LVDT #### **Contents:** 23.06.10 Technical data ...2 Technical drawings ...3 Sensor types ...4 Electronics ...5 Order code ...6 - M18x1,5 mm integral thread - Operating pressure 150 bar - Ranges 2...200 mm - Voltage and Current output - Linearity up to 0,20 % - Protection class IP67 or IP68 - Max. temperature up to +150 °C - High EMC-grade - Customised versions available TEL:021-54191392 邹工:173 1638 6953 唐工:180 1936 4947 www.imcortech.net #### TECHNICAL DATA | sensor | | | | | | | | | | |---|--|------|------|------|------|------|------|--|--| | measurement range FS [mm] | 02 | 05 | 010 | 025 | 050 | 0100 | 0200 | | | | linearity [% of FS] | 0,30 % (0,20 % optional) | | | | | | | | | | types | sprung load (up to range 050 mm), free core, push rod guided/ unguided | | | | | | | | | | protection class cable/ connector side | IP67, optional IP68 | | | | | | | | | | protection class flange side | IP68/ 150bar | | | | | | | | | | vibration stability DIN IEC68T2-6 | 10 G | | | | | | | | | | shock stability DIN IEC68T2-27 | 200 G/ 2 ms | | | | | | | | | | supply voltage/ frequency | 3 V _{eff} / 3 kHz | | | | | | | | | | supply frequency | 210 kHz | | | | | | | | | | temperature range | -40+120 °C (150 °C optional, option H, 200 °C on request) | | | | | | | | | | mounting | flange with fastening screw thread M18 | | | | | | | | | | housing | nickled steel | | | | | | | | | | connection | cable output or M12-connector with coupling nut | | | | | | | | | | cable TPE (standard) | ø 4,5 mm, 0,14 mm², non-halogen, suitable for drag chains | | | | | | | | | | PTFE (option H) | ø 3,6 mm, 0,24 mm², max. temperature 205 °C | | | | | | | | | | max. cable length | 100 m between sensor and electronics | | | | | | | | | | sprung load version (up to range 50 mm) | | | | | | | | | | | spring force (middle of range) [N] | 0,90 | 0,90 | 0,90 | 0,95 | 0,95 | - | - | | | | max. cycles of tip at 1 mm amplitude [Hz] | 55 | 50 | 50 | 35 | 20 | - | - | | | | spring stiffness [N/ mm] | 0,29 | 0,20 | 0,12 | 0,06 | 0,04 | - | - | | | | life time | > 10 million cycles | | | | | | | | | | free core/ push rod/ push rod guided | | | | | | | | | | | max. acceleration of core/ push rod | 100 G | | | | | | | | | | life time | infinite | | | | | | | | | | weight approx. [g] | 85 | 91 | 96 | 108 | 140 | 190 | 290 | | | | electronics | IMCA external electronics (built-in) | KAB cable electronics | | |-------------------------|--|--|--| | output signal | 020 mA, 420 mA (load <100 Ohm) | 420 mA (load <100 Ohm) | | | | $05 V, \pm 5 V (load > 5 kOhm)$ | $05 \text{ V, } \pm 5 \text{ V (load } > 5 \text{ kOhm)}$ | | | | $010 \text{ V, } \pm 10 \text{ V (load >} 10 \text{ kOhm)}$ | $010 \text{ V, } \pm 10 \text{ V (load } >10 \text{ kOhm)}$ | | | temperature coefficient | zero 150 ppm/ °C, max. value 400 ppm/ °C | 460 ppm/ °C | | | ripple | $<$ 0,5 mV $_{\rm eff}$ up to 300 Hz, $<$ 4 mV $_{\rm eff}$ up to 20 MHz | $<$ 0,5 mV $_{\rm eff}$ up to 300 Hz, $<$ 4 mV $_{\rm eff}$ up to 20 MHz | | | max. frequency | 300 Hz/ -3 dB (Bessel, 6-pole) | 300 Hz/ -3 dB (Bessel, 6-pole) | | | isolation voltage | > 1000 VDC | > 1000 VDC | | | power supply | 936 VDC | 936 VDC | | | current consumption | 75 mA at 24 VDC | 65 mA at 24 VDC | | | | 150 mA at 12 VDC | 140 mA at 12 VDC | | | sensor supply | 3 V _{eff} , 3 kHz (adjustable 1-18 kHz) | 3 V _{eff} , 3 kHz (adjustable 1-18 kHz) | | | working temperature | -40+85 °C | -40+85 °C | | | storage temperature | -40+85 °C | -40+85 °C | | | housing | polyamide PA6.6, meets UL94-VO | aluminium | | | mounting | on DIN EN-rail | - | | The output signal is referring to the electric measuring range. If the sensor is operated outside the measuring range or the measuring range is exceeded, the signal is also outside the defined range (i.e. > 10 V/20 mA or < 0 V/4 mA, in the graph: > 100 % or < 0 %). Please keep this in mind for control systems with cable break detection lower than 4 mA or for a maximum input voltage > 10 V of measuring instruments. If necessary install the sensor **before** connecting to the plc. Running direction of signal: If the push rod is moving into the sensor (e.g. sprung load pushed in), the signal is reducing. If the push rod is moving out, the output signal is increasing. The running direction of the signal can also be inverted. #### **TECHNICAL DIMENSIONS** | range FS
[mm] | body length B
cable/ connector radial
[mm] | body length C
connector M12
[mm] | max. length A
sprung load mechanics
[mm] | core length D
[mm] | push rod length E
[mm] | |------------------|--|--|--|-----------------------|---------------------------| | 02 | 53 | 60 | 39 | 22 | 62 | | 05 | 59 | 66 | 42 | 25 | 68 | | 010 | 69 | 76 | 47 | 30 | 78 | | 025 | 99 | 106 | 62 | 45 | 108 | | 050 | 149 | 156 | 87 | 70 | 158 | | 0100 | 249 | 256 | - | 120 | 258 | | 0200 | 449 | 456 | - | 220 | 458 | Other measurement ranges are available on request. #### SENSOR TYPES Sensors with cable output have a cable fitting and a spring for bend protection of the cable. For installation, the bending radius should not be less than 3 times the cable diameter. The standard cable length is 2 m. Instruments with option H for temperatures up to 150 °C feature a PTFE cable. cable/ connector output radial connector output (cable with straight or angular connector) For sensors with connector output the cable has to be ordered separately. You can choose from a cable with a straight connector or with an angular connector. The connector is protected from accidental removal by a threaded fitting (M12). The cable lengths are 2/5/10 m. The connector pair has protection class IP67. The total length of the sensor with connector is: body length of the connector M12 (see table) + 20 mm (angular connector) body length of the connector M12 (see table) + 37 mm (straight connector) #### ADJUSTMENT OF ZERO POINT AND GAIN Please note that the zero point and gain may shift for long cable length between sensor and electronics. Thus install the sensor with the according cable length to the electronics and then adjust zero point and gain. 1. Push rod entirely in – adjust offset Move the sensor to the zero point of the measuring range and set the offset potentiometer on 0 mA/ 0 V for the output signal. 2. Push rod entirely out – adjust gain Move the sensor to the end of the measuring range (push rod moved out) and set the gain potentiometer on 16 mA / 10 V / 5 V for the output signal. Adjust offset (4...20 mA output only). Set the offset potentiometer on 20 mA (+4 mA) for the output signal. #### Signal inversion: If an inverted output signal is required (20...4 mA/ 10...0 V/ 5...0 V), swap clamps 6 and 8 (secondary coil) on the external electronics. #### AC-OUTPUT #### assignment for TPE-cable: white (5): primary 2 black (6): secondary 2 brown (9): primary 1 blue (8): secondary 1 #### assignment for PTFE-cable: white (5): primary 2 green (6): secondary 2 yellow (9): primary 1 brown (8): secondary 1 #### assignment M12-connector: #### CABLE ELECTRONICS KAB #### $assignment\ for\ TPE\text{-}cable:$ brown: supply V+ blue: GND black: output GND white: output signal #### assignment for PTFE-cable: yellow: supply V+ brown: GND green: output GND white: output signal If not specified otherwise the cable electronics is placed at 1 m from the end of the cable. On request in your order, however, the cable electronics can be placed at any position. dimensions: #### EXTERNAL ELECTRONICS IMCA external electronics IMCA (for DIN-rail mounting) terminals. # 79 16 27,5 0000000 # **Connection**The external electronics IMCA is designed to be installed in switch cabinets (Din-rail mounting). The connection to the sensor is conducted as connector with screw # 22,5 2 GND 3 9...36 VDC Primary 2 Secondary 2 Shield Secondary 1 Primary 1 n.c. 13 current output 12 voltage output 11 GND (signal) * Terminals 1 and 7 are internally connected. At harsh EMC environments, it is possible to install the electronics at a max. distance of 100 m in a switch cabinet. A twin twisted pair cable (4-cores, minimum cross section 0,5 mm²), single or double shielded, is to be used for the further wiring to connect the external electronics to the system. It is recommended to ground the shield in the switch cabinet near the electronics (do not ground at the machine/ sensor). The sensor housing is grounded at the machine frame. To prevent interference, the cable length should not exceed 100 m. #### ORDER CODE #### Connector cable: #### cable with straight connector M12 (SA) K4P2M-S-M12 2 m K4P5M-S-M12 5 m K4P10M-S-M12 10 m #### cable with angular connector M12 (SA) K4P2M-SW-M12 2 m K4P5M-SW-M12 5 m K4P10M-SW-M12 10 m #### fixed connector cable (2,0 m standard, KA, KR): additional metre of TPE-cable additional metre of PTFE-cable (-H)