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DFT Vs FFT For Fourier Analysis of Waveforms 
 

Introduction 
 
A distorted, periodic waveform can be shown to consist of a series of sinusoidal 
waveforms (harmonic components) at frequencies that are integral multiples of the 
fundamental frequency.  Such a waveform can be analyzed using Fourier Analysis to 
determine the magnitude and phase of these components.  This note demonstrates why 
the Discrete Fourier Transform (DFT) technique provides much better results than a Fast 
Fourier Transform (FFT) when analyzing such a waveform. 
 

Example Waveform 
 
To illustrate the difference between the DFT and FFT techniques, consider the following 
example waveform which consists of a 120Hz fundamental component with a magnitude 
of 170V, and a 5th harmonic at 30% of the magnitude of the fundamental (51V). 
 

 
 

Figure 1 
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Sampling 
 
Let us assume that we are sampling the waveform in figure 1 at 100kHz, and that these 
samples will be analyzed using Fourier Analysis. 
 
 

Fourier Analysis 
 
The principle of Fourier Analysis is to ‘test’ for the presence of each frequency 
component by multiplying the waveform, f(t), by a sine and cosine waveform of the same 
test frequency and average the results over one or more cycles of the test frequency. 
For example: 
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Figure 2 
 

The magnitude of the harmonic can easily be determined as: 
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Figure 3 

 
 
In the case of digital Fourier Analysis, the sample waveform is multiplied by numbers 
representing the sample of the test sine and cosine waveforms. 
 

DFT 
 
In the case of the DFT analysis used by Voltech, the first step is to determine the 
fundamental frequency of the waveform to be analyzed. 
 
In most power / power electronic applications the calculation of the fundamental 
frequency is relatively easy to do using the voltage waveform, the current waveform or, 
in special cases, an external signal from the electronic control circuit. 
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Measurement of the fundamental frequency is the key to obtaining precise results in the 
Fourier Analysis. 
 
As mentioned previously, Fourier Analysis consists of multiplying the waveform to be 
analyzed by a digital representation of sine and cosine waveforms of the test frequency. 
A DFT allows the use of any integer number of samples in the analysis.  In the example 
is figure 1, there are 833.33 samples in one cycle of the measured waveform, and 833 is 
the nearest integer number of samples to one cycle of the waveform.  In other words, we 
are analyzing over a ‘window’ that is very close to being exactly one cycle of the 
repetitive waveform. 
 
The result of this is to produce results that very accurately reflect the magnitude of each 
of the actual components in the waveform. 
 
e.g.  
  
Harmonic Actual Amplitude DFT Result Error 
1 (120Hz) 170.0V 170.0255V 0.015% 
2 (240Hz) 0V 0.071181V  
3 (360Hz) 0V 0.012796V  
4 (480Hz) 0V 0.054622V  
5 (600Hz) 51.0V 51.03817V 0.075% 
6 (720Hz) 0.13432 0V  
7 (840Hz) 0.079245 0V  
 

Figure 4 
 

The disadvantage of the DFT technique is that it requires each harmonic to be calculated 
separately, which requires much more processing power.  However, if that processing 
power is available, then the DFT provides very accurate answers. 
 

FFT 
 
The FFT, or Fast Fourier Transform is a method of calculating harmonics not one at a 
time, but as a group, using a special algorithm.  The FFT requires much less processing 
power than a DFT for the same number of harmonic results.  An FFT however, requires 
that the number of samples being analyzed to be a binary number e.g. a power of two. 
 
In our example, the nearest binary number of samples to a whole cycle of the sampled 
waveform is 1024.  The number of samples represents a window of 1.228 cycles 
(1024/833.3) of our waveform.  This results in a base ‘test’ waveform frequency of 
97.66Hz.  In other words , the FFT analysis multiplies the waveform by sine and cosine 
waves that do not match one cycle of the waveform.  This is shown in figure 5 below. 
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Figure 5 
 
The results for a FFT are shown in figure 6 below. 
 
Harmonic Actual 

Amplitude 
DFT Result Error Hanning Hanning 

Error 
1 (97.66Hz) 170.0V 155.2736V 8.663% 164.8767V 3.0137% 
2 (195.32Hz) 0V 47.80526V  54.25884V  
3 (292.98Hz) 0V 21.19538V  51.92185V  
4 (390.64Hz) 0V 12.69208V  21.81927V  
5 (488.3Hz) 51.0V 6.417511V 87.417% 18.65617V 63.4193% 
6 (585.96Hz) 0V 39.80876V  37.45542V  
7 (683.62Hz) 0V 16.55824V  27.40487V  
 

Figure 6 
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It can be seen that the mismatch in the analysis window because of being forced to use a 
binary number of samples has produced a set of results that are considerably different to 
the actual harmonic content. 
 
This effect is well understood, and is often referred to ‘spectral leakage’ i.e. data shows 
up in the wrong frequency. Various methods have evolved to improve the results, such as 
applying a ‘window’.  On of the more common windows is the Hanning window.  The 
Hanning window is applied to the base data by multiplying the Hanning value by the 
sampled value.  The Fourier Transform is calculated on resultant data.  Since the Hanning 
window has a value of zero and the beginning and end, the window helps reduce the 
effects of the discontinuity between the sampled waveform and the test waveform. The 
affects of applying a Hanning window are showed in figure 6 above.  At best, this will 
improve values for certain frequencies, and worsen the results for others.  Figure 7 below 
shows the equation for the Hanning Window, along with its shape. 
 
 
 
 
 
 
 

 

 

 
Figure 7 

 
Other types of windowing include Hamming, Blackman and Flat Top.  Each windowing 
method has its advantages and disadvantages, so the choice of window used can often 
dramatically affect the results obtained. 
 

How Much Faster? 
 
As their name implies, Fast Fourier Transforms are faster than Discrete Fourier 
Transforms. But how much faster are they, and does this have an implication in the 
analysis of power? 
 
For a waveform of 1024 samples, N, it takes N2 computations to calculate the harmonics, 
while for a FFT it takes Nlog2(N) computations. So, for the DFT it takes 1,048,576 
computations and for the FFT it takes 10,240 computations.  The FFT is over 100 times 
faster.  However, the number of computations given is for calculating 1024 harmonics 
from 1024 samples.   

1
2

2( )   [ ( )]  n = 0,1,2,...N-1

where N is the number of samples being analyzed

nw n Hanning Cos
N
π

=

 



DFT Vs FFT For Fourier Analysis of Waveforms Page 6 of 7 

 
In power analysis, 1024 harmonics is not very realistic.  A more realistic number of 
harmonics would be 100.  In this case, the FFT will still take 10,240 computations, but 
the DFT will now only take 102,400 computations, or 10 times as many. 
 
The figures given above show an indication of the performance difference between a 
DFT and an FFT in a real-world situation.  In today’s world of high performance DSPs, it 
is relatively straight forward to compute the desired number of harmonics in a timely 
manner using a DFT, and retain the advantage of the precision provided by using a DFT. 
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Conclusion 
 
Whilst the FFT technique is valuable technique for determining the harmonic content of 
waveforms, it’s value lies where attempting to provide a spectrum analysis of waveforms 
for while the base frequency cannot be determined,  In these cases the DFT offers no 
accuracy advantage, and the FFT provides more results for the same processing power. 
 
In practical power electronic applications, where the fundamental frequency can be 
determined with good accuracy, the DFT offers superior performance, precisely 
identifying both the frequency and the amplitude of all the components that make up the 
distorted waveform, thereby greatly helping the analysis and reduction of these 
harmonics. 
 
Also, although the FFT is significantly faster that a DFT, in practical power applications, 
where only a limited number of harmonics are required, more accurate DFT calculation 
can be carried out in real-time, so there is no need to sacrifice performance for speed. 
 
For these reasons, the IEC, after a lengthy consideration of the FFT technique versus the 
DFT technique, concluded that the DFT is the superior technology for analyzing current 
harmonics in power waveforms, and has now embodied the requirement for DFT analysis 
in the latest version of IEC 61000-4-7: Testing and Measurement Techniques, which is 
specified in IEC 61000-3-2: Limits for harmonics current emissions. 
 


