
Product Specification

Senseair Sunrise

Sensor module for battery-powered applications

Table of Contents

General Specifications
Description
Applications
Key Benefits
Installation and Soldering4
Sample Gas Diffusion Area
Pin Configuration and Functions
Pin Configuration
Pin Functions
Specifications
Absolute Maximum Ratings
Recommended Operating Conditions7
Electrical Characteristics
Measurement mode
Single measurement mode
Continuous measurement mode10
Typical Applications
UART Connection
I ² C Connection
Communication11
Dimensions
Maintenance

General Specifications

Item	Senseair Sunrise Article No. 006-0-0002
Target gas	Carbon dioxide (CO ₂)
Operating principle	Non-dispersive infrared (NDIR)
Operating range	$0 - 50^{\circ}$ C, $0 - 85^{\circ}$ RH (non-condensing), (see figure 3)
Measurement range	400 – 5000ppm; extended range up to 10000ppm ¹
Accuracy [CO ₂]	\pm (30ppm +3% of reading) ^{2,3} (extended range \pm 10% of reading) ^{2,3,4}
Pressure dependence	1.6% reading per kPa deviation from normal pressure
RMS noise, Typ. [CO ₂]	Filtered: Unfiltered: 0.7ppm @ 400ppm, 25°C 6ppm @ 400ppm, 25°C 1.4ppm @ 2000ppm, 25°C 13ppm @ 2000ppm, 25°C
Power supply	3.05 - 5.5V ⁵
Peak current	<125mA
Average current	<150µA ⁶
Measurement period	Default : 16s (adjustable by host) ⁶
Dimensions (Max. L x W x H)	33.9 x 19.8 x 12.3mm
Life expectancy	>15 years
Storage temperature	-40-70°C
Weight	5.0 ±0.5g
Serial communication	UART / I²C

Table 1 General Specifications

Note 1: Sensor is designed to measure in the range 400 – 5000ppm, extended range up to 10000ppm, which is specified in the table accuracy. Nevertheless, exposure to concentrations below 400ppm may result in incorrect operation of ABC algorithm and shall be avoided for model with ABC ON.

Note 2: 15 – 35°C, 0 – 80%RH, after three (3) ABC periods.

Note 3: Specification is referenced to uncertainty of calibration gas mixtures (±1%).

Note 4: Extended range accuracy is not calibrated or guaranteed, it is extrapolated from calibrated range.

Note 5: Unprotected against surges and reverse connection.

Note 6: See Measurement mode for detailed information

Description

Senseair Sunrise is a miniature sensor module for battery-powered applications. It gives full control over sensor's integration into a host system, flexibility in changing of the CO₂ measurement period and power consumption.

Applications

Senseair Sunrise is designed for battery powered applications.

Document	Rev	Page
PSP4731	2	3 (12)

Key Benefits

- Wide supply voltage range enables a variety of battery options
- Adjustable measurement period by host
- Adjustable ABC period by host
- Ultra-low power consumption

Installation and Soldering

Refer to Senseair Sunrise Handling manual (ANO4947).

Sample Gas Diffusion Area

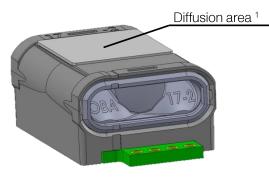
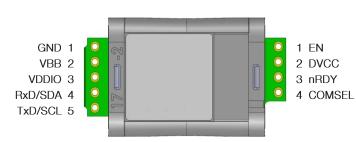



Figure 1 Sample Gas Diffusion Area

Note 1: Diffusion area must not be covered. Diminished sample gas circulation may affect response time.

Pin Configuration and Functions

Pin Configuration

Figure 2 Pin Configuration (Top view)

Pin Functions

Pin #	Symbol	I/О Туре	Description
			JP1 (4-pin header)
1	EN	Input	Enable (active high). Drive this pin over 1.2V to turn on the sensor. Drive this pin below 0.4V to put the sensor into shutdown mode. Do not leave floating. Connect to VBB if not used.
2	DVCC	Power	2.8V internal supply voltage output. Not intended to supply external systems, leave floating if not used.
3	nRDY	Output	Measurement ready output; True Open-Drain, active LOW; 100 $k\Omega$ internal Pull-Up to VDDIO.
4	COMSEL	Input	Communication select, valid at power-up: HIGH = UART (Default, internal Pull-Up, can be left floating); LOW = I ² C (Connect to GND).
			JP2 (5-pin header)
1	GND	Power	Ground
2	VBB	Power	Sensor supply voltage
3	VDDIO	Power	I/O supply voltage
4	RxD/SDA	I/O	Sensor UART receive input / I ² C bidirectional serial data; True Open-Drain when operating as output.
5	TxD/SCL	I/O	Sensor UART transmit output / I ² C clock input; True Open-Drain when operating as output, 100kΩ internal Pull-Up to VDDIO.

Table 2 Pin Functions

Specifications

Absolute Maximum Ratings

Over operating temperature range (unless otherwise noted); all voltages are with respect to GND ⁽¹⁾

Symbol	D	Min	Max	Unit		
	Voltage					
VBB	Supply voltage					
VDDIO	I/O supply voltage					
nRDY	Ready output		-0.3	6	V	
RxD/SDA	UART / I²C					
TxD/SCL	UART / I²C					
EN	Enable		-0.3	< VBB + 0.3	V	
DVCC	Internal supply voltage ou	tput	-0.3	< VBB + 0.3	V	
		$3.05 \leq VBB$, EN = HIGH	-0.3	DVCC + 0.3V		
COMSEL	Communication select	VBB \leq 3.05V, EN = HIGH	-0.3	DVCC + 0.3V	V	
		EN = LOW	-0.3	0.3		
	Current					
DVCC	Maximum output current		Inte	rnally limited	А	
COMSEL,						
RxD/SDA,	Instantaneous maximum o	current limit		25	mA	
TxD/SCL						

Table 3 Absolute Maximum Ratings

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Symbol	Description	Min	Тур	Max	Unit	Test conditions
	Voltage					
VBB	Supply voltage	3.05	3.3V	5.5	V	
VDDIO	I/O supply voltage	2.03		5.5	V	
COMSEL	Communication select	0		DVCC	V	
DVCC	Internal supply voltage output ¹	0		2.8	V	
EN	Enable	0		VBB	V	
RxD/SDA	UART / I²C	0		VDDIO	V	
TxD/SCL	UART / I²C	0		VDDIO	V	
	Current					
ICOMSEL ²	DC injection current	-2		2	mA	(VIN <gnd, vin="">DVCC)</gnd,>
DVCC 1, 2	Internal supply voltage current	0		25	mA	

Over operating temperature range (unless otherwise noted)

Table 4 Recommended Operating Conditions

Note 1: Output is not intended to supply external systems, leave floating if unused.

Note 2: Must be limited to the value specified.

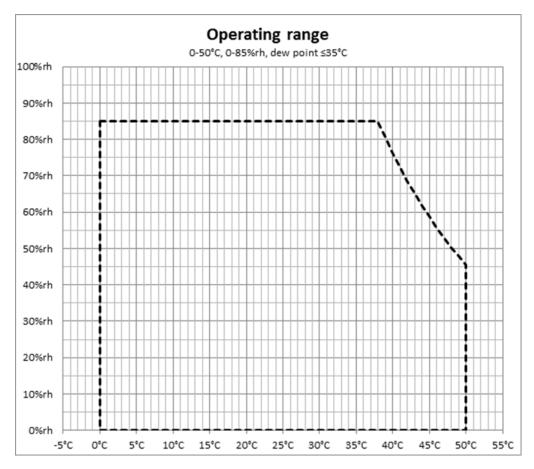


Figure 3 Operating range

Electrical Characteristics

Over operating temperature range, $V_{EN} = V_{BB} = 3.3V$, 16s measurement period, unless otherwise noted.

Symbol	Description	Min	Тур	Max	Unit	
	Operating voltage					
VDVCC	Supply voltage output			2.8		V
VIH	Input high voltage	COMSEL, RxD/SDA, TxD/SCL	1.96			V
VIH	input high voltage	ENABLE	1.2			V
VIL	Input low voltage	COMSEL, RxD/SDA, TxD/SCL			0.84	V
VIL	input iow voltage	ENABLE			0.4	V
VHYS	Input hysteresis	COMSEL, RxD/SDA, TxD/SCL	168			mV
	Operating current					
Vвв	Operating peak current	$V_{EN} \ge 1.2V; 3.05 \le V_{BB} \le 5.5V$			125	mA
IVBB	Operating average current	$VEN \ge 1.2V, \ 3.00 \le VBB \le 3.0V$			150	μA
	Shutdown current					
lvbb	Supply quiescent current	$V_{\text{EN}} \leq 0.3 \text{V}; \ 3.05 \leq V_{\text{BB}} \leq 5.5 \text{V}$		0.018	1	μA
IEN	Enable pin leakage current	$V_{\text{EN}} = V_{\text{BB}} = 5.5 V$			40	nA
Ivddio	I/O supply leakage current	$V_{DDIO} = 3.3V$		0.2	1.1	μA
lin	Input leakage current	V _{DDIO} = 3.3V; RxD/SDA, TxD/SCL		0.1	1	μΑ

Table 5 Electrical Characteristics, Typical values at $T_A = 25^{\circ}$ C.

Measurement mode

The Senseair Sunrise supports two modes of operation for measurement of CO₂ concentration: Continuous measurement mode and Single measurement mode. The default operation mode for Senseair Sunrise is Continuous measurement mode.

1) In Continuous measurement mode, the sensor measures at regular intervals (measurement period, default setting 16s). The host can read measurement data after each measurement and does not need to send any command to trigger measurements.

2) In the Single measurement mode, the sensor waits for the hosts command to measure. The host needs to send a command sequence (see Single measurement mode) to trigger each measurement.

Single measurement mode

In this mode, a measurement is executed by the hosts instruction. The host system needs to read the state information after the measurement and write back the state information before executing the measurement. The timing diagram with estimated power consumption and parameters are described in Figure 4 and Table 6, respectively.

Measurement sequence in Single measurement mode:

- 1. The host MCU enables the sensor by inputting H to the EN-pin.
- 2. The host MCU waits specified time for start-up of the sensor.
- 3. The host MCU writes the state registers values back to the sensor.
- 4. The sensor starts a new measurement by an instruction from the host MCU.
- 5. After completion of the measurement, the sensor pulls the RDY-pin down (the sensor does NOT start next measurement automatically).
- 6. The host MCU reads a CO₂ concentration value from the sensor.
- 7. Depending on the customer's requirement, #4-#6 are iterated.
- 8. The host MCU reads state register values from the sensor.
- 9. The host MCU disables the sensor by inputting L to the EN-pin.
- 10. Go back to #1, after waiting until the time to do next measurement.

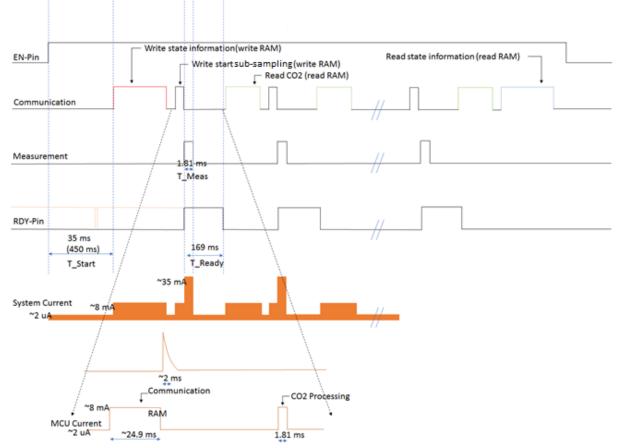


Figure 4 Timing diagram for the Single measurement mode (VBB=3.3V, 25 °C)

Note: 1) The diagram only shows the major activities for the measurement.

- 2) The current is estimated, and it is an estimated average for T_Meas.
- 3) The read/write interval depends on the communication protocol used, i.e., Modbus/I²C. In the case of I²C, it also depends on the SCL clock frequency.

Page

9 (12)

		1	1			
Se	en	sea	aır		Document	Rev
	I.	T	Т	1	PSP4731	2

Parameters	Min	Typical (ms)	Max (ms)	Timing Control	Comments
T_Start		35		Ready for communication	Bootloader is skipped for single measurement mode
		450		after MCU start	Bootloader is enabled during start-up in multi-measurement mode
T_Ready		169	250	Measurement data ready after measuring command is issued	The time depends on if the calibration is also executed
T_Meas		1.81	TBD	Measurement time	The time for CO2 measurement

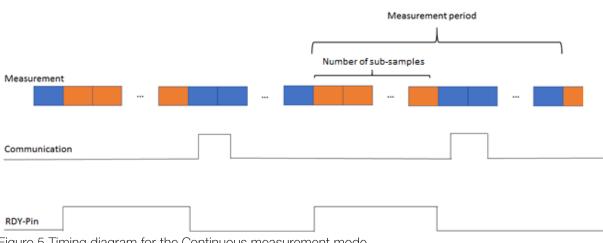
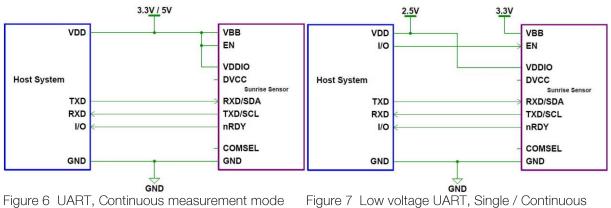
Table 6 Timing parameters for measurements

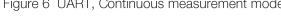
Continuous measurement mode

In the Continuous measurement mode, the measurement is performed automatically according to the measurement period and number of sub-samples per measurement set by the user. The timing diagram is illustrated in Figure 5. Please refer to Table 6 for relevant timing and parameter values.

Measurement parameters:

- 1) Default measurement period: 16s (the minimum period is 2s)
- 2) Default number of sub-samples: 32 (range 1 32)


Figure 5 Timing diagram for the Continuous measurement mode

Typical Applications

UART Connection

measurement mode

Communication

Refer to "Modbus on Senseair Sunrise" (TDE5514) and "I2C on Senseair Sunrise" (TDE5531).

Dimensions

Refer to drawing 832-00073

Maintenance

Senseair Sunrise has a built-in self-correcting ABC algorithm. ABC period is adjustable by host. Discuss your application with Senseair in order to get advice for a proper calibration strategy.

Document	Rev	Page
PSP4731	2	11 (12)

I²C Connection

IMPORTANT NOTICE

- 1. Senseair reserves the right to make changes to the information contained in this document without
- Senseair reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of Senseair product stipulated in this document ("Product"), please make inquiries the sales office of Senseair or authorised distributors as to current status of the Products.
 All information included in this document are provided only to illustrate the operation and application examples of Senseair Products. Senseair neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Senseair or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. SENSEAIR ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
 The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by Senseair in writing.
 Though Senseair works continually to improve the Product's quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimise risk and avoid situations
- data loss or corruption.
- data loss or corruption.
 Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
 Please contact Senseair sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Senseair assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.
 Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by Senseair for the Product and shall not create or extend in any manner whatsoever, any liability of Senseair.
 This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Senseair.

Senseair AB Europe Box 96 Stationsgatan 12 SE-82471 Delsbo Sweden

Phone: +46(0)653 - 71 77 70 E-mail: info@senseair.com Web site: senseair.com

Senseair North America

29030 SW Town Center Loop East Suite 202 #169 Wilsonville, OR 97070 USA

Phone: +1 (520) 349 - 7686 E-mail: infoamerica@senseair.com Web site: senseair.com

Senseair Asia

Senseair Chengdu Gas Sensors Ltd. First floor of 8th of Xingke South Road Jiniu Hi-Tech Industrial Park 610036, Chengdu China

Phone: +86-028 - 875 928 85 E-mail: info@senseair.asia Web site: senseair.asia

