Calculation of temperature control in enclosures

What's needed:

- 1. The $\underline{dimensions}$ of the enclosure (Height, Width, Depth) $\circlembrack{[m]}$
- 2. The enclosure position (e.g. single enclosure, enclosure in a row) according to calculation formula, enclosure surface area A [m²]
- 3. The enclosure material (metal, plastic) heat transfer coefficient from table, k [W/m² K]
- 4. The temperature difference between desired enclosure interior temperature Ti [°C] and the expected ambient temperature Tu [°C] (e.g. day/night, summer/ winter, climate zones) ΔT [K=Kelvin]
- 5. The stray power (self-warming) of all installed components during operation (e.g. transformers, relays, semiconductors) Pv [W]

Calculation and selection of parameters: enclosure surface area - heat transfer coefficient - temperature difference

1. Enclosure surface area from <u>dimensions</u>

2. Enclosure position (plan view)	according to VDE 0660 part 500	Formula for <u>cabinet surface area</u> A [m²]
		(H = Height W = Width D = Depth)
	Single enclosure free on all sides	A = 1.8 x H x (W + D) + 1.4 x W x D
	Single enclosure, wall mounted	A = 1.4 x W x (H + D) + 1.8 x D x H
	First or last enclosure in free standing row	A = 1.4 x D x (H + W) + 1.8 x W x H
	First or last enclosure in wall mounted row	A = 1.4 x H x (W + D) + 1.4 x W x D
	Middle enclosure in free standing row	$A = 1.8 \times W \times H + 1.4 \times W \times D + D \times H$
	Middle enclosure in wall mounted row	$A = 1.4 \times W \times (H + D) + D \times H$
	Middle enclosure in wall mounted row with covered top	A = 1.4 x W x H + 0,7 x W x D + D x H

Example: enclosure free on all sides, 2000mm high / 800mm wide / 600mm deep. A = 1.8 x 2.0 x (0.8 + 0.6) + 1.4 x 0.8 x 0.6 = 5.712m²

3. Enclosure material and its heat transfer coefficient k [W/m² K]

Steel sheet, painted	k ~ 5.5W/m² l
Steel sheet, stainless	k ~ 4.5W/m² ł
Aluminium	k ~ 12W/m² K
Aluminium, double-walled	k ~ 4.5W/m² ł
Polyester	k ~ 3.5W/m² ł

4. <u>Temperature difference</u> ΔT [K=Kelvin]

i.e. the temperature difference between the interior and exterior temperatures

 $\Delta T = Ti - Tu$

CALCULATION FORMULA FOR REQUIRED HEATING PERFORMANCE (HEATER):

Required heating performance P_H [W] = enclosure surface area A [m²] x heat transfer coefficient k [W/m² K] x temperature difference ΔT [K] Example: W = 5.712m² x 5.5W/m² K x 15K = 471.24W Result: Heater with 500W heating performance is required. If enclosure is situated outdoors the calculated heating performance must be doubled!

OR CHOOSE REQUIRED HEATING PERFORMANCE FROM DIAGRAM:

5. In the case of continuous stray power Pv [W] (self-warming) this must be deducted from the calculated heating performance.

CHOOSE REQUIRED COOLING PERFORMANCE FROM DIAGRAM:

OR CALCULATE USING FORMULA FOR REQUIRED COOLING PERFORMANCE (FILTER FAN):

 Required air volume V [m³/h] =
 installed stray power Pv [W] temperature difference ΔT [K]
 x air constant f* [3.3m³ K/Wh]

 Example:
 V =
 $\frac{600W}{15K}$ x 3.3m³ K/Wh = 132m³/h

*f (0-100) = $3.1m^3$ K/Wh, f (100-250) = $3.2m^3$ K/Wh, f (250-500) = $3.3m^3$ K/Wh, f (500-750) = $3.4m^3$ K/Wh, f (750-1000) = $3.5m^3$ K/Wh

