使用手册 修订本 1.0 2011.12

ISD-9001认证企业

本手册所含资料受到版权保护,未经固纬电子实业股份有限公司预 先授权,不得将手册内任何章节影印、复制或翻译成其它语言。

本手册所含资料在印制之前已经过校正,但因固纬电子实业股份有限公司不断改善产品,所以保留未来修改产品规格、特性以及保养 维修程序的权利,不必事前通知。

目录

安 全说明		3
产品介绍		7
	GSP-930介绍	8
	附件	10
	外观	12
	首次使用说明	22
基本操作		
	频率设置	
	扫宽设置	40
	幅值设置	43
	自动设置	55
	带宽/平均设置	57
	扫描	62
	轨迹	68
	触发	75
	标记	80
	显示	94
	系统设置	
	预设	104
高级操作		106
	测量	107
	限制线测试	150
	序列	156
	跟踪源	161
	功率计	163

G≝INSTEK

文档	文档概述	167
<mark>远</mark> 程控制		
FVU	接口设置	
附录		
	更换时钟电池 词汇缩略语 GSP-930 默认设置	
	菜单树 GSP-930 规格	
	GSP-930尺寸 符合性声明	235 236
索引		237

本章节包含仪器操作和存储时必须遵照的重要安全 说明。在操作前请详细阅读以下内容,确保安全和 最佳化的使用。

安全符号

这些安全符号会出现在本使用手册或仪器上。

小 藝告	警告:产品在某一特定情况下或实际应用中可能对 人体造成伤害或危及生命
<u></u> 注意	注意:产品在某一特定情况下或实际应用中可能对 产品本身或其它产品造成损坏
<u>Ý</u>	高压危险
Ĩ	请参考使用手册
Ŧ	大地(接地)端子
\rightarrow	机箱外壳或底座接线端子
	勿将电子设备作为未分类的市政废弃物处理。请单 独收集处理或联系设备供应商

3

GWINSTEK

安全指南	
▲常 ▲ 注意	 勿将重物置于仪器上 避免严重撞击或不当放置而损坏仪器 避免静电释放至仪器 请使用匹配的连接线,切不可用裸线连接 确保 RF 输入准位不超过+30dBm 确保 TG 输出端子的反灌功率不超过+30dBm 请勿在 TG 输出端输入信号
	 请勿堵塞冷却风扇通风口 若非专业技术人员,请勿自行拆装仪器 (测量等级) EN GIOIO-1:2010 规定了如下测量等级,该仪器属于等级 II: 测量等级 IV:测量低电压设备电源 测量等级 III:测量建筑设备 测量等级 II: 测量直接连接到低电压设备的电路 测量等级 I. 测量素直接连接电源的电路
电源 ▲ 小 警告 电池 ▲ 注意	 交流输入电压: 100V~240V 频率: 50/60Hz 将交流电源插座的保护接地端子接地,避免电击 触电 额定值: 10.8V, 6 cell Li-ion 电池 在安装或取出电池组前必须关闭电源拔下电源线
清洁	 清洁前先切断电源 以中性洗涤剂和清水沾湿软布擦拭仪器。不要直接将任何液体喷洒到仪器上 不要使用含苯,甲苯,二甲苯和丙酮等烈性物质的化学药品或清洁剂

- 操作环境 地点:室内,避免阳光直射,无灰尘,无导电污染 (下注)
 - 温度: 5°C~45°C
 - 湿度: <90%

(污染等级) EN 61010-1:2010 规定了如下污染程度。该仪器属于等级 2。

污染指"可能引起绝缘强度或表面电阻率降低的外界物质,固体,液体或气体(电离气体)"。

- 污染等级 1: 无污染或仅干燥,存在非导电污染,污染无影响
- 污染等级 2:通常只存在非导电污染,偶尔存在由凝结物引起的短暂导电
- 污染等级 3:存在导电污染或由于凝结原因使干燥的非导电性 污染变成导电性污染。此种情况下,设备通常处于避免阳光 直射和充分风压条件下,但温度和湿度未受控制
- 存储环境
- 地点:室内
- 温度: -20°C~70°C
- 湿度: <90%

处理

勿将电子设备作为未分类的市政废弃物处理。请单 独收集处理或联系设备供应商。请务必妥善处理丢 弃的电子废弃物,减少对环境的影响

G^wINSTEK

英制电源线

在英国使用该仪器时,确保电源线符合以下安全说明。

注意:导线/设备连接	必须由专业人员	操作
警告:此装置必须	须接地	
重要:导线颜色应与	下述规则保持一致	致:
绿色/黄色:	接地	OE
蓝色:	零线	
棕色:	火线(相线)	

导线颜色可能与插头/仪器中所标识的略有差异,请遵循如下操作:

颜色为黄绿色的线需与标有字母 E,或接地标志,或颜色为绿色/黄绿色的接地端子相连

颜色为蓝色的线需与标有字母 N, 或颜色为蓝色或黑色的端子相连。

颜色为棕色的线需与标有字母 L 或 P, 或者颜色为棕色或红色的端子相连。

若有疑问,请参照本仪器提供的用法说明或与经销商联系。

电缆/仪器需有符和额定值和规格的 HBC 保险丝保护:保险丝额定值请参照 仪器说明或使用手册。如:0.75mm²的电缆需要 3A 或 5A 的保险丝。保险丝 型号与连接方法有关,大的导体通常应使用 13A 保险丝。

将带有裸线的电缆、插头或其它连接器与火线插座相连非常危险。若已确认 电缆或插座存在危险,必须关闭电源,拔下电缆、保险丝和保险丝座。并且 根据以上标准立即更换电线和保险丝。

本章节简要介绍了 GSP-930 的主要特点、包装明 细、首次使用说明以及前/后面板和 GUI 介绍。

GSP-930 介绍	8
主要特点	
附件	
句准明细	1.1

GWINSTEK

GSP-930介绍

GSP-930 是迄今为止固纬推出的最高端的一款频谱分析仪。它具有频谱、拓扑或光谱的分割视窗显示功能。

主要特点

• 9kHz~3GHz 带宽	
• 1Hz 分辨率	
• 5%的标称 RBW 精度 <750kHz, 8% @>750kHz	
• 视频带宽 1Hz~1MHz (10 steps)	
• 幅值测量范围: DANL~30dBm (与频率有关)	
• 输入衰减:0~50dB	
• 相位噪声: < -88dBc/Hz@1GHz, 10kHz	
• RBW 帯寄・10% 歩进 増加	
• 三种显示模式·频谱 拓扑和光谱	
• 分割视窗显示	
• 内置 FMI 滤波器	
• 自动唤醒功能	
• 内置前置放大器	
 门控扫描 	
 标记计频器 	
• 两种操作模式:频谱和功率计模式	
• SEM 测量	
• ACPR 测量	
• OCBW 测量	
• 通道功率测量	
 解调与分析 	
• 带峰值列表的多种标记功能和特点	
	 9kHz~3GHz 帶宽 1Hz 分辨率 5%的标称 RBW 精度 <750kHz, 8% @>750kHz 视频带宽 1Hz~1MHz (10 steps) 幅值测量范围: DANL~30dBm (与频率有关) 输入衰减: 0 ~ 50dB 相位噪声: < -88dBc/Hz@1GHz, 10kHz RBW 带宽: 10%步进增加 三种显示模式: 频谱, 拓扑和光谱 分割视窗显示 内置 EMI 滤波器 自动唤醒功能 内置前置放大器 门控扫描 标记计频器 两种操作模式: 频谱和功率计模式 SEM 测量 ACPR 测量 通道功率测量 解调与分析 带峰值列表的多种标记功能和特点

G^wINSTEK

- 序列功能,自动顺序执行预先编辑的操作
- 选配电池操作

接口

- 8.4''彩色 LCD (800×600)
- 屏幕菜单图标
- DVI-I 视频输出
- RS-232, RTS/CTS 硬件流控制
- USB 2.0, 支持 USB TMC
- LAN TCP/IP, 支持 LXI
- 选配 GPIB/IEEE488 接口
- IF 输出@ 886MHz
- 耳机输出插孔
- REF (参考时钟)输入/输出 BNC 接口
- 报警/集电极开路输出 BNC 接口
- 触发/门控输入 BNC 接口
- RF N-type 输入接口
- TG 输出接口
- DC +7V/500mA 输出 SMB 接口

GWINSTEK

附件

标配附件	料号	描述
	依区域不同	使用手册
	依区域不同	电源线
选配	选配序号	描述
	Opt1.	跟踪源
	Opt2.	电池(11.1V/5200mAH锂离子电 池)
	Opt3.	GPIB 接口(IEEE 488 bus)
选配附件	料号	描述
	PWS-06	USB 平均功率传感器(高达 6200 MHz; -32~20 dBm)
	GRA-415	LII 机架安装套件

包装明细 使用前请检查包装明细。

打开外箱

明细 (每台)

- 主机 (可能包含选配的 GPIB, TG 输出)
- 快速使用手册
- 使用手册 CD
- 电源线 x1 (依区域不同)
- 选配电池组
- 校验证书

外观

GSP-930前面板

	Amplitude	设置幅值参考电平, 衰减, 前置放大 器控制, 刻度以及其它有关衰减和 刻度的选项
	Autoset	自动搜索峰值信号,并以适当的水 平和垂直刻度显示波形
Control keys	BW/Avg	设置分辨率带宽,视频带宽,平均类 型以及开启/关闭 EMI 滤波器
	Sweep	设置扫描时间和门控时间
	Trace	设置轨迹和相关功能
	Display	设置视窗模式和基本的显示器属性
	Meas	进入测量选项,如 ACPR, OCBW, 解调分析, SEM, TOI 和其它高级测 量
	Limit Line	设置和 Pass/Fail 限制线测试
	Sequence	存取,设置和编辑指令序列
	Trigger	设置触发模式
File	File	文档选项
	Quick Save	一键保存状态,轨迹,屏幕限制线, 校准或序列

	Save	保存轨迹,状态等,以及保存选项
	Recall	调取轨迹,状态等,以及调取选项
Marker	Marker	打开/关闭标记,设置标记
	Marker->	将光标置于轨迹上
	Peak Search	启用光标功能,搜索最大和最小峰 值
State	Preset	恢复出厂设置或用户自定义设置
	LOCAL	由远程控制模式转到本地控制
	Mode	切换频谱模式或功率计模式
	System	显示系统信息,设置其它和系统相 关的功能
Power key		开机/关机
Scroll wheel		编辑数值,选择列表选项

Arrow keys		增/减值(步进),选择列表选项
RF input terminal	RF INPUT 50Ω DC ±50V MAX. +30dBm MAX.	 RF 输入端。接收 RF 输入 最大输入: +33dBm 输入阻抗: 50Ω 最大 DC 电压: ±50V N-type: 母头
DC power supply		SMB 端口,为选配附件供电 • DC +7V • 最大 500mA
Numeric keypad	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 数字键盘用于键入 数值和参数。常与 方向键和旋钮一起 3 () () <td< td=""></td<>
TG output port	TG OUTPUT 500 DC ±50V MAX REV PWR +30dBm	跟踪源(TG)输出 N-type: 母头 输入阻抗: 50Ω 输出功率: -50dBm~0dBm 最大反向功率: +30dBm
USB A, Micro SD		墜 USB A 端口, Micro SD 端口,用于 ⋑ 保存/调取设置/文件

后面板

G≝INSTEK

Battery pack		电压: 10.8V 容量: 5200mAH
REF IN	REF IN	BNC 母头参考输入
REF OUT	REF OUT	BNC 母头参考输出: 10MHz, 50Ω 阻抗
Security Lock		
ALARM OUT	ALARM OUT	BNC 母头集电极开路报警输出
TRIG IN/GATE IN	TRIG IN	BNC 母头 3.3V CMOS 触发输入/门 控扫描输入
Phone	\bigcirc	3.5mm 立体声耳机插孔(单声道有线 操作)
USB B		USB B Device 端口。USB 1.1/2.0
LAN		RJ-45 10Base-T/100Base-Tx

显示

Reference level 显示参考电平。详细信息见 43 页

- Attenuation 显示输入信号的垂直档位(衰减)。详细信息见 44 页
- Date/Time 显示日期和时间。详细信息见 101 页
- Marker information 显示标记信息。详细信息见 80 页
- LXI icon 显示 LXI 连接状态。详细信息见 183 页
- Function menu 对应屏幕右侧 F1~F7 功能键

Sweep settings

G≝INSTEK

Trigger settings	Free	显示触发状态。详细信息见 75 页
Pre-amp settings	Pr-amp 20dB OFF	显示前置放大器状态。详细信息见 45页
Trace and detection settings	Tr/Det C&W SMP	显示每条轨迹类型和检测模式。详细 信息见 68 页
Status Icons	显示接口状态, 态图标介绍章	电源状态和报警状态等。见 20 页状 节
Frequency/ Bandwidth settings	显示起始频率, 宽和扫描设置	中心频率和停止频率, RBW, VBW, 扫
Entry/Message area	显示系统信息,	错误信息和输入值/参数
Trace and waveforms	主屏显示输入(页)和标记位置	言号, 轨迹(见 68 页), 限制线(见 150 (见 80 页)

状态图标介绍

PreAmp	20dB ON	表示开启前置放大器
AC	AC	表示交流供电
AC Charge	AC	表示交流电源正在为电池充电
Alarm Off	ALM (R)	表示已关闭报警输出
Alarm On	ALM ()	表示已开启报警输出
Amplitude Offset	AMP	开启幅值偏移。当使用与幅值有关的 功能时,出现此图标: 参考电平偏移 幅值校准 输入 Z = 75Ω 输入 Z cal >0
Battery indicator	N BAT	电池充电
Bandwidth Indicator	BW 🖕	表示 RBW 或 VBW 设置处于手动模 式
Average	avg Σ/N	已开启平均功能
External Lock	EXT	表示系统被锁,涉及到外部参考输入 信号
External Trigger	EXT MU	表示正在使用外部触发信号

G≝INSTEK

Math	Math I≭∓	表示正在使用轨迹运算
Sequence Indicator	SEQ ED	表示正在执行一个序列
Sweep Indicator	swT	表示扫描时间被手动设置
Tracking generator	TG ON	表示开启跟踪源
TG Normalization	TG	表示跟踪源已被校准
Wake-up clock	TIME	表示开启唤醒时钟
UZB	USB	表示已识别出 U 盘
Micro SD	uSD	表示已识别出 micro SD 卡

首次使用说明

首次操作仪器,如倾斜站立、插入电池、仪器供电、设置内部时钟、 唤醒时钟、更新固件和重建默认设置时,请按照如下步骤执行。最后 向您介绍一些常规操作。

倾斜站立

描述

GSP-930有两个可调橡胶支脚,可以将仪器调整 到两个预设位置

直立位置

向仪器底端收拢支 脚,仪器直立

倾斜位置

向后搬动支脚, 仪器 倾斜站立

插入电池

描述	GSP-930提供选配电池组,	插入电池前必须关闭
	电源,断开 AC 电源插座	

- 步骤 1. 关闭电源, 断开 AC 电源
 - 2. 打开电池盖
 - 3. 按下图插入电池

图标

4. 合上电池盖

BAT

显示图标

插入图示

当 GSP-930 以电池供电时,屏幕显示电池

供电

步骤 1. 将 AC 电源线插入电源插座

- 2. 电源开关呈蓝色,表示 GSP-930 处于待机状态
 → ●
 ●
- 3. 按此按钮开启 GSP-930
- 4. 开机后电源开关变为橙色

GSP-930 完全开机需要大约 1.5 分钟

关机	
描述	GSP-930有两种关机方式:正常关机和强制关机。
	正常关机方式保存系统状态并结束所有运行中的 进程。下次开机时可以继续使用该状态。
	强制关机方式仅最低限度的保存状态。
正常关机	按下电源开关。系统自动依序处理电源关机过 程:
	• 保存系统状态
	• 按顺序关闭未处理进程
	• 关闭 LCD 背光灯
	• 系统进入待机模式(电源开关由橙转蓝)
<u>注</u> 注意	此过程大约持续10秒时间
强制关机	按下电源开关并保持4秒时间,直至系统关闭且 电源开关变成蓝色
<u></u> 注意	强制关机方式可能导致仪器在下次开机时自检时 间变长

设置日期,时间和唤醒时钟

描述		GSP-930 使用唤醒时钟功能可以自动设置开机时
		间,有利于减少稳定等待时间。
系统时间		例如:设置系统日期 2012, 3, 1
	1.	按 System > 时间日期[F4]> 设置日期[F1]>年[F1]
	2.	按 2012> 输入[F1]
	3.	按月[F2]>3>输入[F1]
	4.	按日[F3]>1>输入[F1]
	5.	按返回[F7]
<u> 注意</u>		系统日期显示在屏幕上方
系统时间		例如:设置系统时间 9.00 AM
	1.	按 System > 时间日期[F4]> 设置时间[F2]> 小时[F1]
	2.	按 9> 输入[F1]
	3.	按分钟[F2]>0> <i>输入</i> [F1]
	4.	按秒[F3]>0> <i>输入</i> [F1]

5. 按返回[F7]

系统时间显示在屏幕上方

系统唤醒时钟 例如: 设置 GSP-930 开机时间 9.00 AM

- 1. 按 ^{system} > *时间日期*[F4] > 唤醒时钟编辑[F3] > 选择 时钟[F1]
- 2. 按时钟1 [F1]选择时钟(1~7)
- 3. 按状态[F2]打开/关闭时钟
- 4. 按*小时*[F3]>9>*输入*[F1].
- 5. 按分钟[F4]>0>输入[F1].
- 6. 按[F5]选择连续. (重复)或单次
- 7. 按*连续设置*[F6]选择日期
- 8. 按返回[F7]保存唤醒时钟设置

CR2032 电池给时钟电路供电。如果系统时间/唤 醒时钟不能再更新,请更换时钟电池。见193页

固件更新

描述 允许用户更新 GSP-930 固件。请登陆 GW Instek 网站查询最新固件或联系您当地经销商。

- 系统版本 更新固件前,请检查固件版本
 - 1. 按^{(System})>*系统资讯*[F1]
 - 2. 屏幕显示固件列表

- 3. 按任意键退出
- 4. 将带有新固件的 U 盘或 Micro SD 卡插入前面板 适当位置。固件文件存档于"gsp930"目录下
- 5. 按^(system)>更多1/2[F7]>升级[F3]
- 6. 频谱分析仪自动搜寻 U 盘固件并立即更新。更新完成后,屏幕底部显示"Upgrade is finished"和"Rebooting"

G^W INSTEK

7. 系统自动重启

▲注意

描述

更新过程需要几分钟

恢复默认设置

前面板预设键可以一键恢复出厂默认设置或用户 定义设置。默认情况下,预设键用于恢复出厂默 认设置。

详情请见104页。

- 步骤 1. 按 Preset
 - 2. 频谱分析仪调取预先设置

GWINSTEK

常规操作

下述内容贯穿整个使用手册。仔细阅读,掌握 GSP-930 菜单系统和 前面板键的基本操作。

软菜单键

屏幕右侧 F1~F7 功能键直接对应它们左侧的软 菜单键。

输入参数值

使用数字键盘输入数值或通过旋钮增加/减少数 值

切换状态

AMAnalysis On Off

按此菜单键切换状态

GWINSTEK

切换状态B输入参数

切换自动或手动状态。在手动模式时,需要手动 编辑参数值。使用数字键盘输入新值或使用旋钮 增加/减小当前值

按此键进入子菜单

Save To:

子菜单选择参数

进入子菜单选择参数

激活功能

按此键激活功能。功能开启后此菜单键变亮

参数输入	Numerical keypad Scroll wheel
	Directional arrow keys
	Backspace, Enter keys
	输入参数可能会用到数字键盘、旋钮和方向键。
使用数字键盘	使用数字键(0~9),小数点(.)和符号键(+/-)输入数 值。软菜单键用于选择单位。
	编辑完成后屏幕下方显示参数值。
	Span: 1.5
	Edited parameter
退格键	使用退格键删除前一个字符或数字
使用旋钮	使用旋钮改变当前值。顺时针增加,逆时针减 小。
方向键	使用方向键选择参数或通过粗调改变数值。向左 减小数值,向右增加数值

频率设置	36
中心频率	
起始和截止频率	
中心频率步进	
频率偏移	
扫宽设置	40
扫宽	
全扫宽	
零扫宽	
上次扫宽	
幅值设置	43
参考电平	
衰减	
刻度/格	
刻度类型	
显示刻度	
垂直刻度单位	
参考电平偏移	
幅值校正	
创建校正设置	
启动/关闭幅值校正	
删除校正设置	
保存校正设置	
调取校正设置	
输入阻抗	
校准输入阻抗	
使用内置前置放大器	

自动设置	55
使用自动设置	
限定自动设置的垂直搜索范围	
限定自动设置的水平搜索范围	
带宽/平均设置	57
分辨率带宽设置(RBW)	
视频带宽设置(VBW)	
视分带宽比(VBW/RBW)	
平均波形	
平均类型	
EMI 滤波器	
扫 描	67
┘┘┘Ⅲ ┘┘┘Ⅲ	uz
1月11日 首次扫描	
半八1-1油 连续扫描	
上头1-1油	
h田门坎扫烘棋式	
仅用13至1310侠八	
轨迹	68
选择轨迹	
轨迹运算	
轨迹侦测模式	71
舳 	75
冲汉 进择轴发光刊	
白山云行横式	
当出之门侯 <u>八</u> 激活视频钟发	
激活外部	73
选择钟发模式	78
设置触发延迟时间	
标记	80
开启标记	
开启常规标记	
手动移动标记	
移动标记至预设位置	
-------------------	-----
开启 4 标记	
手动移动△标记	
标记功能	
标记噪声	
计频器	
移动轨迹上的标记	
显示标记列表	
峰值搜索	
移动标记至峰值位置	
移动标记和峰值至中心频率	
搜索峰值	
峰值设置	
峰值列表	
显示	
调整 LCD 亮度	
关闭 LCD 背光	94
设置显示线(参考电平线)	95
使用视频输出端子	95
设置显示模式	96
分割频谱视窗	
系统设置	100
系统信息	
错误消息	
设置系统语言	
设置日期和时间	
使用唤醒时钟	
报警输出	
77 \ H	
顶 0	104
使用预设键	
保存用户预设值	
设置预设类型	
开机初始化设置	

频率设置

中心频率

描述	设置中心频率并显示在屏幕中心位置。	
操作	1. 按 Frequency > <i>中心频率</i> [F1], 输入频率和单位	
	范围: 0kHz~3GHz 分辨率: 1Hz 默认: 1.5GHz	
显示	Center frequency	

起始和截止频率

描述		设置扫宽的起始	台和截止频率
操作	1.	设置起始频率, : 和单位	按 Frequency > <i>起始频率</i> [F2] 输入频率
	2.	设置停止频率, ; 和单位	按 Frequency > 截止频率[F3] 输入频率
		范围: 分辨率: 默认起始频率: 默认截止频率:	0kHz~3GHz 1Hz 0Hz 3GHz
显示		Start Frequency	Stop Frequency
		Stari-OHZ RBW P60kHz VEV Cent 30.000000 M	14:20:40 2011-09-02 It: 20.00dB Center Freq Center S0.000MHz Stop: 60.000MHz Stop: 60.
		Start Frequen	ncy Stop Frequency

设置扫宽时可能导致起始和截止频率发生变化。 截止频率必须大于起始频率(因为扫宽≠0),否则扫 宽将自动设为 IODHz

中心频率步进

描述		中心频率步进功能用于设置中心频率步进。	
		当使用方向键改变中心频率时,每按一下都将移 动中心频率,步进大小由中心频率步进功能设 定。	
		在自动模式下,中心频率步进等于扫宽的10%(1 div)。	
操作	1.	按 Frequency > 中心频率步进[F4]设置自动或手动中 心频率步进模式	
	2.	若选择手动模式,需设置步进的频率和单位	
		手动范围: 100Hz~3GHz 自动范围: 扫宽的 1/10	
显示		20:40 2011-09-02 00dB Center Frequency Start Freq Output Center Freq Center Freq Start Freq Center Freq Start Freq Center Freq CENTER CF Step Size	

ala ahaliki, yikalah adalahi

CF 00000MHz Man

频率偏移			
描述		频率偏移功能允许对中心 以及标记频率增设一个保 示轨迹。	心频率、起始和截止频率 扁移量。偏移值不影响显
运行	1.	按 Frequency > <i>频率偏移</i> [F5]说 中心频率、起始频率、截 应更新。	及置偏移值 载止频率和标记频率也相
		偏移范围: 0	Hz~100GHz
显示			Start Freq Stop Freq CF Step Man Freq O Gr

扫宽设置

扫宽		
描述	扫宽功能用于设置扫挂 频率为中心。	苗的频率范围。扫描以中心
	设置扫宽将改变起始和	印截止频率。
操作	. 按 ^{Span} > <i>扫宽</i> [F1]输	入扫宽频率范围和单位
	范围: 分辨率: 默认扫宽:	0kHz~3GHz 1Hz 3GHz

显示

将扫宽设为全频率范围。 此功能分别将起始和截止频率设为 0Hz 和 3GHz。
1. 按 span > <i>全扫宽</i> [F2]
零扫宽功能将扫描频率范围设置在 0Hz,将起始 和截止频率等同于中心频率。零扫宽功能在中心 频率下测量输入信号的时域特性。水平轴代表时 域。
1. 按 span > <i>零扫宽</i> [F3] 扫宽相应改变。
Time domainImage: Dimension of the second

例如:调幅

<u>注</u> 注意	在零扫宽设置下,TOI, SEM, CNR, CTB, CSD, ACPR, OCBW, phase Jitter 和 NdB 等测试功能不可用。
上次扫宽	
描述	返回上一次扫宽设置
操作	1. 按 Span > 上次扫宽[F4]

幅值设置

垂直显示刻度由参考电平幅值、衰减、比例和外部增益/损耗决定。

参考电平

描述		以电压或功率为单位定 电平值。	定义顶部格线处幅值的绝对
操作	1.	按 ^{Amplitude} > <i>参考电平</i> [H 位	[1] 输入参考电平幅值和单
		范围: 单位: 分辨率:	-120dBm ~ 30dBm dBm, W, V, dBmV, dBuV 1dBm
显示		Ref Level reading	Posteriore Level Amplitude Reference Level Amplitude RefLevel Scoodbr RefLevel Sco

衰减

描述		可以通过自动(Auto)或手动(Man)模式完成输入 信号的电平衰减设置。当衰减设置为 Man 时, 输入衰减能调整成 1dB 步进。	
操作	1. 2.	按 Amplitude > <i>衰减</i> [F2]选打 如果选择手动,需要输	译自动或手动 访入衰减电平和单位
		范围: 单位: 分辨率:	0dBm ~ 50dBm dBm 1dB
显示			🕅 Amplitude

	00 9.49 2011-10-20	E/U	Amplitude
Ref. 10.00dBm 4	Att: 20.00 dB		RefLevel
			Attenuation
		P	20 00dB uto Man
		Pr-anp 20145	Scale/Div
		Triber	

刻度/格	
描述	当刻度设为对数时,设置垂直每格的刻度大小。
操作	1. 重复按 Amplitude > 刻度/格[F3]选择垂直刻度大小
	刻度大小: 10, 5, 2, 1
显示	Scale Ref. 10.00dBm Att: 20.00 dB Ref. 10.00dBm Att: 20.00 dB Control of the second
<u></u> 注意	仅当刻度设为 Log (对数)时才可以选择刻度/格功 能
刻度类型	
描述	以线性或对数单位设置垂直刻度。 默认情况下线性刻度为 V,对数刻度为 dBm。
操作	1. 按 Amplitude > <i>刻度类型</i> [F4]设置对数或线性垂直刻 度
<u></u> 注意	即使刻度单位发生改变(如 dBm → volts),垂直刻度 类型仍保持不变
显示刻度	

G^wINSTEK

描述 打开/关闭垂直刻度。每个刻度的单位都与参考 电平的设置单位相同。

- 操作 1. 按(Amplitude)>刻度[F5]打开或关闭显示
 - 2. 按*刻度位置*[F6]切换刻度位置

刻度位置:

左,中,右

显示

默认显示在屏幕左侧

垂直刻度单位

描述		改变线性或对数刻度的垂直单位。
操作	1.	按Amplitude > 更多[F7]>Y 轴单位[F1]选择单位
	2.	单位相应改变
		单位: dBm, dBmV, dBuV, W, V
参考电平偏移		
描述		设置一个参考电平偏移值,补偿由外部网络或仪 器引起的损失或增益。 偏移值不影响输入衰减或屏幕上的轨迹。 此设置将改变参考电平读值、刻度读值和标记读 值。
操作	1.	按 Amplitude > <i>更多[F7]> 电平偏移[F2]</i> 设置偏移值和 单位
	2.	若取消偏移设置,将参考偏移设为0dB
		范围: 0dB~50dB
显示图标		AMP图标显示在屏幕底部
例如:		Ref: OdBm

设置参考电平偏移前(offset: DdB)

设置参考电平偏移后(offset: IDdB)

幅值校正

描述	通过改变特定频率的幅 率响应。可以使频谱分 部网络或仪器引起的损	值,调整频谱分析仪的频 析仪补偿某一频率下由外 失或增益。
范围	校准设置: 幅值: 幅值分辨率: 频率: 频率分辨率:	5 组,每组 30 个校准点 每个校准点-40dB~+40dB 0.1dB 9kHz~3GHz 1Hz
显示	Correction point	ts Corrected output
	Original wavefor	m
	例如:上图显示了幅值机 下的损失或增益进行补	交正功能如何对特定频率 ·偿

创建校正设置

G^wINSTEK

描述 GSP-930 可以创建和编辑 5 组校正点。校正点及 对应值以列表形式显示。

操作 1. 按 Amplitude > 更多[F7]> 幅度校正[F3]> 选择校正集 [F1]选择一个需要编辑/创建的校正集

校正集: 1~5

2. 按*编辑*[F3]

屏幕分为两部分。上部显示波形,下部显示全部 校正点

Correction points

3. 按点[F1]输入需要编辑的点

点: 1~30

4. 按频率[F2]输入点的频率

按*增益偏移*[F3]输入点的幅值。单位与垂直刻度 单位保持一致

所设点的频率值显示在下方校正列表里

Correction Table

- 5. 重复 2~4 步设置其它校正点
- 6. 按删除点[F6]删除所选校正点
- 7. 按*返回*[F7]>保存[F5]保存校正设置
- - 校正列表里的频率值为约值,实际频率显示在频 率软键位置

启动/关闭幅值校正

描述		可以启动任意一	一组校正。	
激活校正	1.	按(Amplitude)> <i>更多</i> [F7]> <i>幅度校正</i> [F3]> 选择校正集 [F1]选择一个校正集		美
		校正集:	1~5	
	2.	按校正功能[F2]启动校正	
关闭校正	1.	按 ^{(Amplitude})> <i>更多</i> [F2]关闭校正	彩[F7]>幅度校正[F3]>校正功能	

删除校正设置

操作 1. 按 Amplitude > 更多[F7]> 幅度校正[F3]> 选择校正集 [F1]选择需要删除的校正集

校正集: 1~5

2. 按*删除幅度校正*[F6]删除

保存校正设置

操作	1.	按 Save >按 <i>类</i>	型[F2]> 幅度校正[F5]
	2.	按数据源[F3]选择校正集	
		校正集:	1~5
		按 <i>保存至</i> [F1]选择存储位置	
		位置:	寄存器,本地,USB,SD
	4.	按名称[F1] 输入	存储名称
	5.	按立即保存[F3]	
		校正组将保存至 见 161 页	至所选位置。更多存储和调取信息

G^wINSTEK

调取校正设置

描述		设置 75Ω 或 50Ω	输入阻抗。	
输入阻抗				
	5.	则状 当时仅1世米。	文少行面印码状自芯九101 只	
	5	调取当前校准售	軍 名存储和调取信自见 161 页	
	4.	按 <i>立即召回</i> [F1]		
		位置:	寄存器,本地,USB,SD	
	3.	<i>召回</i> [F1]选择调取	位置:	
		校准集:	1~5	
	2.	按数据源[F3]选择	校准集	
操作		按 Recall > 按 <i>类型</i> [F2]> 幅度校正[F5]		

操作 1. 按 Amplitude > 更多[F7]> 输入阻抗[F4] 切换输入阻抗

档位: 75**Ω**, 50**Ω**

校准输	入阻抗
	· • • • • • • • • • • • • • • • • • • •

描述	通过外部阻抗转换器模块(选配附件 ADP-101), 可将仪器阻抗由 50Ω 转换到 75Ω。此时会引起外 部损耗,使用输入阻抗补偿功能的阻抗偏移设置 能够对其进行补偿。		
<u></u> 注意	仅当输入阻抗为 75Ω 时 偿功能。	寸, 才可以使用输入阻抗补	
操作 1.	按 ^{Amplitude} > <i>更多</i> [F7]>新 偏置	谕入阻抗补偿[F5]设置阻抗	
	范围:	0dB~+10dB	
	分辨率:	1dB	
显示图标	AMP	当输入输入阻抗补偿≠DdB 时,AMP图标显示在屏幕 下方	

使用内置前置放大器

描述	内置前置放大器可以放大整个频率范围内微弱的 输入信号,如 EMI 测试信号。内置前置放大器 具备 20dB 的标称增益。
	在自动设置状态下,当参考电平小于-30dBm 时,前置放大器将自动开启。当参考电平大于- 30dBm时,前置放大器关闭。
	前置放大器设置成绕开将强制关闭前置放大器。

GWINSTEK

当开启前置放大器时,衰减保持在 DdB (如衰减 = DdB)

自动设置

自动设置功能搜索分两阶段(全扫宽& 0Hz - 100MHz 扫宽)的峰值信号,找出最大幅值并显示在屏幕上。

自动设置后

▲ 注意
当使用自动设置功能时,RBW,VBW和扫描设置被
重置为自动。

限定自动设置的垂直搜索范围

描述 通过设置幅值下限,自动设置功能将忽略小于设 置基准的信号。

- 操作 1. 按 Autoset > 振幅下限[F2]由自动切换为手动
 - 2. 输入幅值下限值和单位

	范围:	-80~+20dBm
<u>注</u> 注意	幅值单位设置见45页	

限定自动设置的水平搜索范围

描述		改变显示器的扫宽限制,更方便检视自动设置结 果。自动设置后默认扫宽为 3MHz。		
操作	1.	. 按 Autoset > <i>扫宽</i> [F3]由自动切换为手动		动切换为手动
	2.	输入扫宽		
		范围:	100Hz [,]	~3GHz

带宽/平均设置

BW/Avg 键设置分辨率带宽(RBW)、视频带宽(VBW)和平均等功能。分辨率、扫描时间和平均互为交换关系,应慎重设置。

分辨率带	雷设	署(RRW)
ノリ ガナモー リ	ツロバ	

描述		RBW (分辨率带宽)定义 IF (中频)滤波器的带宽, 用于互相分离信号峰值。RBW 越窄,分离相近 频率信号的能力就越大。但在指定扫宽下会导致 扫描时间更长(屏幕更新的次数减少)。	
操作	1.	按 BWWAvg > 分辨率带宽[F1],将分辨率带宽设 自动或手动	
	2.	设置手动模式的分辨率	至带宽和单位
		模式: 频率范围(3dB): 频率范围(6dB):	自动,手动 10Hz~3kHz (1-3-10步进) 10kHz~1MHz (10%步进) 200Hz 9kHz 120kHz
显示图标		→ HE LE (LULL). 当 RBW 设为手式 BW 图标	边模式时,屏幕底部显示
<u>注</u> 注意		若 RBW 设置带星号(*), 波器。	代表使用了-GdB带宽的滤

视频带宽设置(VBW)

描述		VBW (视频带宽)定义了画面轨迹的平滑度。 RBW 与 VBW 一起决定了从周围噪声或邻近峰 值中处理目标信号的能力。		
操作	1.	按 BWMAvg > 视频带宽[F2],将视频带宽设为自动 或手动		
	2.	设置手动模式的视频带宽和单位		
		模式: 频率范围(3dB):	自动,手 1Hz~1M	动 ⁄IHz (1-3-10 步进)
显示图标		≝₩ ● BW 图板	设为手动模式时, 示	屏幕底部显示
视分带宽比(VB)	W/R	BW)		

描述 VBW/RBW 功能用于观察视频带宽和分辨率带 宽的比值。

VBW/RBW 比值随 RBW 与 VBW 的设置改变, 分别见 57 & 58 页。

观察 VBW/RBW 1. 按 BW/Avg

2. 比值显示在视分带宽比[F3]软键上

G≝INSTEK

显示		WW/Avg WBW/RBW VBW/RBW Ratio
提示		掩藏在底噪中的信号若要平滑噪声,必须保证其 比值小于1。
		较大频率分量的信号应保证其比值等于或大于 1。
平均波形		
描述		平均功能在波形显示前将波形平均指定次数。虽 然此特点能平滑噪声准位,但却以降低屏幕更新 率为代价。
操作	1.	按 BWWAvg > 平均化[F4]开启或关闭平均功能
	2.	设置平均数
		范围: 4~200 默认值: 20
显示图标		当开启平均功能时,屏幕底部显示 AVG 图标

GWINSTEK

例如:

平均类型

描述		平均类型功能决定 GSP-930 如何定义平均值。		
		对数功率平均: 以对数	刻度平均波形点;	
		电压平均:以线性电压	刻度平均波形点幅值	
		功率平均:以单位为瓦;	侍的对数刻度平均波形点	
操作	1.	按 ^{BW/Avg} > 平均类型[F.	5]选择平均类型	
		范围:	对数功率,电压平均,功率	
		默认值:	半均 对数功率	

EMI滤波器

描述	内置 EMI 滤波器用于特定情况下的测量,如 EMI 平均侦测,比标准设置要求更高的灵敏度。 开启后,出现-6dB 的分辨率带宽滤波器并在分 辨率带宽右上角显示一个星号(*)。
	当任何一个测量功能开启时(详细内容见 106 页),EMI 滤波器自动关闭。相反,如果 EMI 滤 波器开启,任何测量功能都将关闭。
操作	1. 按 ^{BW/Avg} > <i>电磁干扰滤波器</i> [F6]开启或关闭 EMI 滤波器

扫描

GSP-930 有一个扫描选项,包括设置扫描时间和扫描模式(持续,单次),同时也提供了门控扫描模式。

扫描时间

描述	扫描时间定义了系统"扫描"当前扫宽所花费的时
	间。注意,扫描时间和 RBW/VBW 相互权衡。
	扫描时间越快,更新显示越频繁,但使得 RBW
	和 VBW 越宽,从而降低了分离邻近频率信号的
	能力。

操作

- 1. 按 Sweep > 扫描时间[F1]切换自动或手动扫描时间
 - 2. 设置手动模式的扫描时间

	模式: 范围:	自动, 手动 22ms ~ 1000s 50us ~ 1000s	(span>0Hz) (span=0Hz)
	分辨率:	10us	(spart of iz)
显示图标	SWT 当设 SWT	と为手动扫描模式时, 图标	屏幕底部显示
单次扫描			
描述	用于执行一 在完成一次	次单次扫描。按单次 单次扫描后停止。	扫描, GSP-930
操作	1. 接 Sweep > .	<i>单次</i> [F2]进入单次扫描	 堪模式
	2. 再按 <i>单次</i> [F.	2]执行一次单次扫描	
显示图标	Sweep 当设 Swee Single	设为单次扫描模式时, up Single 图标	屏幕右侧显示
<u>注</u> 注意	必须等待单	次扫描完成后才能再	按单次扫描键。
	若在频谱分 始扫描。	析仪扫描时改变设置	,将立即重新开

连续扫描

描述	GSP-930 具备两种主要的扫描模式:单次扫描和 连续扫描。连续模式将持续更新扫描。		
操作	1. 按 weep > <i>连续扫描</i> [F3]进入连续扫描模式		
显示图标	Sweep Lont 图标 Cont		
<u>/</u> 注意	除非将扫描模式更改成单次扫描或系统处于等待 触发状态,GSP-930将持续进行扫描		

门控扫描概述

描述		门控扫描模式允许触发信号决定频谱仪何时开始 扫描。此模式对以脉冲式开启或关闭为特征的信 号非常有用。如: RF 突发传输系统或测量传输 突发之间的杂散噪声电平。
概述	1.	触发信号一定要与输入信号的周期同步(见下图 RF burst)
	2.	门控起始时间由触发信号的上升沿或下降沿以及 延迟时间共同决定
	3.	门控结束时间由门控时间长度决定
	4.	门控扫描不应设置在传输开始或结束

短,可能会造成 RBW 滤波器的处理时间不够

使用门控扫描模式

连接	1.	将一个触发信号(3.3v CMOS)连接到后面板 GATE IN 端子	
		Trigger \longrightarrow $Gate in$	
操作	1.	按 Sweep > 门信号延迟[F5]设置门控延迟时间	
	2.	按 sweep > 栅极长度[F6]设置门控时间长度	
	3.	按 Sweep > 栅控扫描模式[F4] 启动模式	
		门控延迟: 0s ~ 1000s 门控时间长度: 10us ~ 1000s	
显示图标		Sweep 当开启门控扫描时, Sweep Gated 图标显示 在屏幕上	

门控扫描模式关闭时,FSK调制信号的频谱图:

同一个信号,当门控扫描开启时,仅输出期望频 率:

<u>∕</u>!注意

开启门控扫描前,必须首先设置门信号延迟和栅 极长度。

G^wINSTEK

轨迹

GSP-930 一次可以设置 4 种轨迹参数。各轨迹由不同颜色表示且随每次扫描更新。

选择轨迹					
描述	各轨迹(1, 2, 3, 左侧显示带轨; 进入设置/编辑	各轨迹(1,2,3,4)由不同颜色表示。开启后,屏幕 左侧显示带轨迹颜色和功能的图标。从轨迹菜单 进入设置/编辑参数。			
	轨迹颜色:	1: 黄色 2: 紫色 3: 蓝色 4: 橘色			
轨迹类型	轨迹类型决定结 谱分析仪根据	轨迹类型决定轨迹数据是如何存储或操作的。频 谱分析仪根据设定的轨迹类型更新轨迹。			
	清除和写入	每次扫描都会更新轨迹			
	最大值保持/ 最小值保持	如果扫描出幅值更高的/更低 的,轨迹点随即更新,否则维持 原来的最大/最小值			
	查看	查看模式将保持所选轨迹并停止 更新轨迹数据。按 <i>查看</i> [F5] 将显 示由 <i>保存隐藏</i> [F6]键清除的轨迹 数据			
	Blank	清除所选轨迹并存储轨迹数据。			

按*查看*[F5]恢复轨迹数据

轨迹运算

描述		完成两组轨迹(TR1, TR2)的数学运算并将结果保 存在当前所选轨迹。它也可以用作轨迹转移。		
运算功能		功率差 TR1 幅值减去 TR2 和 TR2 的数据被转打 瓦特,运算完后再被 dBm		 雷值减去 TR2 幅值。TR1 2 的数据被转换成单位为 运算完后再被转换成
		对数差	TR1 軟 数参考 单位 う 量后,	晶值减去 TR2 幅值加上对 考量。TR1 和 TR2 的数据 为 dBm。相减后的轨迹单 dB。当结果加上对数参考 单位为 dBm
		对数偏移	TR1 年	九迹增加一个参考量
操作	1.	 按 Trace > 更多[F7]>迹线运算[F1] 按 TR1[F1]选择第一个轨迹: 		亦线运算[F1]
	2.			轨迹:
		TR1:		Trace 2, Trace 3, Trace 4
		按 TR2[F2]选择	轨迹:	
		TR2:		Trace 2, Trace 3, Trace 4
	4.	选择轨迹运算功		
		<i>功率差[F3] 对数差[F4] 对数偏移[F5]</i>		
	5.	如果选择对数差	三, 设置	是参考电平和单位
对数差参考范围:	-120dBm ~ 30dBm			
----------	-----------------			
对数差参考单位:	dBm, W			

6. 如果选择对数偏移,设置偏置电平和单位

对数偏移范围: -50dB~+50dB

7. 按关闭[F6]关闭轨迹运算

显示图标

Math Iま≘

开启轨迹运算时显示 Math 图标

轨迹侦测模式

描述 轨迹上每个点的多个采样数据的集合体,称为采 样池。每个轨迹点的实际值由各采样池中的采样 侦测器决定。

各轨迹(1, 2, 3, 4)可以使用不同的侦测模式。

侦测模式 自动 根据所有采样值,自动选择一个适 当模式

> 标准检波 当信号准位持续增加或减少时,侦 测正向峰值。否则,侦测模式在正 向峰值和负向峰值间切换。有利于 挑出突发现象,避免太多噪声

- 正峰值检波 通过选择各采样区中每点的最大峰 值,侦测正向峰值信号。该模式有 利于正弦曲线信号
- 负峰值检波 通过选择各采样区中每点的最低峰 值,侦测负向峰值信号。该模式不 推荐幅值测量

取样	任意选择采样区内值。	有利于侦测
	噪声信号	

平均 计算采样区中所有采样点的平均值

负峰值检波[F4] 取样[F5]

_{-映17[[}]] 平均[[6]

3. 屏幕返回轨迹(Trace)菜单

显示图标

触发

频谱分析仪在触发功能设置后触发捕获波形,包括频率、幅值和延迟。与默认的内部信号不同,外部触发信号可以用于特殊情况。

相关章节如下:

- 自由运行模式 → 见 75 页
- 激活视频触发 → 见 75 页
- 激活外部触发 → 见 77 页
- 选择触发模式 → 见 78 页
- 设置触发延迟时间 → 见 79 页

选择触发类型

自由运行模式

描述	自由运行模式下,不使用触发条件捕获所有信 号。
自由运行模式	1. 按 Trigger > <i>自由运行</i> [F1]进入自由运行模式
激活视频触发	
操作	设置视频信号的视频触发准位。当视频信号的电 压准位超过*视频触发准位,将产生一个触发信 号。 *上升视频沿

参数		视频边沿:	决定视频触发的极性
			正向: 在触发频率下,信号电压超 过视频准位
			负向: 在触发频率下,信号电压低 于视频准位
		视频电平:	触发电压准位
		触发频率:	设置开始触发的频率
操作	1.	按 Trigger > <i>触发状态</i> [F2]> 视讯[F1]	
	2.	按视频边缘[]	F1]选择触发沿
		范围:	正向, 负向
	3.	按 <i>视频电平</i> []	F2],设置视频电压触发电平
		触发电平:	(-120dBm~+30dBm) +参 考电平偏置
	4.	按 <i>触发频率</i> [] 析仪开始检测	F3J选择频率。在此频率下,频谱分 则触发条件
		频率:	0-3GHz+频率偏置

<u>∕</u>!注意

触发返回自由运行,视频触发模式关闭

|--|

描述		当外部触发信号接入后面板 TRIG IN 端子时,可以使用外部触发功能。外部触发信号分上升沿或下降沿。
操作	1.	按 Trigger > <i>触发状态</i> [F2]> 外部边缘[F2] 选择触发 沿:
		Pos: 上升沿 Neg: 下降沿
	2.	将外部触发信号接入后面板 TRIG IN 端子
	3.	按 <i>马上行动</i> [F5]开启外部触发
	4.	扫描开始前,系统等待匹配的触发条件
显示图标		当开启外部触发时显示 EXT Trigger 图标
<u>注</u> 注意		如果改变任何参数设置,如扫宽或幅值,触发将 恢复至自由运行模式

选择触发模式

描述	自由运行模式 发条件。	式下,所有信号均被捕获且不使用触
模式	正常:	频谱分析仪捕获每一个满足触发条 件的信号
	单次:	频谱分析仪捕获满足触发条件的第 一个信号
	连续:	频谱分析仪捕获满足触发条件的第 一个信号,然后返回到自由运行模 式
操作 1.	按 Trigger >	#发模式[F3]选择触发模式:
	Nor.: Sgl.: Cont.:	正常 单次 持续
2.	按马上行动[]	F5]手动开始触发

设置触发延迟时间

描述	设置频谱分析仪从触发 时间。	文 到开始捕获信号时的延迟
	延迟时间范围: 1ns~1k	S
操作 1.	按 Trigger > 触发延迟[Fa	4]设置触发延迟时间
	延迟范围:	0~1000s

标记

标记显示波形点的频率和幅值。GSP-930可以同时开启6个Marker 或△Marker 以及标记列表中6组峰值标记。

标记列表可以在同一屏幕下编辑和检视多个标记。

△标记显示了参考标记之间的频率和幅值差。

GSP-930 能够自动将标记移至不同位置,包括峰值信号、中心频率以及开始/停止频率。峰值搜索功能提供更多信号峰值的标记操作。

- 开启标记 →见 81 页
- 手动移动标记 → 见 81 页
- 移动标记至预设位置 → 见 82 页
- 开启 △ 标记 → 见 82 页
- 手动移动 △标记 → 见 84 页
- 标记功能 → 见 85 页
- 移动轨迹上的标记 → 见 87 页
- 显示标记列表 → 见 88 页
- 峰值搜索 → 见 89 页
- 峰值设置 → 见 91 页
- 峰值列表 → 见 92 页

开启标记

提供两种基本标记类型:标准(Normal)标记和△标记。标准标记用 于测量轨迹上某点的频率/时间或幅值。△标记用于测量轨迹上参考 点和所选点之间的差值。

开启常规标记

操作 1. 按(Marker) > 选择标记[F1]选择标记编号

标记: 1~6

- 2. 按[F2]开启标记
- 3. 按常规[F3]将标记设为标准(Normal)类型
- 4. 标记置于轨迹上(默认中心),屏幕上方显示标记 测量值

Maker ID, Frequency, Amplitude

手动移动标记

操作

1. 按 Marker > *选择标记*[F1]选择标记编号

- 2. 使用左/右方向键移动标记(1格/步 进)
- 3. 使用旋钮细调标记位置
- 4. 或者直接使用数字键输入标记频率

移动标记至预设位置

描述		Marker->键将标记移至不同预设位置。	
功能		标记>中心频率:标 移至中心频率 记>起始频率:标记> 移至起始频率 截止频率:标记>中 移至停止频率 心步进:标记>参考 移至中心步进频率 电平: 移至参考电平幅值	
<u>注</u> 注意		使用Marker>键可能会自动改变扫宽和其它设置	
操作	1.	按 Marker > 选择标记[F1]选择标记编号	
	2.	按(Marker->)选择标记位置:	
		标记>中心频率[F1] 标记>起始频率 [F2] 标记>截止频率[F3] 标记>中心步进[F4] 标记>参考电平[F5]	

开启△标记

描述 △标记作为标记对,用于测量参考标记和△标记 之间频率/时间和幅值的差异。 开启△标记时,参考标记和△标记出现在所选标 记位置; 若未开启所选标记, 则出现在屏幕中心 位置。 标记测量位于屏幕顶部, △标记显示在"常规标 记"测量之下。 参考标记,称为1 △标记 Ref: △标记,称为△1 Delta: 操作 1. 按(Marker)> 选择标记[F1]选择标记编号 2. 按[F2]开启标记 3. 按差值[F4]>差值[F1]将标记设为△类型

G^W INSTEK

手动移动△标记

移动Δ或参考标 记	1.	按 ^{Marker} > <i>差值</i> [F4] > 移 记	移动参考值[F2]移动参考标
	2.	按 ^{Marker} > <i>差值</i> [F4] > <i>種</i>	<i>移动差值[F3]</i> 移动△标记
	3.	所选标记的移动方式与见 81 页	5标准(Normal)标记相同,
移动参考和∆标 记	1.	按 <i>移动对跨度</i> [F4]或移 个标记	<i>动对中心[F5]</i> 同时移动两
		移动对跨度:	设置两个标记之间的扫 宽。扫宽分为正或负:
			1 ←+span→Δ1
			$\Delta_{\uparrow}^{1} \leftarrow \text{-span} \rightarrow_{\uparrow}^{1}$
			$\Delta_{\uparrow} \leftarrow \text{-span} \rightarrow_{\uparrow} \uparrow$

移动对中心:

同时移动两个标记,并保 持两个标记间的频率跨度 不变。

2. 所选标记的移动方式与标准(Normal)标记相同, 见 81 页

标记功能

标记噪声

描述 噪声标记功能以标记位置为基准,计算 1Hz 带宽内的平均噪声电平。

- 操作 1. 按 Marker > 选择标记[F1]选择标记编号
 - 2. 按[F2]开启标记
 - 3. 按*常规*[F3],将标记移至期望的位置
 - 4. 按*功能[F5]>噪声标记*开启标记噪声
 - 5. 屏幕顶部以 dBm/Hz 为单位显示测量的噪声电 平

Marker ID, Frequency, dBm/Hz

G^wINSTEK

计频器

描述		计频功能用于精确计算频率。	
操作	1.	按 ^{Marker} > 选择标记[F1	1]选择标记编号
	2.	按[F2]开启标记	
	3.	按 <i>常规</i> [F3],将标记移	到期望的位置
	4.	按 <i>功能[F5]>频率计数</i> [频功能	[F1] > <i>频率计数</i> [F1]开启计
	5.	按 <i>频率分辨率</i> [F2]设置	分辨率:
		自动: 手动:	自动选择最好的分辨率 手动设置分辨率
		手动范围:	1Hz, 10Hz, 100Hz, 1kHz

6. 屏幕上方显示测量频率值

移动轨迹上的标记

描述		标记轨迹功能将所选标记移至任意一个当前有效的轨迹。
操作	1.	按 Marker > 选择标记[F1]选择标记编号
	2.	按[F2]开启标记
	3.	按 <i>更多1/2[F7]>标记轨迹</i> [F1],选择当前光标需 要移至的轨迹。仅可以选择有效轨迹
		自动[F1] 轨迹 [[F2] 轨迹 2[F3] 轨迹 3[F4] 轨迹 4[F5]

4. 如下例, Marker 1 移至 Trace1, Marker 2 移至 Trace2

Marker 2, Trace 2

G≝INSTEK

GSP-930 使用手册

显示标记列表

操作

描述	GSP-930 具有标记列表功能, 有效标记和测量值。	可以同时显示所有

- 1. 按 Marker > *更多* 1/2[F7]> 标记列表[F2] 开启标记列 表
- 屏幕分成上下两部分。下部显示标记列表,包括标记 ID(正常,参考或 △)、轨迹、x 轴位置(频率/时间)以及标记幅值

Marker Table

峰值搜索

移动标记至峰值位置

描述		Peak Search 键用于搜索轨迹峰值。
操作	1.	按 Marker > 选择标记[F1]选择标记编号
	2.	按 Search > 峰值搜索[F1],标记移至最高信号峰值 处
	3.	按 Search > 更多 1/2[F7]> 连续峰值[F1]并开启连续 峰值,每次扫描将会持续搜索峰值
移动标记	和峰值至	中心频率
描述		"标记->中心频率"功能将标记移至最高信号峰 值处,并将此信号峰值移至中心频率。

操作 1. 按 Marker > 选择标记[F1]选择标记编号

2. 按 Search > 标记-> 中心频率[F2]

<u></u> 注意	不改变扫宽		
------------	-------	--	--

GWINSTEK

峰值搜索

描述		Peak Search 键用于搜索	峰值。
峰值搜索		下一个峰值:	搜索屏幕次高峰值
		右侧峰值:	搜索标记右侧的下一峰值
		左侧峰值:	搜索标记左侧的下一峰值
		最小值搜索:	搜索最小峰值
操作	1. 2.	按 Marker > 选择标记[F1]选择标记编号 按 Peak 法基本 按 法 基本 建 搜索 的峰 值 类型	
例如: 下一个峰值		GWINSTEK 01:02:21 2011-10- Scale 10dB/ MM1: Ref. 17.00dBm Att 27.00dB Start: 5.000MHz Center 10.000MHz RBW:16kHz VBW:1.0kHz Span:10.00 Ref. 17.00dBm	27 10.00 MHz 8:39 dBm Peak Search Peak Search Mkr>Center Prang Next Peak Left Stop- 15.000MHz Stop-

峰值设置

描述 提供两种峰值搜索设置选项:峰值漂移(Peak Excursion)和峰值门限(Peak Threshold)。
峰值漂移: 此设置为峰值阈值的最小值
峰值门限: 此设置为频谱分析仪检测峰值的最小阈值准位。任何大于峰值阈值+峰值偏移的值才能被峰值检测到。

4. 屏幕分割为上下两部分。下部屏幕显示峰值列 表,包括峰值标记 ID、X 轴位置和幅值

Peak markers

Peak Table

GWINSTEK

显示

Display 键用于基本设置,显示模式(频谱图,光谱图,拓扑图)以及分割视窗模式设置。

调整LCD亮度

描述		预设3种LCD亮度调节档位。	
操作	1.	按 Display > LCD 明亮度	[[F2]调节屏幕亮度:
		高: 中: 低:	高亮 一般 低亮

关闭LCD背光

描述	不使用时,关闭 LCD 背光可以节省用电或延长 LCD 屏幕的使用寿命。
操作	1. 按 Display > LCD 背光[F3]关闭 LCD 背光
	2. 再按任一功能键开启 LCD 背光

设置显示线(参考电平线)

使用视频输出端子

描述 GSP-930 配有一个专用的 DVI 终端,可以将屏幕 图像输出到外部监控器。视频输出总是开启状态。

输出分辨率 800 x 600 (固定)

操作 1. 将外部监控器接入后面板 DVI 端子

设置显示模式

描述	GSP-930提供三种显示模式:频谱图,光谱图和拓 扑图。通过分割视窗功能可以同时观察频谱图和 光谱图或拓扑图。	
	频谱图	默认显示模式
	光谱图	在时域下观察频率或功率
	拓扑图	观察轨迹的出现频率
操作 1.	按 Display > 视窗设置[F1]选择显示模式:	
	频谱图[F1]: 光谱图[F3]: 拓扑图[F4]: 光谱图+频谱图[F5]: 拓扑图+频谱图[F6]:	
<u>注</u> 注意	在光谱+频谱和拓扑+频 同一轨迹。	i谱模式下,上下视窗均为

例如:

光谱图

光谱图在频域和时域下显示信号。X 轴代表频 率,Y 轴代表时间,颜色代表该频率&该时间点 的幅值(红色 = 高→蓝 = 低)。

新轨迹始终显示在光谱图最底部,旧轨迹逐渐上 移直至删除。

拓扑图体现轨迹发生频率。该模式有利于观察被 强信号覆盖掉的弱小信号或间歇信号。颜色表示 轨迹发生频率,红色较高,蓝色代表偶发事件。

GWINSTEK

同时显示信号的光谱图和频谱图

同时显示信号的拓扑图和频谱图

分割频谱视窗

描述 使用分割视窗功能,用户可以同时观察两种不同 扫描范围的频谱图。上下视窗具有独立的扫描范 围、幅值、扫宽和其它设置。但是每次仅扫描一 个视窗(上或下)。

操作	1.	按	
	2.	按 <i>活动窗口[F1]</i> 切换上/下视窗的轨迹扫描	
	3.	按 <i>交替扫描</i> [F2]交替扫描上/下视窗	
<u>∕</u> 注意		在交替扫描模式下无需进行操作。	
		退出该功能后,频谱分析仪继续启用激活的视窗 设置。另一视窗设置将在下次开启分割视窗功能 时使用。	
举例:		GUIDSTEK 01:50:06 2011-10-27 Display Scale:10dB/ Ref: 20:00dBm Att:30:00 dB Sweep Active Win. Upper Lower Lower Lower Start: 0Hz Center: 10:000MHz Stop: 20:000MHz Sweep Scale:10dB/ Ref: 00dB/ Ref: 0.000dBm Att:10:0 dB Stop: 20:000MHz Sweep Scale:10dB/ Ref: 0.000dBm Att: 10:0 dB Sweep. 49:4ms Sweep	

^{an}Y^{ya}an wakalala manakama katala manakama katala manakama katala kata

Center:1.500GHz Stop:3.000GHz VBW:1MHz Span:3.000GHz Sweep.540ms

Start:0Hz RBW:1MHz

系统设置

系统信息

描述		系统信息显示如下:	
		序列号 版本: 软件 固件 文件系统 RF TG DSP 词汇表 核	安装选件 校准日期: LOI RF TG DNS 主机名 MAC 地址 LXI 密码
操作	1.	按 System > <i>系统资讯</i> [F1]生	成系统信息列表
错误信息			
描述		错误信息列表包括信息编 记录操作仪器时出现的所 册。	码、描述和时间,用于 有错误。详情见编程手
操作	1.	按 ^{System} > <i>错误消息</i> [F2]生	成错误信息列表
	2.	按上一页[F2]和下一页[F3]翻页
	3.	按 <i>清除错误队列</i> [F6]清除3	列表中的错误信息

设置系统语言

G≝INSTEK

描述		GSP-930 支持多国语言 语言。	。使用软菜单键选择系统
操作	1.	按 ^(System) >Language[F3]	选择系统语言
设置日期和时	间		
操作	1.	按 ^{System} >时间日期[F4]	1
	2.	按 <i>设置日期</i> [F1]设置日	期:
	3.	年[FI] 月[F2] 日[F3] 按 <i>设置时间</i> [F2]设置系	设置年 设置月 设置日 统时间:
		小时[F1] 分钟[F2] 秒[F3]	设重时(24hr) 设置分 设置秒
	4.	系统时间和日期显示在 Time, Date Gwinstek Scale 10dB/ Ref 20 00dBm Att: 30 00 dB	屏幕顶部

使用唤醒时钟

描述	GSP-930 的 启频谱分析	唤醒时钟功能可以在预设时间自动开 仪。
操作	1. 按 ^{(System})>A 如下参数:	<i>†间日期</i> [F4]> <i>唤醒时钟编辑</i> [F3],设置
	选择时钟[F 状态[F2] 小时[F3] 分钟[F4] 连续.单次[/) 选择唤醒时钟(1~7) 开启/关闭所选时钟 设置唤醒:时 设置唤醒:分 //>//>//>///>///////////////////////
\wedge		

<u>∕</u>注意

唤醒时钟是针对所选的单独一天进行配置的。

报警输出

预设

预设功能可以调取默认出厂状态或用户自定义状态。

- 使用预设键 →见 104 页
- 保存用户预设值→见104页
- 设置预设类型→见105页
- 开机初始化设置 → 见 105 页

使用预设键

描述	Preset 键调取默认出厂状态或自定义预设状态。 预设类型见 105 页。				
出厂设置	默认出厂设置见 196 页。				
操作	按Preset键调取预设内容				
保存用户预设值					
描述	将当前状态保存为自定义预设内容。				
操作	按 System > <i>电源开/复位</i> [F5]> <i>保存用户设定</i> [F3] 将				

当前状态保存为用户自定义预设内容

设置预设类型

描述	每按一次 Preset 键,调取一次预设。预设内容可 选择出厂默认设置或用户自定义设置。
操作	1. 按 system > <i>电源开/复位</i> [F5]> <i>复位类型</i> [F2]选择预 设类型:
	用户复位[FI]

出厂复位[F2]

开机初始化设置

描述		仪器开机后, 置。	调取默	认预设内容或上初	次关机前设
操作	1.	按 ^{System} > <i>电源开 复位</i> [F5]> <i>电源开</i> [F1]选择开机 设置:			
		开机设置:		上次,复位	
<u>注</u> 注意		详情见 209 页	设置预	设类型。	
		若仪器未正确 情见25页。	9关机,	则不能调取关机前	前设置。详

测量107	7
通道分析概述10	7
ACPR	9
OCBW	2
AM/FM 解调与分析114	4
AM分析114	4
FM 分析117	7
AM/FM 解调120	0
N dB 带宽121	1
相位抖动测量122	2
频谱辐射屏蔽概述124	4
频谱辐射屏蔽测试130	6
三阶互调失真(TOI)141	1
CNR/CSO/CTB 测量143	3
载波噪音比(CNR)143	3
复合二次差异(CSO)140	6
复合三次差异(CTB)14	7
	1
轮前线侧头。 护盘阳生长(滚去)	1
/ / / / / / / / / / / / / / / / / / /	0 4
编辑限制线(从轨迹数据)	1
编辑限制线(从标记数据)152	2
删除限制线153	3
通过失败测试154	4
字列	3
/1 / 1 ································	_

执行序列......159
测量

本章节介绍如何使用自动测量模式。GSP-930包含如下测量:

- ACPR → 见 109 页
- OCBW → 见 112 页
- AM 解调 → 见 114 页
- FM 解调 → 见 117 页
- N dB 测量 → 见 121 页
- 相位抖动 → 见 122 页
- SEM 测量 → 见 124 页
- TOI 测量 → 见 141 页
- CNR/CSO/CTB 测量 → 见 143 页

通道分析概述

描述	通道分析测量包括 ACPR (邻近通道功率比)和 OCBW (占用带宽)测量。		
参数	通道带宽	目标通道占据的频宽。 范围:	
		0Hz~3GHz	
		(0Hz 除外)	
	通道间隔	各主通道之间的频率间	
		距。	
		范围:	
		0Hz~3GHz	
	邻近通道带宽182	邻近通道占据的频宽。	
		范围:	
		0Hz~3GHz	
		(0Hz 除外)	

邻近通道偏移1~3	邻近通道和主通道之间的 频率间距。
	范围:1
	0Hz~3GHz (0Hz 除外)
OCBW%	占用带宽所耗功率与总功
	率之比。
	范围:0%~100%,0.1%分
	辨率

G≝INSTEK

ACPR

描述

邻近通道功率比是指主通道泄漏到邻近通道的功 率量。其值为主通道功率与邻近通道功率之比。

操作: 设置主通道

- 1. 按 Meas > *频道分析*[F1]>ACPR [F2]开启 ACPR
- 其它任何测量模式将自动关闭
- 屏幕分为上下两部分。上部屏幕显示主通道、邻 近通道和它们的相应限制。下部屏幕实时显示 ACPR测量结果

results

3. 按 Meas > *频道分析*[F1]>ACPR 设置[F1]>,选择:

<i>主频道带宽[Fl]</i>	设置主通道带宽
主频道高界限[F2]	设置主通道上限
主频道低界限[F3]	设置主通道下限
<i>频道空间[F4]</i>	指定通道间隔

1. 按 ADJ 空间设置[F5]设置邻近通道:

设置邻近通道(s)

操作:

 选择 ADJ 频道[FI]
 选择邻近通道: 1, 2, 3

 [F2]
 打开/关闭此通道

 ADJ 频道带宽 [F3]
 选择此通道带宽

 ADJ 频道偏移 [F4]
 设置邻近通道偏移

 ADJ 频道偏移 [F4]
 设置邻近通道上限

 ADJCH ILlimit [F6]
 设置邻近通道下限

2. 若需要,重复上述步骤设置其它邻近通道

上/下移动通道	1. 按 Meas > <i>频道分</i> 一通道:	析[F1],参照如下按键移至另
	频道上移[F5] 频道下移[F6]	上一个主通道 下一个主通道
<u>注</u> 注意	频道空间(CH SPC 置。	C)参数决定下一主通道的位

OCBW

Channel power and total power results

3. 按 OCBW 设置[F3]进入 OCBW 设置:

频道带宽[f1]	设置通道带宽
频道空间[F2]	设置各主通道之间的通道
	间隔
DCBW%[F3]	设置 OCBW 与 CHBW 的
	百分比

上/下移动通道 1. 按 Meas > 频道分析[F1],选择:

频道上移 频道下移	<i>後[F5]</i> 上一~ 後[F6]	个主通道
	下一-	个主通道
ノス ノバット 中国		

通道间隔(CH SPC)参数决定下一主通道的位置。

ACPR 和 DCBW 设置中的 CH SPC 参数是独立的。

AM/FM 解调与分析

AM分析

描述	开启调幅解调功能后, 率,扫宽自动设为零。	输入信号集中在中心频
测量项	AM 调制深度:	当前,最小,最大
	调制.率:	当前,最小,最大
	载波功率:	当前,最小,最大
	载波频率偏移:	当前,最小,最大
	SINAD:	当前,最小,最大
操作: 1. 设置	将中心频率设为载波频	页率(见 36 页)

- 接 ▲ 2. 按 ▲ 3 > 解调[F2]>调幅分析[F1]>调幅分析[F1]

 开启 AM 分析
- 其它任何测量模式将自动关闭
- 3. 屏幕分为上下两部分。上部屏幕显示时域 AM 波 形。下部屏幕显示 AM 测量

AM waveform

- 4. 按设置[F2]>中频带宽[F1]设置中频带宽
- 确保带宽足以调解载波所含频谱
- 5. 按*低通滤波器*[F2]设置低通滤波器频率,另外该 滤波器也可设置成绕开:

		LPF 可选带宽(Hz)			
≥78,125	156,250	78,125	52,083	39,063	31,250
≥39,063	78,125	39,063	26,042	19,531	15,625
≥19,531	39,063	19,531	13,021	9,766	7,813
≥7,813	15,625	7,813	5,208	3,906	3,125
≥3,906	7,813	3,906	2,604	1,953	1,563
≥1,953	3,906	1,953	1,302	977	781
≥781	1,563	781	521	391	313
≥391	781	391	260	195	156
≥195	391	195	130	98	78
≥78	156	78	52	39	31
≥39	78	39	26	20	16
≥20	39	20	13	10	8
≥8	16	8	5	4	3

6. 按时间轴[F3]设置水平轴参数:

参考值[F1]

设置起始时间

115

	参考位置[F2]	转换的波形在细分网格上 的位置(X)号
	刻度/格[F3]	自动缩放关闭时设置每格 刻度
	自动缩放[F4]	开启/关闭自动缩放
7.	按深度轴[F4]设置深度	〔(垂直)参数:
	参考值[FI]	参考位置偏移,以垂直刻 度/格的百分比表示
	参考位置[F2]	设置波形在水平细分网格 上的参考位置。(1:10)
	刻度/格[F3]	<i>自动缩放</i> 关闭时设置水平 格刻度
	自动缩放[F4]	开启/关闭自动缩放
8.	按 AF <i>触发</i> [F5]设置触	发条件:
	自由运行[FI]	关闭触发,此为默认设置
	边沿斜率[F2]	设置上升沿或下降沿触发
	触发模式[F3]	设置触发模式:
		不:正常触发
		单次:单次触发
		连续:连续触发
	<i>触发电平[F4]</i>	设置触发电平, 与深度成
		百分比关系
	<i>触发延迟[F5]</i>	设置触发延迟时间:
		0~1ks

立即运行[FB] 关闭自由运行(FreeRun) 模式,使用自定义触发设 置

操作:

触发设置

保持 MAX 和 MIN 测量值,直至出现更大或更小值。 按 Meas > *解调[F2]>调幅分析[FI]>最小/最大复位[F3]* 重设 MAX 和 MIN 测量值。

FM 分析		
描述	开启调频解调功能 率,扫宽自动设为	后,输入信号集中在载波频 零。
测量项	频率偏移:	当前,最小,最大
	调制率:	当前,最小,最大
	载波功率:	当前,最小,最大
	载波频率偏移:	当前,最小,最大
	SINAD:	当前,最小,最大
操作: 设置	1. 将中心频率设为载	波频率(见 36 页)
	 2. 按 Meas > 解调[F2 开启调频分析 • 其它任何测量模式]> <i>调频分析</i> [F2]> <i>调频分析</i> [F1] 将自动关闭

3. 屏幕分为上下两部分。上部屏幕显示时域调频波 形。下部屏幕显示调频测量

- 4. 按*设置*[F2]>*中频带宽*[F1]设置中频带宽(10kHz, 30kHz, 100kHz, 300kHz, 1MHz,)
- 确保带宽足以解调载波所含频谱
- 5. 按*低通滤波器*[F2]设置低通滤波器频率,另外该 滤波器也可设置成绕开:

FM 信号频率(Hz)					
	LPF 可选带宽(Hz)				
≥78,125	156,250	78,125	52,083	39,063	31,250
≥39,063	78,125	39,063	26,042	19,531	15,625
≥19,531	39,063	19,531	13,021	9,766	7,813
≥7,813	15,625	7,813	5,208	3,906	3,125
≥3,906	7,813	3,906	2,604	1,953	1,563
≥1,953	3,906	1,953	1,302	977	781
≥781	1,563	781	521	391	313
≥391	781	391	260	195	156
≥195	391	195	130	98	78
≥78	156	78	52	39	31
≥39	78	39	26	20	16
≥20	39	20	13	10	8
≥8	16	8	5	4	3

6. 按时间轴[F3]设置水平轴参数:

	/口+土 MAV 千市 MIN 3回	具体 古云山现西十式西小体
	立即运行[F6]	关闭自由运行(FreeRun) 模式,使用自定义触发设 置
		0~1ks
	<i>触发延迟[F5]</i>	设置触发延迟时间:
		平。
	<i>触发由平[F4]</i>	在天,在天赋风 作为频率设定的钟发由
		平八: 平八朏久 连续: 连续鲉发
		个:止 常 触 友
	触友模式[[8]	设置触友模式:
	边沿斜率[H2]	设置上升沿或卜降沿触发
	自由运行[[1]	关闭触发,此为默认设置
操作: 触发设置	8. 按 AF <i> </i>	1.直触及余件:
堀 <i>化</i> .		·罢舳告友件.
	自动缩放[F4]	打开/关闭自动缩放
	刻度/格[F3]	设置水平格刻度
	≫~5 坐.担[I4]	上的参考位置。 (1:10)
	<i> </i>	上 <i>い</i> 沿置波形在水亚细分网枚
	参考值[FI]	参考位置偏移 (在频率 上)
	7. 1女 <i>'师左'神</i> [F4] 汉直	1.休皮(亚旦) / 少奴:
	7 拉伯兰加[[74]识罕	胃泌
	自动缩放[F4]	打开/关闭自动缩放
	<i>次</i> 小交/俗[[ǔ]	日初组成大团时以直母俗刻度
	大小庄、/-/4 [[7]]	的位置(X)号。
	参考位置[F2]	转换的波形在细分网格上
	参考值[FI]	设置起始时间

保持 MAX 和 MIN 测量值,直至出现更大或更小值。 按 Meas > 解调[F2]>调频分析[F1]>最小/最大复位[F3] 重设 MAX 和 MIN 测量值

AM/FM 解调

描述		GSP-930 提供的 AM/I 或 FM 的调制信号恢复 输出插孔收听。	FM 解调功能, 〔为基带信号,	可以将 AM 并通过耳机
操作: 设置	1.	将中心频率设为期望的 情见 36 页	方FM/AM 载波	皮频率。详
	2.	将扫宽设为零。详情见	140页	
	3.	将前置放大(Preamp)设	设为自动。见5	3页
接口		将耳机或扬声器插入1	手机输出端口	\bigcirc
操作	4.	按 Meas > <i>解调</i> [F2] > 声 耳机输出	^声 音[F3]>耳机轴	<i>谕出[F1]</i> 打开
	5.	按 <i>音量</i> [F2]设置音量输	出:	
		辛 畳: 百里:	0~15, 默认 7	
	6.	按 <i>数位增益控制</i> [F3]改	变增益:	
		增益:	0~18dB, 6dB	步进
	7.	按 <i>解调类型</i> [F4]选择 A	M或FM解调	

NdB带宽

N dB BW Measurement

3. 按 NdB[F2]设置 NdB 幅值:

G≝INSTEK

	幅值:	0.1dB ~ 80.0 dB	
<u>注</u> 注意	NdB带宽测量与 RBW 和 VBW 密切相关。		
相位抖动测量			
描述	相位抖动指的是相位波动的次数,用于评估信号 在时域的稳定度。		
参数	起始偏移:	起始频率相对于中心频率	
	停止偏移:	停止频率相对于中心频率	
测量项	载波功率:	dBm	
	相位抖动:	rad	
	抖动时间:	ns	
例如	Start Offset Stop Offset		
操作: 1 设置主通道 2	 按 ▲ F A C A J J F A C A J J F A C A J J F A C A J J F A C A J J F A C A J J F A C A J J F A C A J J F A C A J J F A C A J J J F A C A J J J F A C A J J J F A C A J J J F A C A J J J F A C A J J J F A C A J J J F A C A J J J F A C A J J J F A C A J J J F A C A J J J F A C A J J J F A C A J J J F A C A J J J F A C A J J J F A C A J J J F A C A J J J F A C A J J J F A C A J A C A A C A J A C A C A C		

Phase jitter measurements

3. 按*起始偏移* [F2]设置起始频率偏移:

偏移: (0Hz~½扫宽)

4. 按*停止偏移*[F3]设置停止频率偏移:

	偏移:	(0Hz~½扫宽)
<u>注</u> 注意	相位抖动测量与RBW和	和VBW密切相关。

频谱辐射屏蔽概述

描述	频谱辐射屏蔽测量的是通道外相对于通道内的功 率泄漏量。频谱辐射屏蔽测量通常计算指定的不 同偏移载波频率带上的功率。频谱辐射屏蔽往往 使用不同无线标准测量。
	针对 3GPP, GSP-930 支持 FDD(频分双工)和 TDD(时分双工)模式的 BS(基站)和 UE(用 户设备)测试标准。

GSP-930 也支持 802.11b, 802.11g, 802.11n 和 802.16 的 SEM 测试以及用户自定义的辐射屏蔽 测试。

总功率参考:	计算偏移功率时,载波总功率 被用来作为参考。
功率谱密度参考:	载波功率谱密度用于参考计算 偏移功率。
选择偏移:	选择偏移对(1~5)用于配置。
起始频率:	设置所选偏移数的起始频率偏 移。
截止频率:	设置所选偏移数的截止频率偏 移。
分辨率带宽:	设置所选择偏移数的分辨率带 宽。
Abs 起始:	设置所选择偏移数与起始频率 上午绝对限制电平。
Abs 截止:	设置选择偏移数与截止频率的 绝对限制电平。绝对截止可以 被设成一对或手动。手动允许 用户自定义绝对截止,一对将 锁定绝对截止到绝对起始限制 电平。
Rel 起始:	设置选择偏移数相对起始频率 的限制电平。
Rel 截止:	设置选择偏移数相对截止频率 的限制电平。参考截止可以被 设成一对或手动。手动允许用 户自定义参考截止,一对将锁 定参考截止到参考起始限制电 平。

	失败模板:	关于测量失败条件的限制电平 设置:绝对,相对,绝对&相对, 绝对或相对。
测量项		
	主通道带宽:	单位: Hz
	总功率:	单位:dBm
_		
-	PSD (功率谱密度):	单位:dBm/Hz
	偏移1~5:	下 dBm, 上 dBm

3GPP Operating Bands *

Operating Band	UL Frequencies UE transmit, Node B receive	DL Frequencies UE receive, Node B transmit
I	1920~1980MHz	2110~2170MHz
I	1850~1910MHz	1930~1990 MHz
II	1710~1785MHz	1805~1880MHz
IV	1710~1755MHz	2110~2155MHz
V	824~849MHz	869~894MHz
VI	830~840MHz	875~885MHz
VII	2500~2570MHz	2620~2690MHz
VIII	880~915MHz	925~960MHz
IX	1749.9~1784.9MHz	1844.9~1879.9MHz
Х	1710~1770MHz	2110~2170MHz
XI	1427.9~1452.9MHz	1475.9~1500.9MHz
XII	698~716MHz	728~746MHz
XIII	777~787MHz	746~756MHz
XIV	788~796MHz	758~768MHz
XV	Reserved	Reserved

XI	VI	Reserved	Reserved
XI	VII	Reserved	Reserved
XI	VIII	Reserved	Reserved
XI	IX	830~845MHz	875~890MHz
XX	X	832~862MHz	791~821MHz
XX	XI	1447.9~1462.9MHz	1495.9~1510.9MHz
χχ	XV	1850~1915MHz	1930~1995MHz

*for FDD, 参考 ETSI:

3GPP TS 25.101 version 10.2.0 Release 10 3GPP TS 25.104 version 10.2.0 Release 10 3GPP-FDD BS For the FDD configuration, different limits can by chosen based on the total channel power, P.

The default value for Δ fmax is 12.5MHz. Δ fmax can be user-defined.

The channel span is set to 5MHz.

Note: A, B, C, D, E denote offsets 1 to 5, respectively.

		<u> </u>	
P≥43	Unit: MHz	Abs ^[1]	RBM
	2.5 ≤A<2.7	-14dBm	30kHz
	2.7≤B<3.5	-14 ~ -26dBm	30kHz
	3.5≤C<∆fmax	-13dBm	1MHz
ባበ - በ - ለባ	Unit: MHz	Abs ^[1]	RBW
ᲐᲣ <u>─</u> ۲<4Ა	2.5 ≤A<2.7	-15dBm	30kHz
	2.7≤B<3.5	-14 ~ -26dBm	30kHz
	3.5≤C<7.5	-13dBm	1MHz
	7.5 <u>≤</u> D< ∆ fmax	P-56dB	1MHz
	Unit: MHz	Abs ^[1]	KBM
<u>א≥</u> ר<ז <u>א</u>	2.5 ≤A<2.7	P-53dB	30kHz
	2.7 <u>≤</u> B<3.5	P-53dB~ P-56dB	30kHz
	3.5 <u>≤</u> C<7.5	P-52dB	1MHz
	7.5 <u>≤</u> D< ∆ fmax	P-56dB	1MHz
n .ni	Unit: MHz	Abs ^[1]	RBM
4<31	2.5 ≤A<2.7	-22dBm	30kHz
	2.7 <u>≤</u> B<3.5	-22 ~ -34dBm	30kHz
	3.5≤C<7.5	-21dBM	1MHz
	7.5 <u>≤</u> D< ∆ fmax	-25dBm	1MHz

For P<31, two additional power limits (shown below) can be selected via the *Additional Max Out. Pwr* option for Home BS applications:

(The default value for Δ fmax is 14.5 MHz. Δ fmax can be user-defined)				
6 <u><</u> P <u><</u> 20	Unit: MHz	Abs ^[1]	RBW	
	12.5 <u>≤</u> E< ∆fmax	P- 56dB	1MHz	
P<6	Unit: MHz	Abs ^[1]	RBW	
	12.5 ≤E< ∆fmax	-50dBm	1MHz	

3GPP-FDD BS Additional For operation in bands II, IV, V, X, XII, XIII, XIV and XXV, additional Requirements (listed below) apply in addition to the minimum requirements listed above.

	Unit: MHz	Additional ^[3]	RBW
Bands: 11, 1V, X	2.5 ≤A<3.5	-15dBm	30kHz
	3.5 <u>≤</u> B< ∆fmax	-13dBm	1MHz
	Unit: MHz	Additional ^[3]	RBW
Bands: V	2.5 <u>≤</u> A<3.5	-15dBm	30kHz
	3.5 <u>≤</u> B< ∆fmax	-13dBm	100kHz
Bands: XII, XIII, XIV	Unit: MHz	Additional ^[3]	RBW
	2.5 ≤A<3.5	-13dBm	30kHz
	3.5≤B< ∆fmax	-13dBm	100kHz

3GPP-FDD UE The channel span is set to 5MHz.

Note: A, B, C, D, E denote offsets 1 to 5, respectively.

		· · ·	
Unit: MHz	Rel	Abs ⁽¹⁾	RBW
2.5 ≤A<3.5	-35~-50dBc	-71.1dBm	30kHz
3.5 ≤B<7.5	-35~-39dBc	-55.8dBm	1MHz
7.5 ≤C<8.5	-39~-49dBc	-55.8dBm	1MHz
8.5 ≤D<12.5	-49~-49dBc	-55.8dBm	1MHz

3GPP-FDD UE Additional Additional requirements for 3GPP-FDD UE.

Requirements	. .	Unit: MHz	Additional ^[3]	RBW
	Bands II. IV. X	2.5 ≤A<3.5	-15dBm	30kHz
		3.5 <u>≤</u> B<12.5	-15dBm	1MHz
	Band V	Unit: MHz	Additional ^[3]	RBM
		2.5 <u>≤</u> A<3.5	-15dBm	30kHz
		3.5≤B<12.5	-13dBm	100kHz
		Unit: MHz	Additional ^[3]	RBM
	Bands XII, XIII, XIV	2.5 <u>≤</u> A<3.5	-13dBm	30kHz
	,,	3.5≤B<12.5	-13dBm	100kHz

3GPP-TDD BS 3.84Mcps*

For the TDD configuration, different limits can by chosen based on the total channel power,

The channel span: 3.84Mcps: 5MHz.

Note: A, B, C, D, E denote offsets 1 to 5, respectively.

P≥43	Unit: MHz	Abs ^[1]	RBW
	2.5 ≤A<2.7	-14dBm	30kHz
	2.7≤B<3.5	-14 ~ -26dBm	30kHz
	3.5 <u><</u> C<12	-13dBm	1MHz
39 <u><</u> P<43	Unit: MHz	Abs ^[1]	RBW
	2.5 ≤A<2.7	-14dBm	30kHz
	2.7≤B<3.5	-14 ~ -26dBm	30kHz
	3.5 <u>≤</u> C<7.5	-13dBm	1MHz
	7.5 <u><</u> D<12	P-56dB	1MHz

31 <u>-</u> P-39	חת, ה	Unit: MHz	Abs ^[1]	RBM
	נז <u><</u> ר<ז	2.5 ≤A<2.7	P-53dBm	30kHz
		2.7 <u>≤</u> B<3.5	P-53~P-65dBm	30kHz
		3.5 <u>≤</u> C<7.5	P-52dBm	1MHz
		7.5 <u>≤</u> C<12	P-56dBm	1MHz
P <u><</u> 31	ום - ח	Unit: MHz	Abs ^[1]	RBM
	P <u>∽</u> 3I	2.5 ≤A<2.7	-22dBm	30kHz
		2.7≤B<3.5	-22 ~ -34dBm	30kHz
		3.5≤C<7.5	-21dBm	1MHz
		7.5 <u><</u> D<12	-25dBm	1MHz
*referenced from ETS1: 3GPP TS 25.102 version 3GPP TS 25.105 version	10.2.0 Release 10 10.3.0 Release 10			

3GPP-TDD BS 1.28Mcps	The channel span: 1.28Mcps: 1.6MHz.			
	Π ₂ Π/	Unit: MHz	Abs ^[1]	RBM
	Р <u>></u> 34	0.8 <u><</u> A<1	-20dBm	30kHz
		1 <u><</u> B<1.8	-20 ~ -28dBm	30kHz
		1.8 <u><</u> C<3.5	-13dBm	1MHz
	26 <u><</u> P<34	Unit: MHz	Abs ^[1]	RBM
		0.8≤A<1	P-54dB	30kHz
		1 <u><</u> 8<1.8	P-54~P-62dB	30kHz
		1.8 <u><</u> C<3.5	P-47dB	1MHz
	D 00	Unit: MHz	Abs ^[1]	RBM
	4<70	0.8 ≤A<1	-28dBm	30kHz
		1 <u><</u> B<1.8	-28~-36dBm	30kHz
		1.8 <u><</u> C<3.5	-21dBm	1MHz

3GPP-TDD BS 7.68 Mcps	The channel s 7.68Mcps: 10N	The channel span: 7.68Mcps: 10MHz.				
		Unit: MHz	Abs ^[1]	RBW		
	₽ <u>≥</u> 43	5 <u>≤</u> A<5.2	-17dBm	30kHz		
		5.2 <u><</u> 8<6	-17 ~ -29dBm	30kHz		
		6 <u><</u> C<24.5	-16dBm	1MHz		
	ባ - በ - ለ ባ	Unit: MHz	Abs ^[1]	RBM		
	Ა <u>Ყ</u> ∠۲<4Ა	5 <u><</u> A<5.2	-17dBm	30kHz		
		5.2 <u><</u> 8<6	-17 ~ -29dBm	30kHz		
		6 <c<15< td=""><td>-16dBm</td><td>1MHz</td></c<15<>	-16dBm	1MHz		
		15 <u><</u> D <u><</u> 24.5	P-59dB	1MHz		
	ባር - በ - ባበ	Unit: MHz	Abs ^[1]	RBM		
	ז <u>~</u> ר<ז <u>5</u>	5 <u><</u> A<5.2	P-56dB	30kHz		
		5.2 <u><</u> 8<6	P-56~P-68dB	30kHz		
		6 <u><</u> C<15	P-55dB	1MHz		
		15≤D≤24.5	P-59dB	1MHz		
	∏ <i>∠</i> 91	Unit: MHz	Abs ^[1]	RBW		
	ויא	5≤A<5.2	-25dBm	30kHz		
		5.2 <u><</u> 8<6	-25~-37dBm	30kHz		
		6≤C<15	-24dBm	1MHz		
		15 <u><</u> D <u><</u> 24.5	-28dBm	1MHz		

3GPP-TDD UE The channel span: 3.84Mcps: 5MHz. 1.28Mcps: 1.6MHz. 7.68Mcps: 10MHz.

3.84Mcps	Unit: MHz	Rel ^[2]	RBW
	2.5 ≤A<3.5	-35~-50dBc	30kHz
	3.5≤B<7.5	-35 ~ -39dBc	1MHz
	7.5 <u><</u> C<8.5	-39~-49dBc	1MHz
	8.5 <u><</u> D<12.5	-49dBc	1MHz
1.28Mcps	Unit: MHz	Rel ^[2]	RBW
	0.8 <u><</u> A<1.8	-35~-49dBc	30kHz
	1.8 <u><</u> 8<2.4	-49~-59.2dBc	30kHz
	2.4 <u><</u> C<4	-44dBc	1MHz
7 001	Unit: MHz	Rel ^[2]	RBW
7.68MCps	5 <u><</u> A<5.75	-38~-46dBc	30kHz
	5.75 <u><</u> 8<7	-46 ~ -53dBc	30kHz
	7 <u><</u> C<15	-38~-42dBc	1MHz
	15 <u><</u> D<17	-42~-52dBc	1MHz
	17 <u><</u> E<25	-53dBc	1MHz

Note: A, B, C, D, E denote offsets 1 to 5, respectively.

802.11b* The channel span: 22MHz

Note: A, B denotes offsets 1 and offset 2. Here the default value of "f" is 24MHz. This can be user-defined.

Unit: MHz	Rel ^[2]	RBW
11 <u><</u> A<22	-30dBc	100kHz
22≤B <f< th=""><th>-50dBc</th><th>100kHz</th></f<>	-50dBc	100kHz

*reference: IEEE Std 802.11b-1999

802.11g The channel span: ERP-OFDM/DSSS-OFDM : 18MHz ERP-DSSS/ERP-PBCC/ERP-CCK: 22MHz

> Note: A, B, C, D denote offsets 1 to 4, respectively. Here the default value of "f" is 40MHz (ERP-OFDM/ DSSS-OFDM) or 25MHz (ERP-DSSS/ ERP-PBCC/ ERP-CCK). This can be user-defined.

Unit: MHz	Rel ^[2]	RBW
9 <u><</u> A<11	-0~-20dBc	100kHz
11 <u><</u> B<20	-20~-28dBc	100kHz
20 <u><</u> C<30	-28~-40dBc	100kHz
30 <u><</u> D <f< td=""><td>-40dBc</td><td>100kHz</td></f<>	-40dBc	100kHz
Unit: MHz	Rel ⁽²⁾	RBM
11 ≤A<22	-30dBc	100kHz
22≤B <f< td=""><td>-50dBc</td><td>100kHz</td></f<>	-50dBc	100kHz
	Unit: MHz $9 \le A < 11$ $11 \le B < 20$ $20 \le C < 30$ $30 \le D < f$ Unit: MHz $11 \le A < 22$ $22 \le B < f$	Unit: MHz $Rel^{(2)}$ 9 \leq A<11

*reference: IEEE Std 802.11a-1999

802.11n

The channel span: CH BW 20MHz: 18MHz CH BW 40MHz: 38MHz

Note: A, B, C, D denote offsets 1 to 4, respectively. Here the default value of "f" is 40MHz(CHBW 20MHz) or 70MHz(CHBW 40MHz). This can be user-defined.

CH BW 20MHz	Unit: MHz	Rel ⁽²⁾	RBM
	9 <u><</u> A<11	-0~-20dBc	100kHz
	11 <u><</u> B<20	-20~-28dBc	100kHz
	20 <u><</u> C<30	-28~-45dBc	100kHz
	30 <u><</u> 0 <f< td=""><td>-45dBc</td><td>100kHz</td></f<>	-45dBc	100kHz

G≝INSTEK

	CH BW 40MHz	Unit: MHz	Rel ⁽²⁾	RBW
		19 <u>≤</u> A<21	0~-20dBc	100kHz
		21 <u><</u> 8<40	-20~-28dBc	100kHz
		40 <u><</u> C<60	-28~-45dBc	100kHz
		60 <u><</u> 0 <f< td=""><td>-45dBc</td><td>100kHz</td></f<>	-45dBc	100kHz
*reference: IEEE Std 8	02.1n-2009			
802.16*	The channel spa CH BW 20MHz: 19 CH BW 10MHz: 9. Note: A, B, C, D d Here the default 31.5MHz(CHBW 11	n: 3MHz 5MHz lenote offsets 1 to 4, ri value of "f" is 16.75Ml 0MHz). This can be use	espectively. Hz(CHBW 20MHz) or er-defined.	
	CH BW 20MHz	Unit: MHz	Rel ^[2]	RBW
		9.5 <u><</u> A<10.9	0~-25dBc	100kHz
		10.9 <u><</u> 8<19.5	-25~-32dBc	100kHz
		19.5 <u><</u> C<29.5	-32~-50dBc	100kHz
		29.5 <u><</u> D <f< td=""><td>-50dBc</td><td>100kHz</td></f<>	-50dBc	100kHz
		Unit: MHz	Rel ⁽²⁾	RBW
	PH RM INWHS	4.75 ≤A<5.45	0~-25dBc	100kHz
		5.45 <u><</u> 8<9.75	-25~-32dBc	100kHz
		9.75 <u><</u> C<14.75	-32~-50dBc	100kHz
		14.75 <u><</u> D <f< td=""><td>-50dBc</td><td>100kHz</td></f<>	-50dBc	100kHz
*reference: IEEE Std 8	02.16-2009			

\wedge	
<u> </u>	注意

^[1] Abs: Absolute limit

^[2] Rel: Relative limit(to the total power or the power spectral density, depending on the compliance of the main channel)
^[3] Additional: Additional absolute limit
Pass Fail Criteria:
Case 1: When both Abs and Rel are used, the highest value (Abs or Rel) is used as the Pass/Fail judgment. The trace points under the limit indicate a pass.
Case2: If the additional limit is used, the higher value from

casel is compared to the additional limit. The lowest one is used as the pass/fail judgment.

频谱辐射屏蔽测试

描述	对于频谱辐射屏蔽测试,GSP-930可预先定义 3GPP测试参数 802.11x 和 802.16,也可以执行 用户自定义的 SEM 测试。
操作:	 按 Meas > 频谱辐射屏蔽[F5]>频谱辐射屏蔽[F2] 开启频谱辐射屏蔽 其它任何测量模式将自动关闭
	 屏幕分为上下两部分。上部屏幕显示信号轨迹和 绝对/相对屏蔽限制。下部屏幕显示频谱辐射屏 蔽测量结果 Absolute
	Start 1.944GHz Channel Start 1.944GHz Channel
	SEM measurements

自定义参数 1. 按*设置*[F1]>*用户定义*[F6]设置自定义频谱辐射屏 蔽测量参数

2. 按*测量类型*[F1]选择*参考总功率*[F1]或 PSD 参考 [F2] 3. 按*参考频道*[F2],设置如下内容:

频道覆盖带宽[f1]	设置通道覆盖带宽
频道扫宽[F2]	设置通道扫宽
分辨率带宽[F3]	设置分辨率带宽
参考总功率[F4]/	设置总功率/PSD 参考电
PSD参考[F4]	平

- 4. 按*返回*[F7]返回上级菜单
- 5. 按*偏移/限制*[F3]设置偏移参数:

选择偏移 [1]	选择偏移
打开/关闭[F2]	开启/关闭所选偏移
起始频率[F3]	设置所选偏移的起始频率
<i>截止频率[F4]</i>	设置所选偏移的截止频率
<i>分辨率带宽[F5]</i>	设置所选偏移的分辨率带
	宽

6. 按更多1/2[F6]设置绝对、相对电平限制和条件:

绝对起始[F2]	设置所选偏移的绝对起始 电平限制
绝对截止[F3]	设置所选偏移的绝对截止 电平限制
	手动:允许用户自定义绝 对截止电平 一对:设置绝对截止电平 至绝对起始电平。
相对起始[F4]	设置所选偏移的相对起始 电平限制

G^wINSTEK

相对截止[F5]

设置所选偏移的相对截止 电平限制

手动:允许用户自定义相 对截止电平。

一对:设置相对截止电平 至相对起始电平。

7. 按*失败屏蔽*[F6]设置不合格屏蔽条件:

绝对[FI]	设置绝对电平限制为不合
	格条件
相对[F2]	设置相对电平限制为不合
	格条件
绝对与相对[F3]	设置绝对和相对电平限制
	为不合格条件
绝对或相对[F4]	设置绝对或相对电平限制
	为不合格条件

8. 按选择偏移[F1], 重复以上步骤设置其它偏移

		偏移:	1~5
预设测试参数: 3GPP		3GPP 频谱辐射屏蔽 屏蔽概述。	扳测试参数见 124 页频谱辐射
	1.	按 <i>设置</i> [F1]>3GPP[1	F1]选择 3GPP 测量
	2.	按 <i>参考频道</i> [F2],设置如下内容:	
		分辨率带宽[[3]	设置分辨率带宽
	3.	预先定义所有其它通道设置	
	4.	按 <i>返回</i> [F7]返回上组	及菜单
5.		按 <i>偏移 界限</i> [F3]> <i>X</i>	(<i>工模式</i> [F1]选择 FDD 或

TDD 双工: 6. 按 FDD 设置[F2]设置 FDD 参数; 对于 TDD, 按 TDD 设置[F3]: *传送[F1]* 切换 BS 和 UE 测试 芯片速率[F2] 选择 RRC 滤波器带宽用 于测量 TDD 信道功率。 双工: 3.84MHz, 1.28MHz, 7.68MHz 设置 BS 测试的最大输出 *最大输出功率[F2/F3]* 功率: P>=43 39<=P<=43 31<=P<=39 P<31 选择 FDD 分工的操作带 附加频段[F4] 宽: 无 频段 II 频段 IV 频段 V 频段 X 频段 X11 频段 XIII 频段 XIV 检视每个偏移参数,包括 最小偏移/ 界限[F4] 起始/截止频率、分辨率 带宽、绝对起始/截止和 相对起始/截止

预设测试参数: 802.11x 和 802.16 频谱辐射屏蔽测试参数见 124802.XX 页频谱辐射屏蔽概述。

1. 按*设置*[F1]>选择 802.XX 测试:

802.11b[F2] 802.11g[F3] 802.11n[F4] 802.16[F5]

- 2. 按*参考频道*[F2]检视预定义设置,包括频道覆盖 带宽、频道扫宽、分辨率带宽和选择偏移
- 3. 按*偏移|界限*[F3]检视每个偏移参数值,包括起始 和截止频率、分辨率带宽、相对起始和截止

三阶互调失真(TDI)

描述	三阶互调失真测量 近的两个信号产生 (IP3)的计算。标记 基频信号频率点。 限制线可以被放在 测试。	是计算由非线性系统中频率相的 TOI 信号。上下三阶交调点放在产生 TOI 的频率点以及
参数	参考下部	设置参考电平至低基频信号。
	参考上部	设置参考电平至高基频信号。
	限制	设置通过/失败测试限制,单 位 dBm
	通过/失败	打开/关闭通过/失败测试
测量项	上部基频	频率, dBm, dBc.
	下部基频	频率, dBm, dBc
	3 rd Order 下部	频率, dBm, dBc, 限制, 截获点
	3 rd Order 上部	频率, dBm, dBc, 限制, 截获点
	Δf	频率

例如

操作:

- 1. 按(Meas)> TOI[F6]>TOI[F1]打开 TOI
- 其它任何测量模式将自动关闭
- 屏幕分为上下两部分。上部屏幕显示信号轨迹、 上下基频标记以及上下三阶互调信号标记。下部 屏幕显示 TOI 测量和 Pass/Fail 结果

TOI measurement and results

- 3. 按参考[F2]设置上/下基频参考值
- 4. 按限制[F3]设置上下三阶互调信号的幅值限制
5. 按通过/失败[F4]打开/关闭通过/失败测试

CNR/CSO/CTB 测量

载波噪音比(CNR)

描述	载波噪音比计算传的幅值差。CNR 注	F输过程中载波信号与噪声电平则量用于模拟和数字 CATV。
参数	噪声标记	两种方式设置Δ标记(Δ1) 位 置:
		MIN: 在载波频率和载波频率 +4MHz范围内搜索最小幅值
		ΔMarker: 自定义 Δ 标记位置
测量项	图像载波	频率,幅值
	CNR	幅值差
	Δf	图像载波与噪声标记的频率差
例如	CNR dB Δf Channel spacing	al carrier marker <u>∆1 Noise</u> <u>∽ marker</u> Aural, audio carrier To next main channel
操作: 1.	按 Meas > CNR/C	CSO/CTB[F7]>Setup[F1]>

CNR[F1]选择 CNR 测量

- 2. 按 Noise Marking[F1]切换噪声标记类型: Min 或 △Marker
- 3. 若选择 Min,再按 Return [F7]返回上级菜单
- 4. 若选择 △Marker,再按 Marker > Delta[F4]>Delta[F1]设置 △标记位置
- 移动标记见 81 页

按(Meas) > CNR/CSO/CTB[F7]返回上级菜单

- 5. 按 CNR[F2]开启 CNR
- 其它任何测量模式将自动关闭
- 确保CNR 开启前关闭声音和色度子载波
- 屏幕分为上下两部分。上部屏幕显示信号轨迹、 图像载波标记和噪声标记。下部屏幕显示 CNR 测量

CNR measurements

7. 按 CNR CH SP[F2]设置通道间隔

范围:

0~3GHz

8. 按 Channel Move Down[F4]或 Channel Move Up [F5]移至下/上一个通道

<u> 注</u>意

CNR测量前,确保关闭声音和色度子载波。

复合二次差异(CSD)

描述	复合二次测量用于计算载波信号与复合二次差拍 物之间的幅值差。
参数	CSO CH SP: 通道间隔
测量项	图像载波: 频率, 幅值 通道间隔: 频率 CSO: 幅值差
例如	Visual carrier marker
操作:	 1. 按 Meas > CNR/CSO/CTB[F7]>Setup[F1]> CSO[F2]选择 CSO 2. 按 CSO[F2]开启 CSO
	• 其它任何测量模式将自动关闭

3. 屏幕分为上下两部分。上部屏幕显示信号轨迹、 图像载波标记和 CSO 差拍标记。下部屏幕显示 CSO 测量

4. 按 CSO CH SP[F2]设置通道间隔

范围:

0~3GHz

5. 按 Channel Move Down[F4]或 Channel Move Up [F5]移至下/上一个通道

描述	复合三次差异测量用于计算图像载波与复合三次 差拍之间的幅值差。
测量项	图像载波:频率,幅值 CTB:图像载波与三次差拍的幅值差 三次差拍:幅值

4. 关闭图像载波信号输入,并按前面板 Enter 键

- 5. 显示第二轨迹,标记 CTB 幅值
- (²)标记在第二轨迹,计算(¹₂-²₂)
- 6. 按 CTB CH SP[F2]设置通道间隔

范围:

0~3GHz

7. 按 Channel Move Down[F4]或 Channel Move Up [F5]移至下/上一个通道

按 Setup[FI]>CTB[F3]> Restart[FI]再次执行 CTB 测量

限制线测试

在全频段范围内设置上/下幅值限制,用于检测输入信号是否超出、 低于或在限制线范围内。

限制线可以自动或手动编辑。

- 编辑限制线(逐点) → 见 150 页
- 编辑限制线(从轨迹数据) → 见 151 页
- 编辑限制线(从标记数据) → 见 152 页
- /! 注意 此功能将改变限制线外 Marker 1的位置
- 删除限制线 → 见 153 页
- 通过失败测试 → 见 154 页

编辑限制线(逐点)

描述		手动逐点创建限制线。 点。	最多可设置10个频率
操作	1.	按 ^{Limit} Line > <i>编辑界限</i> [F 线	1]> <i>选择界限</i> [F1]选择限制
		限制线:	1~5
	2.	按逐点详述[F2]	
		屏幕分为上下两部分。 限制线。下部屏幕显示	上部屏幕显示信号轨迹和 示限制线列表

3. 按点[F1]选择编辑点(必须从#1开始)

- 4. 按频率[F2]设置第一个点的频率
- 5. 按*限制*[F3]设置点的幅值

所有设置内容显示在屏幕下方的限制线列表里

6. 重复 3-5 步设置其余频率点(最多 10)

7. 按删除点[F6]删除所选点

8. 按返回[F7]>保存界限[F5]保存当前所选限制线

▲ 限制线上的点自动依频率大小排序(低→高)

编辑限制线(从轨迹数据)

描述		根据轨迹数据和起始、停止频率创建限制线(10 个频率点)。
操作	1.	按 Limit > 编辑界限[F1]>选择界限[F1]选择限制

线

限制线:

2. 按*轨迹数据界限*[F3]

屏幕分为上下两部分。上部屏幕显示信号轨迹和 限制线。下部屏幕显示限制线列表

1~5

Spectrum display

Limit Line Table

- 3. 按限制电平[F2]设置偏移电平
- 4. 按创建界限立即[F1]
- 根据信号轨迹和偏移电平,自动创建限制线
- 不限编辑次数
- 5. 按返回[F7]>保存界限[F5]保存当前限制线

编辑限制线(从标记数据)

描述		根据标记数据创建限制线, 可设置10个频率点。	详情见 79 页。最多
操作	1.	按 Limit > 编辑界限[F1]>龙	选择界限[F1]选择限制

152

线

限制线: 1~5

2. 按标记数据至界限[F4]

屏幕分为上下两部分。上部屏幕显示信号轨迹和 限制线。下部屏幕显示限制线列表

Spectrum display

Limit Line Table

- 3. 按点[F1]选择编辑点(必须从#1开始)
- 4. 按限制电平[F3]设置偏移电平
- 5. 按标记数据至点[F2]
- 6. 使用旋钮移动标记位置。按 Enter 键确认
- 7. 重复 3-5 步设置其余频率点(最多 10)
- 8. 按*返回*[F7]>保存界限[F5]保存当前限制线

此功能将改变限制线外 Marker 1 的位置

删除限制线

GWINSTEK

描述		可以删除任意一条限制线。		
操作	1.	按 Limit > 编辑界限[F1]>选择界限[F1]选择需要 删除的限制线(限制线 1~5)		
	2.	按 <i>删除界限</i> [F6]删除限制线数据		
通过失败测试				
描述		通过/失败测试前,必须首先保存上下限制线,见 111 页。		
操作	1.	按 Limit > 通过/ 失败 测试		
	2.	按 <i>高界限</i> [F1]选择一条限制线作为上限		
	3.	按低界限[F2]选择一条限制线作为下限		
	4.	按 <i>通过标准</i> [F3]选择通过条件		
		条件: 全部,最大,最小		
	5.	按通过/失败打开测试		
	6.	测试结果显示在屏幕下方		
		Pass: PASS		
		Fail: FAIL		
显示图标		测试开启时,AIM 图标显示在屏幕下方		

▲注意

测试需至少开启一条限制线(高或低)。

如果关闭上限或下限,最大或最小*显示电平自动设为上或下限。

*+3DdBm+参考电平偏移或-12DdBm+参考电平偏移

序列

序列功能记录和执行用户定义的步骤,在重复或单次运行模式下最多 提供5组序列,每组20个操作步骤。每组序列可以插入延迟和暂停 指令,方便在操作过程中观察测量结果。序列之间也可以相互调取。

相关内容如下:

- 编辑序列 → 见 156 页
- 执行序列 → 见 159 页

编辑序列

- 编辑序列
- 1. 按^{Sequence} > *选择序列*[F1]选择需要编辑/创建的序 列

序列: 1~5

- 2. 按*编辑*[F2]>开始编辑[F1]开始编辑序列
- 3. 屏幕分为上下两部分。上部屏幕为主显示。下部 屏幕显示序列编辑内容及步骤
- O Start Edit 图标显示在序列编辑视窗

G≝INSTEK

	2. 按 (Enter) 插入
	● <i>指令集增加延迟步骤</i> CenterFreq: 20.000MHz ZeroSpan DelayTime: 500ms
<u>注</u> 注意	使用方向键将标记移到插入点
暂停序列	暂停执行序列,方便在进入下一步骤前观察测量 结果。按继续[F1]继续。
	 按<i>是否继续序列</i>[F3]> Enter ● 是否继续序列作为一个插入步骤
	CenterFreq: 20.000MHz ZeroSpan Waittogo
	2. 按继续[F1]结束暂停功能,继续执行指令集
插入序列	在当前指令集中插入另一指令集。
	1. 按 <i>选择执行序列[F4]</i> >选择插入的序列 • <i>序列作为一个插入步骤</i>
	Center Freq:20.000MHzSequence:2Zero Span
<u>注</u> 注意	当前序列不能自我插入
删除步骤	可以删除任意一个编辑步骤。
	1. 使用方向键将标记移到删除点

		CenterFreq: 20.000 Span: 10.000 RefLevel: 0.00	MHz MHz dBm
	2. •	按删除步骤[F5] > ; 该步骤将从序列中;	删除步骤 移除
		CenterFreq: 20.000 RefLevel: 0.00	MHz IdBm
停止编辑	1.	按停止编辑[F6]	
	2.	Start Edit	图标关闭
保存当前序列		序列编辑(停止)完成后可以保存。	
	1.	按 Sequence > 保存序列	河[F4] > 保存序列
删除当前序列	1.	按 Sequence > 删除序列 [F5] > 删除当前序列	
执行序列			
执行模式	1.	按 ^{Sequence} >选择序	列[F1]选择一个序列
	2.	按运行模式[F6]切	换运行模式:
		单次 连续	仅运行一次序列 持续运行序列直至按停止 运行序列[F7](注:停止运 行序列[F7]选项仅出现在 进行中的序列)

执行序列 3. 按立即运行[F7]运行序列

- 4. 按*停止运行序列*[F7]停止运行
- *在单次模式,当所有步骤都完成后,序列自动停* 止运行

跟踪源

选配的跟踪源可以产生一个扫描信号,其扫描时间和频率范围都与 GSP-930匹配。利用其幅值在整个频率范围内维持在一个恒定值,有 助于测试待测体的频率响应。

- 开启跟踪源 → 见 161 页
- 跟踪源归一化→见162页

开启跟踪源

操作	1. •	按 System > 更多 1/2[F7]> 选择[F1]> 跟踪发生器 [F1]> 跟踪发生器[F1]打开跟踪源 开启 TG 输出	
	2.	按 <i>跟踪发生器电平</i> [F2]设置跟踪源的输出电平	
		范围:	-50~0dBm
	3.	按 <i>参考信号电平</i> [F3]设 偿系统增益/损耗	置跟踪源的偏移电平,补
		范围:	-10dB~10dB
	4.	按 TG 电平步进[F4]设	置 TG 电平的步进分辨率
		范围:	0.5~50dB, 0.5dB步进
	5.	按功率扫描[F5] TG 随 开始时,输出功率为设 次后,TG 电平线性增 功率扫描电平	扫描速率输出功率。扫描 注置的 TG 电平,扫描完一 加/减少使功率等于设置的

范围: $-5dB \sim +5dB$

161

GWINSTEK

跟踪源归一化

背景		归一化的量为每次扫: 使得最终轨迹被归一,	描后的结 化到参参	轨迹减去参考轨迹。 考电平。
操作	1.	按 ^{System} >更多1/2[F7 [F1]> <i>跟踪发生器</i> [F1]]> <i>选择</i> 打开跟	[F1]> <i>跟踪发生器</i> 踪源
	2.	按 <i>归一化</i> [F6]进入归-	一化菜单	<u>á</u>
	3.	按标准参考等级[F2]设	0置归-	一化垂直参考电平
		范围:	0dB~	100dB
	4.	按标准参考位置[F3]读	0置归-	一化轨迹偏移
		范围:	10~0 (由上	格 至下)
	5.	按 <i>归一化</i> [F4]开启/)	关闭归	化数据
		或按存储参考[F1]再次	欠执行归	目一化
<u>注</u> 注意		如果 X-轴的相关参数 数据将自动关闭。	或TG输	出电平改变,归一化

此时提示警告信息"Execute Normalization again!"

功率计

选择功率计时,GSP 能测量和记录 1MHz~6.2GHz 全操作频率范围内-32dBm~+20dBm 待测物的平均功率。

- 开启功率计模式 → 见 163 页
- 记录功率计测量值 → 见 165 页

开启功率计模式

操作

- 1. 按 Mode > 功率计[F2]进入功率计模式
- 2. 屏幕分为上下两部分。上部屏幕显示功率测量 (dBm 或 W)。下部屏幕显示测量值曲线图

Data log of power measurements

3. 按 Power Unit[F1]选择单位:

单位

dBm, W

4. 按*频率*[F2]选择测量频率:

频率	1MHz~6200MHz
分辨率:	1MHz

5. 按*传感器模式*[F3]选择功率计的测量速度(和精确 度):

低噪声:	100ms/sample, 典型
快速:	30ms/sample, 典型

6. 按*通过/失败测试*[F4]设置通过失败测试参数:

上限[FI].	-100dBm~20dBm
下限[F2].	-100dBm~20dBm
<i>通过/失败测试[F3]:</i>	开,关
通过图标:	PASS
失败图标:	FAIL

7. 按触发[F5]选择自由运行(内部)触发或外部触发

触发:

自由运行,外部

外部触发输入:

3.3V CMOS

- 8. 按*最大/最小保持*[F6]开启/关闭最大/最小保持 功能
- 最小/最大测量值显示在屏幕中央的条状功率表

GWINSTEK

记录功率计测量值

描述		在功率计模式下, 周期和间隔记录;	频谱分析仪根据用户预设时间 功率计测量值。
操作	1.	按 save 进入存储	音菜单
	2.	按 <i>类型</i> [F2]选择-J	边率计[F7]
	3.	按 <i>数据源</i> [F3]选择	译 <i>功率状态</i> [F1]
	4.	按功率计记录选	项[F4]设置如下选项:
		记录停止[FI]:	设置数据记录时间: 00:00:00(持续记录)或 00:00:01~23:59:59
		记录步[F2]:	$1s \sim 999s$
	5.	按 <i>保存至</i> [F1]选择	释存储位置:
		寄存器 [~6:	内部寄存器,不属于内部存储 器
		本地:	内部存储器
		SD 卡:	外部 Micro SD 卡
<u>注</u> 注意		只有插入 Micro SD	卡时,才显示 Micro SD Card。
	6.	选定存储位置后,	显示记录选项
	7.	按 <i>名称</i> [F1]命名文 键或数字键盘输。	文件。使用 F1~F7 入数字 ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○
	•	限制: <i>无空格</i>	

• 仅可以使用字符1~9, A~Z, a~z

8. 文件名显示在屏幕下方

按(Enter)确认

如果没有定义文件名,系统将自动按照如下格式 创建:

文件名:类型_数据源_文件编号.文件扩展名

每次新建同类型文件,文件编号增加。

9. 按*现在记录[F3]*开始记录功率计测量值

记录完成后,屏幕下方显示"SaveFinish!!"。

停止记录 按记录停止[F2]停止记录

文档概述

文档功能用于处理文档导航、排序、复制和删除。GSP-930 提供多种 文档格式,包括轨迹数据、限制线、幅值校准、指令集和其它面板操 作。文档来源和目标位置(内部存储器, USB 或 Micro SD)也可以由文 档功能选择。

- 文档类型概述 → 见 168 页
- 文档类型 → 见 169 页
- 文档浏览 → 见 170 页
- 复制文档 → 见 172 页
- 移动文档 → 见 172 页
- 删除文档 → 见 173 页
- 重命名文档→见174页
- 保存文档 → 见 176 页
- 调取文档 → 见 178 页
- 快速保存 → 见 180 页

文档类型概述

内部存储器	GSP-930 提供 1	6MB的内部存储器。	
USB	GSP-930 支持夕	GSP-930 支持外部 U 盘。	
	USB 类型:	1.1/2.0	
Micro SD	GSP-930 支持 N	GSP-930 支持 Micro SD 卡。	
	格式:	SDSC, SDHC	

GWINSTEK

文档类型

概述	按顺序列出各	类文档类型。		
状态	包含每一步面标 • <i>频率</i>	返操作的状态: • <i>指令集</i>		
	 扫宽 幅值 	 <i>触发</i> <i>标记</i> 		
	 BW/Avg <i>扫描</i> (1)	 Marker-> 峰值搜索 		
	 机砂 显示 测量 	 · 顶设 · 模式 · 系统 		
	 限制线 轨迹数据以逗 中心频率 力定 	 <i>限制线</i> 		
	 <i>扫苋</i> <i>分辨率带宽</i> <i>视频带宽</i> <i>参考电平</i> 			
	• <i>扫描时间</i> • <i>点数(轨迹数据)</i>	点)		
屏幕截图	JPEG 文件(800	X600)		
限制线	限制线数据以近 • <i>点数</i> • <i>点的频率值</i> • <i>点的量级</i> • <i>量级单位</i>	豆号间隔:		

校准	包含如下校准(线)数据: <i>点数</i> <i>点的频率值</i> <i>点的增益偏移</i> <i>单位</i>
指令集	指令集文档包括指令集编号和该指令集的步进操 作。此数据用户不可编辑
功率计	功率计数据包含: • <i>日期</i> • <i>时间</i> • <i>功率 dBm</i>

文档浏览

连接外部存储器		将U盘或MicroSD卡	插入前面板适当位置。
选择文档	1.	按File >文件管理器	
	2.	选择存储位置:	
		Local[F1]: USB[F2]: SD Card[F3]:	内部存储器 前面板 U 盘 Micro SD 卡
	3.	使用上/下方向键或旋 移动文档列表	钮向上或向下 (1) (1) (1) (1) (1) (1) (1) (1)
	4.	使用左/右方向键向后	或向前翻页

按类型浏览 可以仅浏览某一类型的文档。有关文档类型的详 细介绍见 168 页。

1. 按*类型*[F2]选择一种文档类型:

All	浏览所有类型
State	仅浏览状态文档
Trace	仅浏览轨迹文档
Screen	仅浏览屏幕截图
Limit Line	仅浏览限制线
Correction	仅浏览校准数据
Sequence	仅浏览序列文档
Power Meter	仅浏览功率计文档

选择一种文档类型后,文档浏览功能仅列出这些 文档类型。

文档排序 以文件名或日期升序排序。默认按名称排序。

1. 按排序方式[F3]选择排序类型:

名称:	以字母顺序排序
日期:	以编成日期排序

只有插入 U 盘/SD 卡时, U 盘和 Micro SD 卡选项才可用。

复制文档

描述		可以将内部存储器中的文档复制到外部 U 盘或 Micro SD 卡,反之亦然。
连接外部存储器		将 U 盘或 Micro SD 卡插入前面板适当位置。
选择文档	1.	按 File >文件管理器
	2.	从内部或外部存储器中选择一个文档
	3.	按 <i>复制</i> [F4]
	4.	按 <i>多媒体[F1]</i> 选择复制到目标位置(内部存储器, U盘, SD卡)
	5.	按复制[F2]
	6.	完成文档复制
<u>注</u> 注意		只有插入U盘/SD卡时,U盘和MicroSD卡选项才可 用。
移动文档		
描述		可以将内部存储器中的文档移到外部 U 盘或 Micro SD 卡,反之亦然。
连接外部存储器		将 U 盘或 Micro SD 卡插入前面板适当位置。

选择文档 1. 按(File)>文件管理器

- 2. 从内部或外部存储器中选择一个文档
- 3. 按移至[F7]
- 4. 按*多媒体*[F1]选择移到目标位置(内部存储器, U 盘, SD 卡)
- 5. 按立即移动[F2]
- 6. 完成文档移动

▲ 只有插入 U 盘/SD 卡时, U 盘和 Micro SD 卡选项才可 用。

删除文档

描述 内部存储器或外部 U 盘或 Micro SD 卡中的任何 文档都可以删除。

连接外部存储器 将U盘或 Micro SD 卡插入前面板适当位置。

- 删除文档 1. 按(File)>文件管理器
 - 2. 从内部或外部存储器中选择一个文档
 - 3. 按*删除*[F5]
 - 4. 按*删除*[F1]
 - 5. 完成文档删除
- 删除警告 1. 按*删除警告*[F2]选择是否提示确认对话框:

不请求 删除文档时不提示确认对话框

GWINSTEK

GSP-930 使用手册

		请求	提示用户确认是否删除文档	
<u>注</u> 注意		只有插入॥盘/SD 用。)卡时,U盘和 Micro SD 卡选项才可	•
重命名文档				
描述		内部存储器或外 文档都可以重新	部U盘或MicroSD卡中的任何 命名。	
连接外部存储器		将U盘或Micro	SD卡插入前面板适当位置。	
重命名文档	1.	按File >文件管	理器	
	2.	从内部或外部存	储器中选择一个文档	
	3.	按 <i>重新命名</i> [F6]		
	4.	使用 F1~F7 键或	数字键盘输入数字: (7 8 9 ④ 5 6 ① 2 3 ④ ・ *-	

限制:

- 无空格
- 仅可以使用字符1~9, A~Z, a~z

5. 新文件名显示在文档列表

6. 按 Enter 确认

只有插入 U 盘/SD 卡时, U 盘和 Micro SD 卡选项才可用。

保存文档

描述		使用 Save 键可	以保存任意一个功能设置。
连接外部存储器		将U盘或Micr	o SD 卡插入前面板适当位置。
保存文档	1.	按Save进入存	储菜单
	2.	按 <i>类型</i> [F2]选择保存的文档类型。文档类型介绍见 168页:	
		状态: 轨迹: 屏幕: 界限: 幅度校正: 序列: 功率计	状态数据 轨迹数据 屏幕截图 限制线数据 校准数据 序列文档 功率计数据
	3.	如果有需要,按 对于状态数据: 对于轨迹数据: 对于屏幕截图:	安 <i>数据源</i> [F3]选择数据源: 内部状态数据 轨迹 1~4 正常:直接保存屏幕截图
		对于限制线: 对于校准: 对于序列: 对于功率计:	省墨:反转图像文档颜色,减少 打印用墨量 限制线 1~5 校准数据 1~5 序列 1~5 功率计 1~5
	4.	对于轨迹数据,	按格式[F4]选择保存的格式类型:
		轨迹: 轨迹+状态:	仅保存轨迹数据 保存轨迹数据和状态数据

0 (•) (•_

5. 按*保存至*[F1]选择目标位置:

寄存器1~6:	内部寄存器,不属于内部存储
	器
本地:	内部存储器
USB:	外部存储器
SD Card:	外部 Micro SD 卡

- 6. 选择目标位置后, 文档可以立即命名或保存
- 7. 按*名称*[F1]命名文件。使用 F1~F7
 键输入字母或数字键盘输入数字:
 ○ ○
 ○ ○
 ○ ○
 ○ ○
 ○ ○
 ○ ○

限制:

- 无空格
- 仅可以使用字符1~9, A~Z, a~z

8. 文件名显示在屏幕下方

		Start: 0Hz Center: 1.500GHz Stop: 3.000GHz Return OBW: 1MHz VBW: 1MHz Span: 3.000GHz Sweep: 540ms FILENAME		
		 Filename		
	9.	按Enter 确认		
<u>注</u> 注意		若未定义文件名,系统将使用默认命名。		
	10	. 按 <i>立即保存</i> [F3]保存所选的文档类型		
		保存成功后,屏幕下方显示"SaveFinish!!"。		
<u>注</u> 注意		如果没有定义文件名,系统将自动按照如下格式 创建:		
		文件名:类型_数据源_XI.文件扩展名		
		图像文件自动按如下格式创建:		
		文件名: NowPicture_XX.jpg		
		每创建一个同类型文档,XX参数增加。		
<u>注</u> 注意		只有插入U盘/SD卡时,U盘和 Micro SD卡选项才可 用。		
调取文档				
描述		使用(Recall)键调取文档。		
连接外部存储器		将 U 盘或 Micro SD 卡插入前面板适当位置。		
	1.	按Recall进入调取菜单		
	2.	按 <i>类型</i> [F2]选择保存的一个文档类型。文档类型		
介绍见 168 页:

状态:	状态数据
轨迹:	轨迹数据
界限:	限制线数据
幅度校正:	校准数据
序列:	指令集文档
功率计	功率计数据

3. 按数据源[F3]将文档类型调取至目标位置:

对于状态数据:	内部状态数据
对于轨迹数据:	轨迹 1~4
对于限制线:	限制线 1~5
对于校准:	校准数据 1~5
对于指令集:	指令集 1~5
对于功率计:	功率计1~5

调取文档

1. 按*召回*[F1]选择调取位置:

内部寄存器,不属于内部存储
器
内部存储器
外部U盘
外部 Micro SD 卡

2. 按立即召回[F1]调取文档类型

3. 调取成功后,屏幕下方显示"Finish!!"

<u>!</u>注意

只有插入U盘/SD卡时,U盘和 Micro SD卡选项才可用。

快速保存

描述		按Quick 键即可保存文档。	
		需要的文档类型由 save 键预先设置。	
		默认情况下, Quick 建将屏幕截图保存到内部存储器或外部 U 盘(已插入)。	
支持的文档类型		屏幕截图,轨迹,状态,限制线,校准,指令集	
连接外部存储器		将 U 盘或 Micro SD 卡插入前面板适当位置。	
快速保存设置	1.	按 Save 键,确认文档类型、数据源和格式。详 情见 176 页	
使用快速保存键	1.	使用以上设置,任意时刻按 ^{Quick} 键保存所设文 档类型	
	2.	保存完成后,屏幕下方显示"Save Finish!!"	
∕!∖注意		数据文档将自动按照如下格式创建名称:	
		文件名:类型_数据源_XX.文件扩展名	
		图像文件自动按如下格式创建:	
		文件名: QuickJpg_XX.jpg	
		每创建一个同类型文档,XX参数增加。	
<u>注</u> 注意		只有插入U盘/SD卡时,U盘和 Micro SD卡选项才可 用。	

远程控制

GSP-930 支持以 IEEE488.2 标准为基础的远程控制。指令列表请参考编程手册,登陆固纬网站下载 www.gwinstek.com。

接口设置	
设置 USB 远程接口	
设置 GPIB 接口	
设置 LAN 和 LXI 接口	
设置 RS232C	
RS232C 远程控制功能查询	
LXI 浏览器界面和功能查询	

接口设置

设置USB远程接口

USB设置	阳接口	Type A, host
	GSP接口	后面板 Type B, slave
	速度	1.1/2.0 (全速/高速)
	USB Class	USB TMC (USB T&M class)

面板操作 1. 将 USB 线接入后面板 USB B 接口

	\sim
L	

按^{System} > 更多 1/2[F7] > 远程界面配置[F2] > USB 模式[F5],将 USB 模式切换成装置

<u>小</u>注意

切换USB模式可能会花费一些时间。

设置 GPIB 接口

必须首先安装 GPIB 接口(选配)。

- 设置 GPIB 1. 关闭频谱分析仪
 - 2. 将 GPIB 线接入仪器的 GPIB 接口

- 3. 开启频谱分析仪
- 4. 按 (System)> 更多 1/2[F7]> 远程界面配置[F2]>GPIB 地址,设置 GPIB 地址
 GPIB 地址
 0~30

GPIB 限制 • *最多连接* 15 *台装置*; 电缆总长不超过 20m, 每台 装置之间电缆不超过 2m

- 每台装置分配独立的地址
- 至少开启 2/3 的 GPIB 设备
- 无回路或并行连接

设置 LAN 和 LXI 接口

GSP-930 与 class C LXI 兼容, 仪器可以完成基本远程控制或 LAN 监控。

LXI 规格和兼容类型见 LXI 网站 <u>http://www.lxistandard.org</u>。

背景	通过 LAN 接口 支持 DHCP 连接 外,也可以手动	网络远程控制仪器。频谱分析仪 度,能自动连入既有网络。此 完成网络设置。
LAN 设置	IP地址	默认网关
	子网掩码	域名服务器
	DHCP开启/关闭	
连接	将以太网线接入 口。	、后面板 LAN 接
设置 1	按 ^{System} > <i>更多</i> 1/2[F7]> <i>远程界面配置</i> [F2]> LAN[F2]> <i>局域网配置</i> [F1]进行 LAN 设置:	
	IP地址[FI] 子网掩码[F2] 默认网关[F3] DNS服务[F4] 配置LAN[F5]	设置 IP 地址 设置子网掩码 设置默认网关 设置域名服务器地址 切换 LAN 设置:DHCP 或手 动设置

2. 按应用[F6]确认 LAN 设置

显示图标		▲ 与 LAN 接口相连, LXI 图标变成绿色;如果 开启"验证"设置,图标变亮,见188页。
设置密码		LXI 网页密码可以通过频谱分析仪设置。密码显示在系统信息中。 默认密码: lxiWNpwd
	1.	按 ^{System} >更多 1/2[F7]>远程界面配置 [F2]>LAN[F2]>LXI 密码[F2]设置密码
	2.	使用 F1~F7 输入字母或数字键盘输 入数字组成密码:
	•	限制: <i>无空格</i> <i>仅可以使用字符</i> 1~9, A~Z, a~z A B C A B C C A B C C C C C C C C C C C C C
		Z Return

密码菜单树

3. 密码显示在屏幕下方

设置 RS232C

背景	RS232C 接口用于	一远程控制 PC。	
RS232C 设置	波特率	停止位:1([固定)
	奇偶性:无(固定)	数据位:8(固定)
连接	将 RS232C 线接 接口。	入后面板 RS232	RS232
1.	按 System > 更多 1/2 <i>传输速率</i> [F4]设置 300 2400 19200 115200	2 <i>[F7]>远程界面</i> 置波特率 600 4800 38400	紀置[F2]>RS232 1200 9600 57600
RS232C远程控制功	的能查询		
功能查询	注查询 调取一个终端应用,如 MTTTY (Multi- Threaded TTY)。 使用 PC 设备管理器查询 COM 端口号。对于 WinXP;控制面板 \rightarrow 系统 \rightarrow 硬件列表。 在仪器设置成 RS232 远程控制后(见 184 页),从 终端操作查询指令。 *idn? 返回制造商、型号、序列号和固件版本,格式如 下: • <i>GW-INSTEK,GSP-930, XXXXXXXXXX, V.X.XXX</i>		
•			

制造商:GW-INSTEK
型号:GSP-930
序列号:XXXXXXXXXXXXXX
固件版本: V.X.X.X

详情见编程手册,GW Instek 网站下载 www.gwinstek.com

LXI浏览器界面和功能查询

功能查询 仪器设置完成并连到 LAN 接口后(见 183 页), 在网络浏览器上输入频谱分析仪的 IP 地址。

http:// XXX.XXX.XXX.XXX

网络浏览器界面显示如下:

登陆页面 登陆页面列出所有 LXI 和 LAN 设置以及仪器验 证设置。仪器验证功能可以关闭。

G ^w INSTEK.		LXI	
Welcome Page	Instrument Welcome Page		
View & Modify Configuration	Identification	CON ©OFF	
SCPI Command	LXI Device Mode	GSP930	
Get Image	Manufacturer	GWINSTEK	
	Serial Number	012345678912	
	Description	GWINSTEK-GSP930-678912	
	LXI Class	С	
	LXI Version	1.3	
	Fireware Revision	T.1.0.0.0	
	DNS hostname	GSP930-678912	
	mDNS hostname	GSP930-678912.local	
	MAC Address	00:0E:99:02:51:46	
	TCP/IP Address	172.16.20.78	
	Instrument Address String	TCPIP0::172.16.20.78::inst0::INSTR	

验证设置开启时,LXI图标变亮。

LXI

查看&修改设置 可以从浏览器上修改 LAN 设置,但是必须先输入密码。

密码: lxiWNpwd [注意:密码区分大小写]

Welcome Page	Configuration of your spect	Configuration of your spectrum analyzer	
View & Modify Configuration	Apply Undo Change Fac	story Defaults	
SCPI Command	TCP/IP Configuration Mod	e C Manual	
Get Image	IP Address	172.16.20.78	
	Subnet Mask	255.255.128.0	
	Gateway	172 16 0 254	
	DNS Server	172.16.1.252 172.16.1.249	
	DNS hostname	GSP930-878912	
	Description	CWINSTEK-GSP930-678912	
	Password	Change Password	
	(Enter Old Password)		
	(Enter New Password)		
	(Confirm New Password)		

如果选择"Factory Defaults"选项,密码恢复至默认值。

当信息提示需要操作网络浏览器时,必须手动重 设频谱分析仪。 SCPI指令 可以直接在浏览器上输入 SCPI 指令,完全实现 远程控制。详情见编程手册。使用远程指令前必 须输入密码。

密码: lxiWNpwd

[注意:密码区分大小写]

捕获图像

PC 浏览器远程捕获屏幕截图。

详情见编程手册,GW Instek 网站下载 www.gwinstek.com

GPIB/LAN 控制功能查询

功能查询	请使用美国国家仪器测量&自动控制软件确认 GPIB/LAN 功能。	
	详情见美国国家仪器网站 <u>http://www.ni.com</u> 。	
<u> 注意</u>	详情见编程手册,GW Instek 网站下载 www.gwinstek.com	

FAQ

• 输入信号但屏幕无显示

- 如何查看安装的选配件
- 频谱分析仪性能与规格不符

输入信号但屏幕无显示

运行自动设置(Autoset),使 GSP-930 以最好的显示刻度显示目标信号。按 Autoset 键,然后按自动设置[F1]。详情见 55 页。

如何查看安装的选配件

从系统信息窗口检查选配件的安装情况。按 System 键 → 系统资讯 [F1]。详情见 100 页。

频谱分析仪性能与规格不符

确保仪器至少开机 30 分钟,且环境温度在+20°C~+30°C 范围内。

更多信息,请联系您当地经销商或GWInstek www.gwinstek.com / marketing@goodwill.com

附录

更换时钟电池

背景	系统时钟和唤醒时钟使用一个钮扣电池。	
	电池类型:	CR2032, 3V, 210mAh

连接

1. 关闭 GSP-930, 取下电池盖和电 池

2. 更换同类型和同规格的电池

词汇缩略语

缩略语	含义
3GPP	第三代合作伙伴项目
ACPR	邻近通道功率比
BS	基站
CF	中心频率
CH BW	通道带宽
CH SPC	通道间隔
CNR	载波噪音比
CSO	复合二次差异
CTB	复合三次差异
DANL	显示平均噪声电平
Def.	默认值
DL	下行链路
DSSS-OFDM	直接序列扩展频谱-正交频分复用
EMI	电磁干扰
ERP-CCK	物理层扩展率-补码键控
ERP-DSSS	物理层扩展率-直接序列扩频调制
ERP-OFDM	物理层扩展率-正交频分复用
ERP-PBCC	物理层扩展率-数据包二进制卷积代码
ETSI	欧洲电信标准学会
FDD	频分双工
IF	中频
LOI	本机振荡器
LPF	低通滤波器
LXI	LAN对仪器的扩展
OCBW	占用带宽
PSD	功率谱密度
RBW	分辨率带宽
REF	参考值
SEM	频谱辐射屏蔽
SINAD	信号噪声和失真比
TDD	时分双工
TG	跟踪源
TOI	三阶交调

GWINSTEK

UE	用户设备
UP	上行链路
VBW	视频带宽

GSP-930 默认设置

默认设置即频谱分析仪的出厂设置(功能设置/测试设置)。

频率		
	中心频率:1.56Hz	起始频率: IHz
	停止频率:3GHz	CF步进:自动
	频率偏移: DHz	
扫宽		
	扫宽: 3GHz	
幅值		
	参考电平: 0.00dBm	衰减:自动
	刻度/格:10	刻度类型:对数
	刻度:关闭	Y 轴: dBm
	参考电平偏移: D.DDdBm	校准:关闭
	输入阻抗:50Ω	输入阻抗校准: 0.000dB
	前置放大:绕开	
自动设置		
	振幅下限:自动	
BW/Avg		
	RBW: 自动	VBW: 自动
	VBW/RBW: N/A	平均:关闭
	平均功率:对数功率	电磁干扰滤波器:关闭
扫描		
	扫描时间: 自动	扫描:持续
	门控扫描:关闭	门控延迟:50ms
	门控长度: 540ms	
轨迹		
	激活轨迹:轨迹	轨迹类型:清除8写入
	轨迹运算:关闭	检测:自动,标准检波
显示		
·		 LCD 亮度: 高
	LED 背光: 开启	显示线, -50.0dBm. 关闭
测量		

G^WINSTEK

	ACPR: 关闭	DCBW: 关闭
	调幅分析:关闭	调频分析:关闭
	耳机输出:关闭	NdB 带宽: 关闭
	相位抖动:关闭	频谱辐射屏蔽:关闭
	TIL:关闭	CNR/CSD/CTB: 关闭
限制线		
	限制线:关闭	通过/失败测试: 关闭
序列		
	序列关闭	
触发		
	自由运行	
文档		
	类型:全部	排序:名称
快速保存		
	类型:屏幕截图	数据源:常规
保存		
	类型:屏幕截图	数据源:常规
调取		
	类型:状态	目标位置:本地状态
标记		
	标记:关闭	数据源:常规
Marker->		
	N/A	
峰值搜索		
	峰值追踪:关闭	峰值偏差: IDdB
	峰值阈值:-50dBm	峰值列表:关闭
模式		
	模式:频谱	
系统		
	语言:依区域	开机: 预设
	预设类型:出厂设置	报警输出:关闭
		远程接口设置
	24: 而]	GPIB 地址: 2
	<u>地間</u> 明陀派 圣语	LAN: DHCP
		RS232波特率: 115200
		USB 模式: 主机

G^wINSTEK

菜单树

幅值

频率,扫宽,自动设置,带宽平均,扫描

Frequency	Span	Autoset
Center Freq 1.2345GHz	Span 1.2345GHz	Autoset
Start Freq 1.2345GHz	Full Span	Amp. Floor -80.00dBm <u>Auto</u> Man
Stop Freq 1.2345GHz	Zero Span	Span 3.000000MHz <u>Auto</u> Man
CF Step 1.00000MHz <u>Auto</u> Man	Last Span	
Freq Offset 0.00Hz		

限制线

触发,序列

轨迹,显示

GWINSTEK

标记

峰值搜索,标记->

Marker-> Mkr>Center Mkr>Start Mkr>Stop Mkr>CF Step Mkr>RefLvl

GWINSTEK

系统

From: System>Date/ Time>Wake-Up Clock Edit>

GWINSTEK

From: System> More 1/2 >Option

模式,文档

G≝INSTEK

210

GWINSTEK

存储

From: Save>Save To>Local

(模式 = 频谱)

GWINSTEK

调取

(模式=频谱)

测量

G≝INSTEK

GSP-930 使用手册

From: Measure>TOI

From: Measure>CNR/CSO/CTB

G≝INSTEK

From: Measure>Demod>AM Analysis

*见临页低通滤波器带宽

From: Measure>Demod>FM Analysis

*见間页低通滤波器带宽

From: Measure>SEM

From: Measure>SEM>3GPP> REF. Channel

From: Measure>SEM>3GPP> Offset/Limit

<u>G UINSTEK</u>

From: Measure>SEM>802.11g> Offset/Limit>Min Offset/Limit

802.11g modulation=DSSS

From: Measure>SEM>802.11g> Offset/Limit>Min Offset/Limit

802.11g modulation=OFDM

GSP-930 规格

此规格适用于 20°C~30°C 的环境温度, GSP-930 至少热机 30 分钟, 除非另行说明。

频	率
频	率

频率			
	范围	9 kHz~3.0 GHz	
	分辨率	1 Hz	
频率参考			
	精确度	±[(上一次校准的有效期X:	老化率)+频率温度稳
		定度+电源电压稳定度	
	老化率	±2 ppm max.	上一次调整后的一年
	频率温度稳定度	±0.025 ppm	0~50 °C
	电源电压稳定度	±0.02 ppm	
频率读值精度	Ŧ		
	起始,停止,中心,	±(标记频率显示 X 频率参考	6精度+10%xRBW+频
	标记	率分辨率)	
	扫描点	601	扫宽 > 1
		6~601	扫宽=0
标记计频器			
	分辨率	1 Hz, 10 Hz, 100 Hz, 1 kHz	
	精确度	±(标记频率显示 X 频率参	RBW/Span≥0.02 ;
		考精度+计数器分辨率)	Mkr 至 DNL 电平>30 dB
扫宽			
	范围	0 Hz (零扫宽), 100 Hz~3 GHz	
	分辨率	1 Hz	
	精确度	±频率分辨率	
相位噪声			
	载波偏移		Fc =1 GHz; RBW = 1 kHz, VBW
			= 10 Hz;
			半均≥40
	1U kHz	<-88 dBc/Hz	<u> </u>
	1UU kHz	<-95 dBc/Hz	
AL 2.12. 2. 111 2	1 MHz	<-113 dBc/Hz	典型值
分辨率带宽(图	(BW)滤波器		
	滤波器带宽	1U Hz~3 kHz,1-3-10 步进	-3dB 带宽
			总计:6个档位

		10 kHz~1 MHz,10%步进增加	-3dB 带宽;
			最小 RBW = 10 kHz @零
			扫宽
			总计:49个档位
		200 Hz, 9 kHz, 120 kHz	-6dB带宽(EMI滤波器
)
	精确度	\pm 8%, RBW \geq 750 kHz	标称3
		± 5%, RBW < 750 kHz	标称
	形状因子	< 4.5:1	标称带宽比:-60dB:-3dB
视频带宽(VBW)	滤波器		
	滤波器带宽	1Hz~1MHz 1-3-10步进	-3出带宽
[1]频率分辨率	=扫宽/(扫描点数	- 1)	
		物中加加加的消毒类用	

[2] 本数据表里的典型规格是指,超过 20~30 °C 的温度范围,80%的单位性能可展现,95%的可靠性,不在产品保修范围内

[3] 标称值显示的是预期性能,不在保修范围内

幅值

幅值范围			
	测量范围	100 kHz~1 MHz	显示平均噪声电平
			(DANL)~18 dBm
		1 MHz~10 MHz	DANL~21 dBm
		10 MHz~3 GHz	DANL~30 dBm
衰减器			
	输入衰减范围	D~5D dB,1 dB 步进	自动或手动设置
最大安全输入	电平		
	平均总功率	\geq +33 dBm	输入衰减器
			≥10 dB
	直流电压	± 50 V	
ldB 增益压缩			
	第一混频器的总	> 0 dBm	<i>典型</i> :Fc ≥ 50 MHz; 前置
	功率		放大器关闭
	在前置放大处总	> -22 dBm	<i>典型</i> ;Fc ≥ 50 MHz; 前置
	功率		放大器开启
			混频器功率电平
			(dBm)= 输入功率(dBm)-
			衰减值(dB)
显示平均噪声	「电平(DANL)		
	前置放大器关闭	0 dB 衰减; RBW 10 Hz; VBW 10 Hz;	扫宽 500 Hz; 参考电平
		= -60dBm; 轨迹平均≥40	
	9 kHz~100 kHz	< -93 dBm,	标称

G^WINSTEK

100 kHz~1 MHz	< -90 dBm - 3 x (f/100 kHz) dB	
1 MHz~10 MHz	< -122 dBm	_
10 MHz~3 GHz	< -122 dBm	_
前置放大器开启	0 dB 衰减; RBW 10 Hz; VBW 10Hz; 3	扫宽 500 Hz; 参考电平
	= -60dBm; 轨迹平均≥40	
100 kHz~1 MHz	< -108 dBm - 3 x (f/100 kHz) dB	_
1 MHz~10 MHz	< -142 dBm	_标称
10 MHz~3 GHz	< -145 dBm + 3 x (f/1 GHz) dB	
电平显示范围		
刻度	对数,线性	
单位	dBm, dBmV, dBuV, V, W	
标记电平读值	0.01 dB	对数刻度
	参考电平的 0.01%	线性刻度
电平显示模式	轨迹,拓扑,光谱	单/分割视窗
轨迹数	4	
检波方式	正向峰值 负向峰值 采样	每个轨迹可分别设置
	正常, RMS(非视频)	今
轨迹功能	清除8写入,最大值/最小	
	值保持, 查看, 隐藏, 平均	
绝对幅值精度		
绝对点	中心频率=160 MHz ; RBW 10 kHz	; VBW 1 kHz; 扫宽 100 kHz;
	对数刻度; 1 dB/div; 峰值侦测	リ; 20~30℃; 信号 0 dBm
前置放大器关闭	± 0.3 dB	参考电平 🛛 dBm; 1🛙 dB
		FF衰减
前置放大器开启	± 0.4 dB	参考电平-30 dBm; 0 dB
		FF衰减
频率响应		
前置放大器关闭	衰减: 10 dB; 参考: 160 MHz; 20~1	30°C
100 kHz~2.0 GHz	± 0.5 dB	
2.0GHz~3.0 GHz	± 0.7 dB	
前置放大器开启	衰减: 0 dB; 参考: 160 MHz; 20~3	0°C
1 MHz~2.0 GHz	± 0.6 dB	
2.0GHz~3.0 GHz	± 0.8 dB	
衰减转换的不确定性		
衰减器设置	□~50 dB,1 dB 步进	
不确定性	± 0.15 dB	参考: 160 MHz, 10dB 衰减
RBW滤波器开关的不确定性		
10 Hz~1 MHz	± 0.15 dB	参考:10 kHz RBW
测量电平的不确定性		

	整体幅值精度	± 1.5 dB	20~30℃; 频率>1 MHz; 信号输入 0~ -50 dBm; 参考电平 0~ -50 dBm;
			输入衰减 [1] 出;
			RBW 1 kHz;
			VBW1kHz; 校准后; 前置放大器关闭
		± 0.5 dB	典型
离散响应			
	二次谐波截取		前置放大器关闭;输入信号-30dBm;0
			dB衰减
		+35 dBm	<i>典型</i> ; 10 MHz < fc < 775 MHz
		+60 dBm	<i>典型</i> ; 775 MHz ≤ fc < 1.5 GHz
	三阶截取		前置放大器关闭;输入信号-30dBm; 0
			dB衰减
		> 1dBm	300 MHz~3 GHz
	输入伪噪声	< -60 dBc	第一个混频器的信号电平 -30 dBm;
			20~30°C
	残余反应(固有)	<-90 dBm	输入终端; 0 dB 衰减; 前置放大器关
			闭

扫描

扫描时间			
	范围	22 ms~1000 s	Span > 0 Hz
		50 us~1000 s	Span = 🛛 Hz; 最小分辨
			率 = 10 us
	扫描模式	持续; 单次	
	触发源	自由运行;视频;外部	
	触发斜率	上升沿或下降沿	

RF 前置放大器

频率范围	1 MHz~3 GHz	
增益	18 dB	标称
		(标准安装)

前面板输入/输出

接口类型 N-type 母头 阻抗 50Ω,标称

RF输入

G≝INSTEK

GSP-930 使用手册

	VSWR	<1.6 :1	300 kHz~3 GHz; 输入衰 减器≥10 dB
选配电源			
	接口类型	SMB公头	
	电压/电流	DC +7V / 500 mA 最大	带输出短路保护
USB Host			
	接口类型	A plug	
	协议	2.0版本	支持全/高/低速
MicroSD卡槽			
	协议	SD 1.1	
	支持	microSD, microSDHC	最大支持 32GB 容量

后面板输入/输出

参考输出			
	接口类型	BNC母头	
	输出频率	10 MHz	
	输出幅值	3.3V CMOS	
	输出阻抗	50 Ω	
参考输入			
	接口类型	BNC母头	
	输入参考频率	10 MHz	
	输入幅值	-5 dBm~+10 dBm	
	频率锁定范围	在输入参考频率的±5ppm	
		内	
报警输出			
	接口类型	BNC 母头;集电极开路	
触发输入/门排	空扫描输入		
	接口类型	BNC母头	
	输入幅值	3.3V CMOS	
	开关	自动选择功能	
LAN TCP/IP 接口			
	接口类型	RJ-45	
	Base	10Base-T; 100Base-Tx; Auto-MDIX	
USB Device			
	接口类型	B plug	仅用于远程控制;支
			持 USB TMC
	协议	2.0版本	支持全/高速
中频输出			
	接口类型	SMA 母头	
	阻抗	50 Ω	标称

GSP-930 使用手册

	中频频率	886 MHz	标称
	输出电平	-25 dBm	10 dB 衰减; RF 输入: D dBm @1 GHz;
耳机输出			
	接口类型	3.5mm立体声插孔, 有线单声道操作	
视频输出			
	接口类型	DVI-I(集成模拟和数字),单 链接	转接头兼容VGA或 HDMI标准
RS232 接口			
	接口类型	D-sub 9-pin 母头	Tx,Rx,RTS,CTS
GPIB 接口(选配)		
	接口类型	IEEE-488 总线连接	
交流电源输入			
	电源	AC 100 V~240 V, 50 / 60 Hz	自动选择范围
电池组(选配)			
	电池组	6 cells, 可充电锂离子电池, 3S2P	UN38.3认证
	电压	DC 10.8 V	
	容量	5200 mAh / 56Wh	

常规

内部数据存储	旧MB标称	
功耗	<65 W	
热机时间	<30分钟	
温度范围	+5 °C ~ +45 °C	操作温度
	-20 °C ~ +70 °C	存储温度
重量	4.5 kg (9.9 lb)	全配(标配+TG+GPIB+电池)
尺寸	350 (W) x 213 (H) 210x	(
	105.7 (D) (mm)	
	13.8 (W) x8.3 (H) x	
	3.9 (D) (ince)	

跟踪源(选配)

频率范围	100 kHz~3 GHz	
输出功率	-50 dBm~0 dBm	0.5 dB 步进
绝对精度	± 0.5 dB	@160 MHz, -10 dBm, 源衰减 10
		dB, 20∼30°C
输出平坦度	参考 160 MHz, -10	dBm
	100 kHz~2 GHz	± 1.5 dB
	2GHz~3 GHz	± 2 dB
输出电平转换的不	± 0.8 dB	参考-10 dBm
确定性		
谐波	< -30 dBc	典型,输出电平 = -10 dBm
反向功率	+30 dBm 最大.	
接口类型	N-type 母头	
阻抗	50 Ω	标称
输出驻波比(VSWR)	< 1.6:1	300 kHz~3 GHz, 源衰减≥12 dB

USB 功率传感器(选配)

类型	平均功率传感器	型号:PWS-06	
表接口	USB线接到GSP-93D f	前面板的 USB Host	
接口类型	N-type 公头, 50 Ω 标称		
输入驻波比(VSWR)	1.1: 1	典型	
	1.3: 1	最大	
输入频率	1 ~6200 MHz		
传感电平	-32~+20 dBm		
最大输入损坏功率	\geq 27 dBm		

山玄洞具石庙宫州	יייטר טג	
切 华 侧 里 个 啪 正 性	- 3U QDM~+3 QDM; 1 MU=7CU=+0 10 JB 曲 刑	
@ 23 ℃	7 [1] 2 [1] 12 = 1.10 [10 典型	+113148 量十
	3 012~0 012: ≖0.13 00 典空	-0.00 00 取八.
	+ס ממח~+וע ממח: ו אט_ סרט_ ו חוב אם איזייייייי	ちちゃうちょう
	「Mn∠~コロn2:≖u.u u 典型	-0.00 00 取八.
	3 UNZ~0 UNZ: ±U.I3 00 典空	
	+12 dbm~+20 dbm:	+113148 量十
	IMHZ~JUHZ: ±U.ZU OD 典型	
	3 GHz~6 GHz: ±0.20 dB 典型	+113148 量大
		±N4N邮最大
		±0.40 dB 最大.
功率测量不确定性	-30 dBm ~ +5 dBm:	
▣ 0~25 °C	1 MHz~3GHz: ±0.25 dB 典型	
	3 GHz~6 GHz: ±0.25 dB 典型	
	+5 dBm ~ +12 dBm:	
	1 MHz~3GHz: ±0.20 dB 典型	
	3 GHz~6 GHz: ±0.20 dB 典型	
	+12 dBm~ +20 dBm:	
	1 MHz~3GHz: ±0.35 dB 典型	
	3 GHz~6 GHz: ±0.30 dB 典型	
线性度@25 °C	±3%	
测量速度	100 ms 低噪声模式	
	30 ms 快速模式	

GSP-930尺寸

Declaration of Conformity

We

GOOD WILL INSTRUMENT CO., LTD.

No. 7-1, Jhongsing Rd, Tucheng Dist., New Taipei City 236, Taiwan

GOOD WILL INSTRUMENT (SUZHOU) CO., LTD.

No. 69 Lushan Road, Suzhou New District Jiangsu, China.

declare that the below mentioned product

Type of Product: Spectrum Analyzer

Model Number: GSP-930

is herewith confirmed to comply with the requirements set out in the Council Directive on the Approximation of the Laws of the Member States relating to the Low Voltage Directive (2006/95/EC) and Electromagnetic Compatibility (2004/108/EC).

For the evaluation regarding the Electromagnetic Compatibility and Low Voltage Directive, the following standards were applied:

) 		
EN 61326-1 :	Electrical equipme	nt for measurement, control and
EN 61326-2-1:	laboratory use EMC requirements (2006)	
EN 61326-2-2:	5	· · · ·
Conducted and Radiated Emissions		Electrostatic Discharge
EN 55011: 2009+A1: 2010		EN 61000-4-2: 2009
Current Harmonic		Radiated Immunity
EN 61000-3-2: 2006+A1: 2009+A2: 2009		EN 61000-4-3: 2006+A1: 2008+A2 :2010
Voltage Fluctuation		Electrical Fast Transients
EN 61000-3-3: 2008		EN 61000-4-4: 2004+A1: 2010
		Surge Immunity
		EN 61000-4-5: 2006
		Conducted Susceptibility
		EN 61000-4-6: 2009
		Power Frequency Magnetic Field
		EN 61000-4-8: 2010
		Voltage Dips/ Interrupts
		EN 61000-4-11: 2004

◎ EMC

Low Voltage Equipment Directive 2006/95/EC	
Safety Requirements	EN 61010-1: 2010
	EN 61010-2-030: 2010

Accessories	11
ACPR	114
Adjacent channel power	114
Alarm output	108
AM Analysis	119
AM/FM demodulation sound	1
out	127
Amplitude	
Amplitude correction	51
Attenuation	47
Correction	52
Input impedance	56
Pre-amplifier	57
Reference level	46
Reference level offset	50
Scale	48
Scale/div	48
Vertical scale unit	50
View scale	49
Autoset	59
Horizontal settings	60
Vertical settings	60
Average	
Trace	63
Type	65
Bandwidth	
RBW	61
VBW	62
VBW/RBW ratio	62
Battery	_
Safety instruction	5
Battery insertion	25
Carrier to noise ratio	. 152
Caution symbol	3
Cleaning the instrument	5
CNR	152
Composite second order	155
Composite triple beat	156
Conventions	32
CSO	155

СТВ156
Date, Time, Wake-up clock 28
Declaration of conformity 250
Default settings
Display
Backlight
Brightness
Display mode
Setting
Spectrogram 101
Topographic 102
Reference level line
Spit spectrum view 103
Video out 99
Display diagram
Disposal instructions6
Disposal symbol
EMI Filter
EN61010
Measurement category 4
Pollution degree
Environment
Safety instruction5
FAO
File
Copy files
Correction data
Delete files
File explorer
File types
Limit line data
Move files
Overview 178
Power meter data181
Quick save192
Recall files190
Rename files 185
Save files
Screen files180
Sequence data181
State data 180
Trace data 180

Firmware update
First time use instructions 24
FM Analysis 123
Frequency
Center frequency 39
Center frequency step 41
Frequency offset 42
Start frequency 40
Stop frequency
Front panel diagram 13
Glossary 207
Ground
Sumbol 3
Janguaga 106
Limit lines
Creation
Deletion
Overview
Pass/fail testing
List of features
Marker
Delta markers87
Functions
Frequency counter
Noise
Moving dolta markors
Moving markers manually 86
Moving markers to preset
positions 86
Moving reference markers 88
Normal marker 85
Peak configuration 95
Peak search 93
Peak table
Table
Marketing
Contact 205
Measurement
ACPR 11/
AM Analysis 119
AM/FM demodulation sound
out 127
CNR 152
CSO
СТВ 156
FM Analysis
NdB bandwidth

OCBW	117
Overview	112
Phase Jitter	129
SEM	144
3GPP	147
802.XX	149
Overview	
User	
101	150
Menu tree	
Amplitude	211
Autoset	213
BW Avg	213
Display	216
File	222
Frequency	213
Limit line	214
Marker	217
Marker->	218
Measure	229
Mode	222
Peak search	218
Recall	227
Save	224
Sequence	215
Span	213
Sweep	213
System	219
Trace	216
Trigger	215
NdB bandwidth	128
OCBW	117
Occupied bandwidth	117
De alte de constante	117
Package contents	12
Peak search	
Peak table	
Phase Jitter	129
Power meter	
Activation	173
Data logging	175
Power on/off	
Safety instruction	4
Power 11p	26 27
Dres are relificar	. 20, 27
r ie-ampimer	
Preset	109
Power on settings	110
Settings 1	109, 110
Quick save	192

RBW61
Rear panel diagram
Remote control 194
GPIB configuration 195
LAN configuration 196
RS232C configuration 199
USB configuration 195
Remote control function check199
Replace the clock battery 206
Restore default settings 31, 109
SEM
3GPP 147
802.XX
Overview 132
User145
Segeunce
Editing165
Overview 165
Running169
Service operation
About disassembly
Contact 205
Span
Full span 44
Last span 45
Setting
Zero span 44
Specifications
Amplitude 241
Dimensions249
Frequency 240
General 246
Input/output
Power sensor 247
RF amplifier244
Sweep 244
Tracking generator
Spectrum emission mask testing144
Status icons 22

Sweep
Continous sweep
Gated sweep
Single sweep
Sweep time
System
Alarm output 108
Date & time 106
Set language106
System information105
View error messages105
Wake-up clock 107
Third order intermodulation
distortion 150
Tilting stand24
TOI
Trace
Detection modes75
Icons73
Math74
Selecting trace72
Type
Tracking generator
Activation 170
Normalization 171
Trigger
Delay 83
External trigger 81
Free run79
Mode 82
Video trigger 79
UK power cord7
VBW62
VBW/RBW ratio62
Video out port
Warning symbol
Web server function check201, 204