What's needed:

1. The dimensions of the enclosure (Height, Width, Depth) [m]
2. The enclosure position (e.g. single enclosure, enclosure in a row) according to calculation formula, enclosure surface area A [m²]
3. The enclosure material (metal, plastic) heat transfer coefficient from table, $\mathrm{k}\left[\mathbf{W} / \mathbf{m}^{\mathbf{2}} \mathbf{K}\right]$
4. The temperature difference between desired enclosure interior temperature $\mathrm{Ti}\left[{ }^{[} \mathrm{C}\right]$ and the expected ambient temperature $\mathrm{Tu}\left[{ }^{\circ} \mathrm{C}\right]$ (e.g. day/night, summer/ winter, climate zones) $\Delta \mathrm{T}[\mathrm{K}=$ Kelvin]
5. The stray power (self-warming) of all installed components during operation (e.g. transformers, relays, semiconductors) Pv [W]

Calculation and selection of parameters: enclosure surface area - heat transfer coefficient - temperature difference

1. Enclosure surface area from dimensions
2. Enclosure position (plan view) according to VDE 0660 part 500

Single enclosure free on all sides
Single enclosure, wall mounted
First or last enclosure in free standing row
First or last enclosure in wall mounted row
Middle enclosure in free standing row
Middle enclosure in wall mounted row
Middle enclosure in wall mounted row with covered top

$$
\begin{aligned}
& \text { Formula for cabinet surface area } \mathrm{A}\left[\mathrm{~m}^{2}\right] \\
& \quad(\mathrm{H}=\text { Height } \mathrm{W}=\text { Width } \mathrm{D}=\text { Depth) } \\
& \mathrm{A}=1.8 \times \mathrm{H} \times(\mathrm{W}+\mathrm{D})+1.4 \times \mathrm{W} \times \mathrm{D} \\
& \mathrm{~A}=1.4 \times \mathrm{W} \times(\mathrm{H}+\mathrm{D})+1.8 \times \mathrm{D} \times \mathrm{H} \\
& \mathrm{~A}=1.4 \times \mathrm{D} \times(\mathrm{H}+\mathrm{W})+1.8 \times \mathrm{W} \times \mathrm{H} \\
& \mathrm{~A}=1.4 \times \mathrm{H} \times(\mathrm{W}+\mathrm{D})+1.4 \times \mathrm{W} \times \mathrm{D} \\
& \mathrm{~A}=1.8 \times \mathrm{W} \times \mathrm{H}+1.4 \times \mathrm{W} \times \mathrm{D}+\mathrm{D} \times \mathrm{H} \\
& \mathrm{~A}=1.4 \times \mathrm{W} \times(\mathrm{H}+\mathrm{D})+\mathrm{D} \times \mathrm{H} \\
& \mathrm{~A}=1.4 \times \mathrm{W} \times \mathrm{H}+0.7 \times \mathrm{W} \times \mathrm{D}+\mathrm{D} \times \mathrm{H}
\end{aligned}
$$

CALCULATION FORMULA FOR REQUIRED HEATING PERFORMANCE (HEATER):

Required heating performance $\mathrm{P}_{\mathrm{H}}[\mathbf{W}]=$ enclosure surface area $\mathrm{A}\left[\mathbf{m}^{2}\right] \times$ heat transfer coefficient $\mathrm{k}\left[\mathbf{W} / \mathbf{m}^{2} \mathbf{K}\right] \times$ temperature difference $\Delta \mathrm{T}[\mathrm{K}]$
Example: $W=5.712 \mathrm{~m}^{2} \quad \mathrm{x} 5.5 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \quad \mathrm{x} \quad 15 \mathrm{~K} \quad=471.24 \mathrm{~W}$

Result: Heater with 500 W heating performance is required. If enclosure is situated outdoors the calculated heating performance must be doubled!

OR CHOOSE REQUIRED HEATING PERFORMANCE FROM DIAGRAM:

5. In the case of continuous stray power Pv [W] (self-warming) this must be deducted from the calculated heating performance.

CHOOSE REQUIRED COOLING PERFORMANCE FROM DIAGRAM:

OR CALCULATE USING FORMULA FOR REQUIRED COOLING PERFORMANCE (FILTER FAN):

Required air volume $V\left[\mathbf{m}^{3} / \mathbf{h}\right]=\frac{\text { installed stray power Pv }[\mathbf{W}]}{\text { temperature difference } \Delta T[\mathbf{K}]} \times$ air constant $f^{*}\left[\mathbf{3 . 3} \mathbf{m}^{\mathbf{3}} \mathbf{K} / \mathbf{W h}\right]$ Example: $\quad V=\frac{\mathbf{6 0 0 W}}{\mathbf{1 5 K}} \times 3.3 \mathrm{~m}^{3} \mathrm{~K} / \mathrm{Wh}=132 \mathrm{~m}^{3} / \mathrm{h}$

