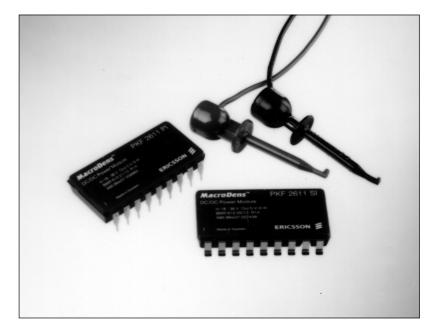
# 6–12 W DC/DC Power Modules 24 V Input Series

- SMD and through-hole versions with ultra low component height < 8.5 mm (0.335 in)
- 84% efficiency (typ at 5 V)
- 1,500 V dc isolation voltage
- Output current up to 2 A
- Switching frequency syncronization
- MTBF > 4.9 million hours at +50 °C pin temperature (+40 °C ambient)
- Low EMI measured according to CISPR 22 and FCC part 15J






**Patents** US: D357901 DE: M94022763

The MacroDens<sup>TM</sup> PKF 2000 I series true component level on-board DC/DC power modules are intended as distributed power sources in decentralized +24V DC power system.

Utilization of thick film technology and a high degree of silicon integration has made it possible to achieve a MTBF of more than 4.9 million hours.

The highly reliable and rugged over-moulded design and the ultra low height makes them particularly suited for cellular radio and other demanding industrial applications, with board spacing down to 15 mm or 0.6 in.

These DC/DC power modules are optimized for free convection cooling and have an operational ambient



temperature range in compliance with present and future application needs, including non temperature controlled environments.

The mechanical design offers the choice of surface mount or through-hole versions, delivered in readyto-use tubes, trays or tape & reel package, and compatibility with semi and fully aqueous cleaning processes.

The PKF series is manufactured in highly automated production lines using SMT, laser trimming, 100% burn-in and ATE final inspection.

Since 1991, Ericsson Components AB is an ISO 9001 certified supplier.

For product program, please see back cover.



# General

### **Absolute Maximum Ratings**

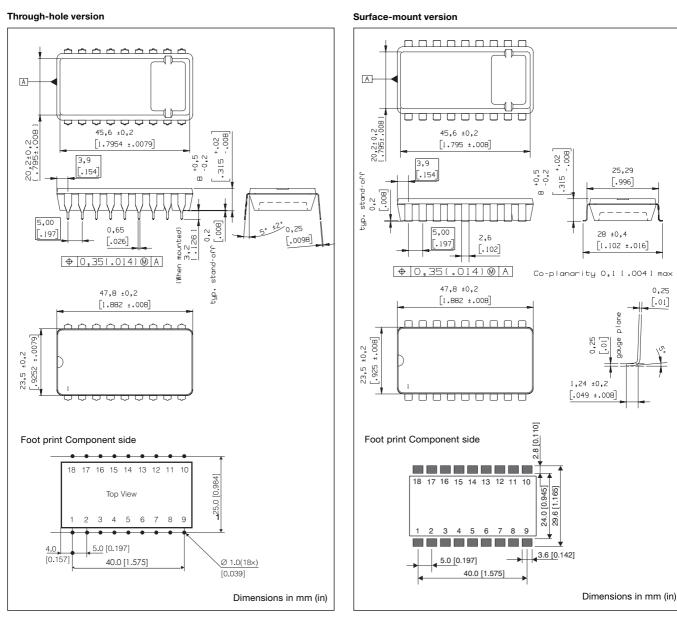
| Charac           | teristics                                           | min   | max  | Unit |
|------------------|-----------------------------------------------------|-------|------|------|
| T <sub>C</sub>   | Case temperature at full output power               | -45   | +100 | °C   |
| Ts               | Storage temperature                                 | -55   | +125 | °C   |
| VI               | Continuous input voltage                            | -0.5  | +40  | Vdc  |
| V <sub>ISO</sub> | Isolation voltage<br>(input to output test voltage) | 1,500 |      | Vdc  |
| V <sub>tr</sub>  | Transient input energy                              |       | 0.01 | Ws   |
| V <sub>RC</sub>  | Remote control voltage pin 10, 11 ref. to pin 18    | -5    | VI   | Vdc  |
| V <sub>adj</sub> | Output adjust voltage pin 8, 9 ref. to pin 18       | -5    | +40  | Vdc  |

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

#### Input T<sub>C</sub> < T<sub>Cmax</sub> unless otherwise specified

| Charact           | teristics                         | Conditions                                          | min                                            | typ  | max        | Unit |
|-------------------|-----------------------------------|-----------------------------------------------------|------------------------------------------------|------|------------|------|
| VI                | Input voltage range <sup>1)</sup> |                                                     | 18                                             |      | 36         | V    |
| V <sub>loff</sub> | Turn-off input voltage            | See typical characteristics                         | 16                                             | 16.8 | 18         | V    |
| Vlon              | Turn-on input voltage             | See typical characteristics                         |                                                | 18.3 | 19         | V    |
| CI                | Input capacitance                 |                                                     |                                                | 2.4  |            | μF   |
| Pli               | Input idling power                | l <sub>O</sub> =0, T <sub>C</sub> =−30+85°C         | (V <sub>I</sub> =24V)<br>(V <sub>I</sub> =27V) |      | 360<br>300 | mW   |
| P <sub>RC</sub>   | Input stand-by power              | T <sub>C</sub> =-30+85°C,<br>RC connected to pin 18 | (V <sub>1</sub> =24V)<br>(V <sub>1</sub> =27V) |      | 25<br>40   | mW   |

#### NOTES:


 $^{1)}$  The power modules will operate down to  $V_{I} \leq \! 18$  V, when  $V_{I}$  decreases, but will turn on at  $V_{I} \leq \! 19$  V, when  $V_{I}$  increases (see also Operating Information.

<sup>2)</sup> The test is applicable for through hole versions.

#### **Environmental Characteristics**

| Characteristics                       |                                                             | Test procedure & condit                                                      | ions                                                                                 |
|---------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Vibration<br>(Sinusoidal)             | JESD 22-B103<br>(IEC 68-2-6 F <sub>c</sub> )                | Frequency<br>Amplitude<br>Acceleration<br>Number of cycles                   | 10500 Hz<br>0.75 mm<br>10 g<br>10 in each axis                                       |
| Random<br>vibration                   | MIL-DTF-883<br>Method 2026<br>(IEC 68-2-34 E <sub>d</sub> ) | Frequency<br>Acceleration density<br>spectrum<br>Duration<br>Reproducability | 10500 Hz<br>0.5 g <sup>2</sup> /Hz<br>10 min in 3 directions<br>medium (IEC 62-2-36) |
| Shock<br>(Half sinus)                 | JESD 22-B104<br>(IEC 68-2-27 E <sub>a</sub> )               | Peak acceleration<br>Shock duration                                          | 200 g<br>3 ms                                                                        |
| Temperature<br>change                 | JESD 22-A104<br>(IEC 68-2-14 N <sub>a</sub> )               | Temperature<br>Number of cycles                                              | –40°C…+125°C<br>500                                                                  |
| Accelerated<br>damp heat              | JESD 22-A101<br>(IEC 68-2-3 C <sub>a</sub><br>with bias)    | Temperature<br>Humidity<br>Duration                                          | 85°C<br>85% RH<br>1000 hours                                                         |
| Solder<br>resistability <sup>2)</sup> | JESD 22-B106<br>(IEC 68-2-20 T <sub>b</sub> 1A)             | Temperature, solder<br>Duration                                              | 260°C<br>1013 s                                                                      |
| Aggressive<br>environment             | IEC 68-2-11 K <sub>a</sub>                                  | Duration<br>Temperature<br>Concentration                                     | 96 h<br>35°C<br>5 %                                                                  |

### **Mechanical Data**



#### Connections

| Pin   | Designation      | Function                                                                                                                                     |
|-------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Out 1            | Output 1. Positive voltage ref. to Rtn.                                                                                                      |
| 2     | Rtn              | Output return.                                                                                                                               |
| 3–6   | NC               | Not connected.                                                                                                                               |
| 7     | Sync             | Synchronization input.                                                                                                                       |
| 8     | V <sub>adj</sub> | Output voltage adjust. To set typical output voltage (V <sub>Oi</sub> ) connect pin 8 to pin 9.                                              |
| 9     | NOR              | Connection of Nominal Output voltage Resistor. (See Operating<br>Information, Output Voltage Adjust).                                        |
| 10    | ΤΟΑ              | Turn-on/off input voltage adjust (V <sub>lon</sub> /V <sub>loff</sub> ). Used to decrease the turn-on/off input voltage threshold.           |
| 11    | RC               | Remote control and turn-on/off input voltage adjust. Used to turn-on and turn-off output and to set the turn-on/off input voltage threshold. |
| 12–16 | NC               | Not connected.                                                                                                                               |
| 17    | +In              | Positive input.                                                                                                                              |
| 18    | -In              | Negative input.                                                                                                                              |

#### Preliminary Data Sheet EN/LZT 137 21 R6 © Ericsson Components AB, September 1999

#### Weight

Maximum 20 g (0.71 oz).

#### Case

The case consists of semiconductor grade epoxy with embedded pins.

Coefficient of thermal expansion (CTE) is typ. 15 ppm/°C.

#### **Connection Pins**

Base material is copper (Cu), first plating is nickel (Ni) and second (outer) plating is palladium (Pd).

# **Thermal Data**

### Two-parameter model

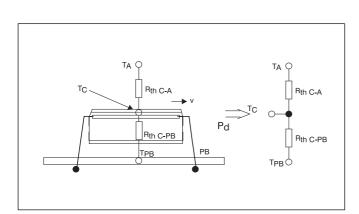
Thermally the power module can be considered as a component and the case temperature can be used to characterize the properties. The thermal data for a power module with the substrate in contact with the case can be described with two thermal resistances. One from the case to ambient air and one from case to PB (Printed Board).

The thermal characteristics can be calculated from the following formula:

 $T_{PB}$  = (T\_C-T\_A)×(R\_{th}C\_{-PB}+R\_{th}C\_{-A})/R\_{th}C\_{-A}-P\_d \times R\_{th}C\_{-PB}+T\_A Where:

- $P_d$ : dissipated power, calculated as  $P_O \times (l/\eta 1)$
- T<sub>C</sub>: max average case temperature
- T<sub>A</sub>: ambient air temperature at the lower side of the power module


 $\begin{array}{ll} T_{PB} : & \mbox{temperature in the PB between the PKF connection pins} \\ R_{th\,C\text{-}PB} : & \mbox{thermal resistance from case to PB under the power} \\ module & \end{array}$ 


 $R_{th\,C\text{-}A}{:}$   $\ \ thermal resistance from case to ambient air$ 

v: velocity of ambient air.

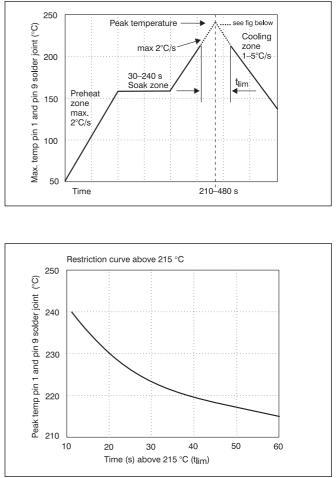
 $R_{th\,C\text{-}PB}$  is constant and  $R_{th\,C\text{-}A}$  is dependent on the air velocity.

Free convection is equal to an air velocity of approx. 0.2-0.3 m/s. See figure below.





# **Reflow Soldering Information**


The PKF series of DC/DC power modules are manufactured in surface mount technology. Extra precautions must therefore be taken when reflow soldering the surface mount version. Neglecting the soldering information given below may result in permanent damage or significant degradation of power module performance.

The PKF series can be reflow soldered using IR, Natural Convection, Forced Convection or Combined IR/Convection Technologies. The high thermal mass of the component and its effect on  $\Delta T$  (°C) requires that particular attention be paid to other temperature sensitive components.

IR Reflow technology may require the overall profile time to be extended to approximately 8–10 minutes to ensure an acceptable  $\Delta T$ . Higher activity flux may be more suitable to overcome the increase in oxidation and to avoid flux burn-up.

The general profile parameters detailed in the diagram, with this extended time to reach peak temperatures, would then be suitable.

Note! These are maximum parameters. Depending on process variations, an appropriate margin must be added.



Palladium plating is used on the terminal pins. A pin temperature  $(T_p)$  in excess of the solder fusing temperature (+183°C for Sn/Pb 63/37) for more than 25 seconds and a peak temperature above 195°C, is required to guarantee a reliable solder joint.

Both pin 1 and pin 9 must be monitored.

No responsibility is assumed if these recommendations are not strictly followed.

## Safety

The PKF 2000 I series DC/DC power modules are designed in accordance with EN 60 950, *Safety of information technology equipment including electrical business equipment*. SEMKO certificate no. 9738248.

The PKF power modules are recognized by UL and meet the applicable requirements in UL 1950 *Safety of information technology equipment*, the applicable Canadian safety requirements and UL 1012 *Standard for power supplies*.

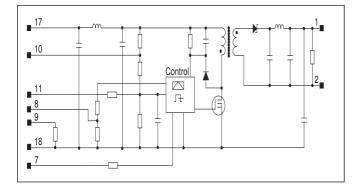
The DC/DC power module shall be installed in an end-use equipment and considerations should be given to measuring the case temperature to comply with  $T_{Cmax}$  when in operation. Abnormal component tests are conducted with the input protected by an external 3 A fuse. The need for repeating these tests in the end-use appliance shall be considered if installed in a circuit having higher rated devices.

The isolation is an operational insulation in accordance with EN 60 950.

The DC/DC power module is intended to be supplied by isolated secondary circuitry and shall be installed in compliance with the requirements of the ultimate application. One pole of the input and one pole of the output is to be grounded or both are to be kept floating.

The terminal pins are only intended for connection to mating connectors of internal wiring inside the end-use equipment.

These DC/DC power modules may be used in telephone equipment in accordance with paragraph 34 A.1 of UL 1459 (Standard for Telephone Equipment, second edition).


The galvanic isolation is verified in an electric strength test. Test voltage ( $V_{ISO}$ ) between input and output is 1,500 V dc for 60 s. In production the test duration is decreased to 1 s.

The capacitor between input and output has a value of 1 nF and the leakage current is less than  $1\mu A @ 26 V dc$ .

The case is designed in non-conductive epoxy. Its flammability ratings meets UL 94V-0. The oxygen index is 34%.

## **Electrical Data**

#### Fundamental circuit diagram, Single output



# PKF 2111A PI, SI

 $T_C$  = –30…+95°C,  $V_I$  = 18…36V and pin 8 connected to pin 9 unless otherwise specified.

## Output

| Ohamaa             |                                             | O an all the ana                                                       |                                                                        |      | Output 1 |      | Unit              |
|--------------------|---------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------|------|----------|------|-------------------|
| Charac             | teristics                                   | Conditions                                                             |                                                                        | min  | typ      | max  | - Unit            |
| V <sub>Oi</sub>    | Output voltage initial setting and accuracy | $T_{r} = 125 \circ C_{r} = 1.5$                                        | A \/ - 27.\/                                                           | 5.02 | 5.05     | 5.08 | v                 |
|                    | Output adjust range <sup>1)</sup>           | - 10 - +23 0, 10 - 1.3                                                 | $E_{\rm C}$ = +25 °C, $I_{\rm O}$ = 1.5 A, $V_{\rm I}$ = 27 V          |      |          | 6.27 | V                 |
| Vo                 | Output voltage tolerance band               | Long term drift in-<br>cluded, $T_C$ >-10°C <sup>2)</sup>              | I <sub>O</sub> = 0.22.0 A                                              | 4.85 |          | 5.25 | v                 |
|                    | Idling voltage                              | I <sub>O</sub> = 0 A                                                   |                                                                        |      | 5.7      | 6.5  | v                 |
|                    | Line regulation                             | I <sub>O</sub> = 2 A                                                   | V <sub>I</sub> = 1836 V                                                |      | 22       |      | mV                |
|                    | Line regulation                             | 10 - 2 A                                                               | V <sub>I</sub> = 2436 V                                                |      | 15       |      | IIIV              |
|                    | Load regulation                             | I <sub>O</sub> = 0.22.0 A, V <sub>I</sub> = 27 V                       |                                                                        | 104  | 119      | 213  | mV                |
| t <sub>tr</sub>    | Load transient recovery time                | I <sub>O</sub> = 0.22.0 A, V <sub>I</sub> = 3                          | 27.1/                                                                  |      | 400      |      | μs                |
| V <sub>tr</sub>    | Load transient veltage                      | load step = 1 A                                                        |                                                                        |      | +200     |      | mV                |
| Vtr                | Load transient voltage                      |                                                                        |                                                                        |      | -200     |      | mV                |
| T <sub>coeff</sub> | Temperature coefficient <sup>2)</sup>       | $I_{\rm O} = 2$ A, $T_{\rm C} = 4090$                                  | °C                                                                     |      | -0.34    |      | mV/°C             |
| t <sub>r</sub>     | Ramp-up time                                | I <sub>O</sub> =2 A, 0.10.9 × V                                        | loi                                                                    |      | 2        |      | ms                |
| ts                 | Start-up time                               | $I_O = 0.22.0 \text{ A}, V_I = 2$<br>From V <sub>I</sub> connection to |                                                                        |      | 3        |      | ms                |
| IO                 | Output current                              |                                                                        |                                                                        | 0    |          | 2    | А                 |
| P <sub>O</sub> max | Max output power <sup>2)</sup>              | Calculated value                                                       |                                                                        | 10   |          |      | w                 |
| l <sub>lim</sub>   | Current limiting threshold                  | $T_C < T_C max, V_O = 4 V$                                             | $T_C < T_C max$ , $V_O = 4 V$                                          |      | 2.38     | 2.47 | А                 |
| I <sub>sc</sub>    | Short circuit current                       | $V_0 = 0.2 0.5 V, T_A =$                                               | = +25°C                                                                |      | 2.4      | 3.6  | А                 |
| M                  | Output vicela 8 pairs                       |                                                                        | 20 Hz 5 MHz                                                            |      | 13       | 50   | mV <sub>p-p</sub> |
| VOac               | Output ripple & noise                       | I <sub>O</sub> = 2 A                                                   | 0.650 MHz                                                              |      |          | 80   | dBµV              |
| SVR                | Supply voltage rejection (ac)               | f = 100 Hz sine wave<br>(SVR = 20 log (1 Vp-p                          | e, 1 V <sub>P</sub> -p, V <sub>I</sub> = 27 V<br>/V <sub>Op-p</sub> )) |      | 50       |      | dB                |

See also Operating Information.
See also Typical Characteristics.

### Miscellaneous

| Characte                         | Characteristics Conditions |                      | min                   | typ | max | Unit |    |
|----------------------------------|----------------------------|----------------------|-----------------------|-----|-----|------|----|
| n Efficiency                     | Efficiency                 |                      | V <sub>I</sub> = 24 V | 81  | 83  |      | %  |
| "                                | η Efficiency               |                      | V <sub>I</sub> = 27 V | 78  | 82  |      | 70 |
|                                  |                            | I <sub>0</sub> = 2 A | V <sub>I</sub> = 24 V |     | 2.1 | 2.4  | w  |
| P <sub>d</sub> Power dissipation | Power dissipation          |                      | V <sub>1</sub> = 27 V |     | 2.2 | 2.9  | vv |

## PKF 2113 PI, SI

 $T_C = -30...+95^{\circ}C$ ,  $V_I = 18...36V$  and pin 8 connected to pin 9 unless otherwise specified.

## Output

| Ohamaa             |                                             | Ogenditions                                                         |                                                                          |       | Output 1 |       |                   |
|--------------------|---------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|-------|----------|-------|-------------------|
| Charact            | teristics                                   | Conditions                                                          |                                                                          | min   | typ      | max   | – Unit            |
| V <sub>Oi</sub>    | Output voltage initial setting and accuracy | T 125°C la                                                          | 0.84.14 - 27.14                                                          | 11.94 | 12.00    | 12.06 | V                 |
|                    | Output adjust range <sup>1)</sup>           | $1_{\rm C} = +25$ C, $1_{\rm O} = 1$                                | $T_{C} = +25 \text{ °C}, I_{O} = 0.8A, V_{I} = 27 \text{ V}$             |       |          | 15.0  | v                 |
| Vo                 | Output voltage tolerance band               | Long term drift included                                            | I <sub>O</sub> = 0.11.0 A                                                | 11.6  |          | 12.6  | V                 |
|                    | Idling voltage                              | I <sub>O</sub> = 0 A                                                |                                                                          |       | 13.4     | 16.3  | V                 |
|                    | Line regulation                             | I <sub>O</sub> = 1 A                                                | V <sub>I</sub> = 1836 V                                                  |       | 33       |       | mV                |
|                    | Load regulation                             | I <sub>O</sub> = 0.11.0 A, V <sub>I</sub> =                         | = 27 V                                                                   |       | 224      |       | mV                |
| t <sub>tr</sub>    | Load transient recovery time                | I <sub>O</sub> = 0.1 1.0 A, V                                       | 4 – 27 V                                                                 |       | 760      |       | μs                |
| V <sub>tr</sub>    |                                             | load step = 0.5 A                                                   | -27 V                                                                    |       | +120     |       | mV                |
| vtr                | V <sub>tr</sub> Load transient voltage      |                                                                     |                                                                          |       | -120     |       | mV                |
| T <sub>coeff</sub> | Temperature coefficient <sup>2)</sup>       | $I_0 = 1 \text{ A}, T_C = 409$                                      | 90 °C                                                                    |       | 0        |       | mV/°C             |
| t <sub>r</sub>     | Ramp-up time                                | I <sub>O</sub> = 1 A, 0.1 0.9                                       | V × V <sub>Oi</sub>                                                      |       | 2.3      |       | ms                |
| ts                 | Start-up time                               | $I_O = 0.1$ 1.0 A, V <sub>I</sub><br>From V <sub>I</sub> connection |                                                                          |       | 3.1      |       | ms                |
| I <sub>O</sub>     | Output current                              |                                                                     |                                                                          | 0     |          | 1     | A                 |
| P <sub>O</sub> max | Max output power <sup>2)</sup>              | Calculated value                                                    |                                                                          | 12    |          |       | w                 |
| l <sub>lim</sub>   | Current limiting threshold                  | $T_C < T_C max, V_O = 9.6$                                          | γV                                                                       |       | 1.4      |       | А                 |
| I <sub>sc</sub>    | Short circuit current                       | $V_{O} = 0.2 \dots 0.5 V$ , $T_{A} = +25 \degree C$                 |                                                                          |       | 2.1      |       | A                 |
| M                  |                                             |                                                                     | 20 Hz 5 MHz                                                              |       | 15       | 50    | mV <sub>p-p</sub> |
| VOac               |                                             |                                                                     | 0.650 MHz                                                                |       |          | 80    | dBµV              |
| SVR                | Supply voltage rejection (ac)               |                                                                     | f = 100 Hz sine wave, 1 Vp-p, VI = 27 V<br>(SVR = 20 log (1 Vp-p/Vop-p)) |       | 50       |       | dB                |

See also Operating Information.
See also Typical Characteristics.

#### Miscellaneous

| Characte     | Characteristics Conditions       |                      | min                   | typ | max | Unit |    |
|--------------|----------------------------------|----------------------|-----------------------|-----|-----|------|----|
| n Efficiency | Efficiency                       |                      | V <sub>1</sub> = 24 V | 83  | 86  |      | %  |
| "            | η Efficiency                     |                      | V <sub>1</sub> = 27 V | 83  | 86  |      | 70 |
|              | P <sub>d</sub> Power dissipation | I <sub>0</sub> = 1 A | V <sub>1</sub> = 24 V |     | 2   | 2.5  | w  |
| Pd           |                                  |                      | V <sub>I</sub> = 27 V |     | 2   | 2.5  | vv |

# PKF 2610A PI, SI

 $T_C = -30...+95^{\circ}C$ ,  $V_I = 18...36V$  and pin 8 connected to pin 9 unless otherwise specified.

### Output

| Charren            | toviation                                   | Canditiona                                                        |                                                                           |      | Output 1 |      |                   |
|--------------------|---------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|------|----------|------|-------------------|
| Charac             | teristics                                   | Conditions                                                        |                                                                           |      | typ      | max  | - Unit            |
| V <sub>Oi</sub>    | Output voltage initial setting and accuracy | T <sub>C</sub> = +25 °C, I <sub>O</sub> =                         | 104 1/- 27 1/                                                             | 3.27 | 3.30     | 3.33 | v                 |
|                    | Output adjust range <sup>1)</sup>           | - 10 - +20 0, 10 -                                                | 1.0 A, VI - 27 V                                                          | 1.80 |          | 3.80 | V                 |
| Vo                 | Output voltage tolerance band               | Long term drift included                                          | I <sub>O</sub> = 0.22.0 A                                                 | 3.17 |          | 3.43 | v                 |
|                    | Idling voltage                              | I <sub>O</sub> = 0 A                                              | I <sub>O</sub> = 0 A                                                      |      | 3.8      | 4.0  | V                 |
|                    | Line regulation                             | I <sub>O</sub> = 2 A                                              | V <sub>I</sub> = 1836 V                                                   |      | 50       |      | mV                |
|                    | Line regulation                             | 10 - 2 A                                                          | V <sub>I</sub> = 2736 V                                                   |      | 35       |      |                   |
|                    | Load regulation                             | I <sub>O</sub> = 0.22.0 A, V <sub>I</sub> = 27 V                  |                                                                           |      | 120      |      | mV                |
| t <sub>tr</sub>    | Load transient recovery time                | - I <sub>O</sub> = 0.22.0 A, V <sub>I</sub>                       | - 27 V                                                                    |      | 100      |      | μs                |
| V <sub>tr</sub>    | Load transient voltage                      | load step = 1 A                                                   |                                                                           |      | +180     |      | mV                |
| Vtr                | Load transient voltage                      |                                                                   |                                                                           |      | -180     |      | mV                |
| T <sub>coeff</sub> | Temperature coefficient <sup>2)</sup>       | $I_{\rm O} = 2$ A, $T_{\rm C} = 409$                              | 90 °C                                                                     |      | -0.55    |      | mV/°C             |
| t <sub>r</sub>     | Ramp-up time                                | I <sub>O</sub> = 2 A, 0.1 0.9                                     | 9 × V <sub>Oi</sub>                                                       |      | 2.3      |      | ms                |
| ts                 | Start-up time                               | $I_O = 0.22.0 \text{ A}, V_I =$<br>From V <sub>I</sub> connection |                                                                           |      | 4.4      |      | ms                |
| lo                 | Output current                              |                                                                   |                                                                           | 0    |          | 2    | A                 |
| P <sub>Omax</sub>  | Max output power <sup>2)</sup>              | Calculated value                                                  |                                                                           | 6.6  |          |      | w                 |
| l <sub>lim</sub>   | Current limiting threshold                  | T <sub>C</sub> < T <sub>C</sub> max                               | T <sub>C</sub> < T <sub>C</sub> max                                       |      |          | 2.6  | A                 |
| I <sub>sc</sub>    | Short circuit current                       | $V_O = 0.2 \dots 0.5 V$ , $T_A = +25 °C$                          |                                                                           |      | 2.9      |      | A                 |
| M                  | Output ripple 8 pains                       | 1 0 4                                                             | 20 Hz 5 MHz                                                               |      | 15       | 50   | mV <sub>p-p</sub> |
| V <sub>O</sub> ac  | Output ripple & noise                       | I <sub>O</sub> = 2 A                                              | 20 Hz50 MHz                                                               |      |          | 80   | dBμV              |
| SVR                | Supply voltage rejection (ac)               | f = 100 Hz sine wa<br>(SVR = 20 log (1 Vp                         | ve, 1 V <sub>P</sub> -p, V <sub>I</sub> = 27 V<br>-p/V <sub>OP</sub> -p)) |      | 63       |      | dB                |

See also Operating Information.
See also Typical Characteristics.

### Miscellaneous

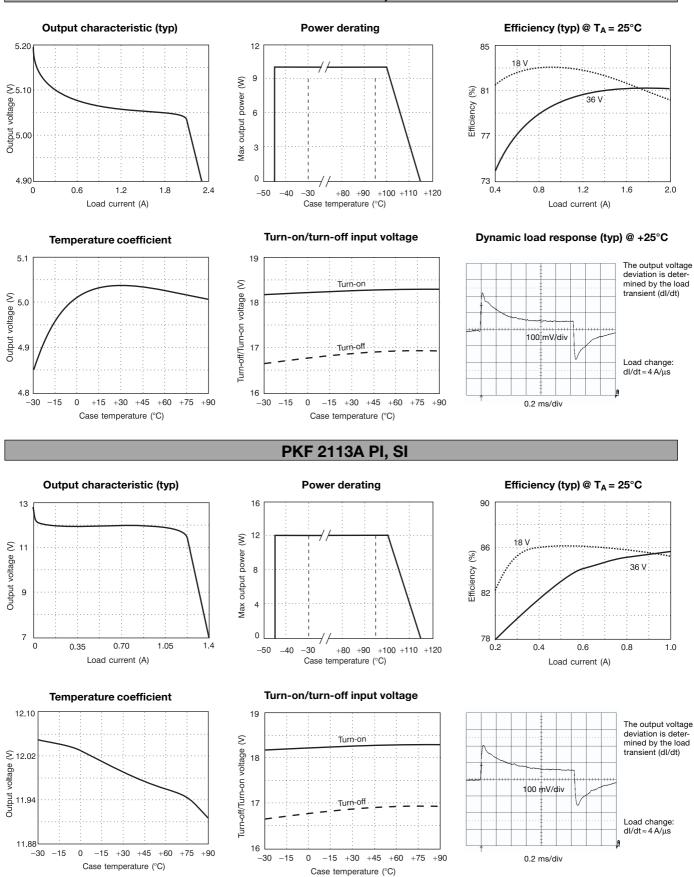
| Characteristics |                   | Conditions                                  | min | typ | max | Unit |
|-----------------|-------------------|---------------------------------------------|-----|-----|-----|------|
| η               | Efficiency        | I <sub>O</sub> = 2 A, V <sub>I</sub> = 27 V | 76  | 81  |     | %    |
| Pd              | Power dissipation | I <sub>O</sub> = 2 A, V <sub>I</sub> = 27 V |     | 1.6 | 2.1 | W    |

# **PKF 2611 PI, SI**

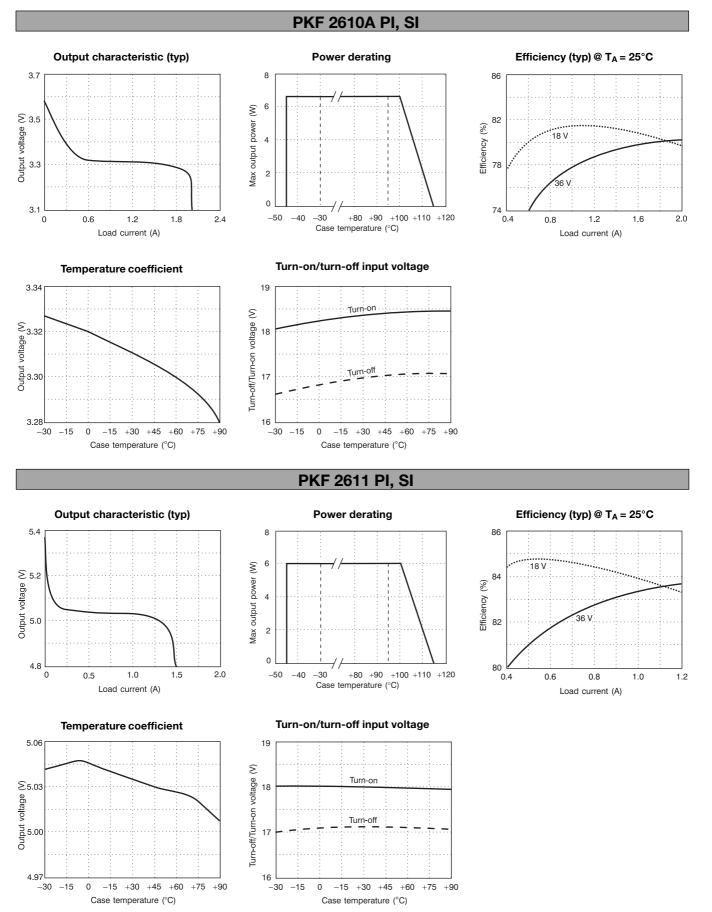
 $T_C = -30...+95^{\circ}C$ ,  $V_I = 18...36V$  and pin 8 connected to pin 9 unless otherwise specified.

### Output

| 01                 |                                             | Oracilitiens                                                   |                                                                                                                   |      | Output 1 |      | 11                |
|--------------------|---------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------|----------|------|-------------------|
| Charact            | ieristics                                   | Conditions                                                     |                                                                                                                   | min  | typ      | max  | - Unit            |
| V <sub>Oi</sub>    | Output voltage initial setting and accuracy | T <sub>C</sub> = +25 °C, I <sub>O</sub> =                      | 0.5 4 14 - 27 14                                                                                                  | 5.02 | 5.05     | 5.08 | v                 |
|                    | Output adjust range <sup>1)</sup>           | 10 = +25 0, 10 =                                               | 0.3  A,  V = 27  V                                                                                                | 4.30 |          | 5.80 | V                 |
| Vo                 | Output voltage tolerance band               | Long term drift included                                       | l <sub>O</sub> = 0.121.2 A                                                                                        | 4.85 |          | 5.25 | V                 |
|                    | Idling voltage                              | I <sub>O</sub> = 0 A                                           | I <sub>O</sub> = 0 A                                                                                              |      | 5.8      |      | V                 |
|                    | Line regulation                             | I <sub>O</sub> = 1.2 A                                         | V <sub>I</sub> = 1836 V                                                                                           |      | 30       |      | mV                |
|                    |                                             | 10 = 1.2 A                                                     | V <sub>I</sub> = 2736 V                                                                                           |      | 10       |      |                   |
|                    | Load regulation                             | I <sub>O</sub> = 0.121.2 A, V <sub>I</sub> = 27 V              |                                                                                                                   |      | 125      |      | mV                |
| t <sub>tr</sub>    | Load transient recovery time                | - I <sub>Ω</sub> = 0.121.2 A, \                                | 4 – 27 V                                                                                                          |      | 50       |      | μs                |
| M                  |                                             | load step = $0.6 \text{ A}$                                    |                                                                                                                   |      | +100     |      | mV                |
| Vtr                | Load transient voltage                      |                                                                |                                                                                                                   |      | -100     |      | mV                |
| T <sub>coeff</sub> | Temperature coefficient <sup>2)</sup>       | $I_0 = 1.2 \text{ A}, T_C = 40.$                               | 90 °C                                                                                                             |      | -0.8     |      | mV/°C             |
| t <sub>r</sub>     | Ramp-up time                                | I <sub>O</sub> = 1.2 A, 0.1 (                                  | 0.9 × V <sub>Oi</sub>                                                                                             |      | 2.3      |      | ms                |
| ts                 | Start-up time                               | $I_O = 0.121.2 \text{ A, V}$<br>From V <sub>I</sub> connection |                                                                                                                   |      | 4.6      |      | ms                |
| lo                 | Output current                              |                                                                |                                                                                                                   | 0    |          | 1.2  | A                 |
| P <sub>Omax</sub>  | Max output power <sup>2)</sup>              | Calculated value                                               |                                                                                                                   | 6    |          |      | w                 |
| l <sub>lim</sub>   | Current limiting threshold                  | T <sub>C</sub> < T <sub>C</sub> max                            | T <sub>C</sub> < T <sub>C</sub> max                                                                               |      | 1.6      | 2.4  | A                 |
| l <sub>sc</sub>    | Short circuit current                       | V <sub>O</sub> = 0.2 0.5 V, 1                                  | <sub>A</sub> = +25 °C                                                                                             |      | 2.0      |      | A                 |
| Vaac               |                                             | la = 1.2 A                                                     | 20 Hz 5 MHz                                                                                                       |      | 20       | 70   | mV <sub>p-p</sub> |
| V <sub>Oac</sub>   |                                             |                                                                | 20 Hz50 MHz                                                                                                       |      |          | 80   | dBμV              |
| SVR                | Supply voltage rejection (ac)               | f = 100 Hz sine wa<br>(SVR = 20 log (1 Vp                      | ve, 1 V <sub>P</sub> - <sub>p</sub> , V <sub>I</sub> = 27 V<br>- <sub>p</sub> /V <sub>O p</sub> - <sub>p</sub> )) |      | 60       |      | dB                |

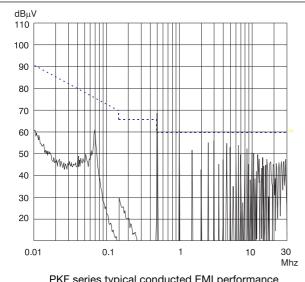

See also Operating Information.
See also Typical Characteristics.

## Miscellaneous


| Characteristics |                   | Conditions                                    | min | typ | max | Unit |
|-----------------|-------------------|-----------------------------------------------|-----|-----|-----|------|
| η               | Efficiency        | I <sub>O</sub> = 1.2 A, V <sub>I</sub> = 27 V | 79  | 83  |     | %    |
| Pd              | Power dissipation | $I_0 = 1.2 \text{ A}, V_l = 27 \text{ V}$     |     | 1.2 | 1.6 | W    |

## **Typical Characteristics**

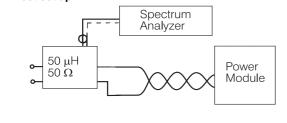
## **PKF 2111A PI, SI**




# **Typical Characteristics**



# **EMC** Specifications


The fundamental switching frequency is 510 kHz ±10 kHz.



### Conducted EMI (input teminals)

#### PKF series typical conducted EMI performance

#### Test set up



The PKF meets class A in VDE 0871/0878, FCC Part 15J, and CISPR 22 (EN 55022), except for the fundamental switching frequency.

### Radiated EMI

Radiated emission of electromagnetic fields is measured at 10 m distance.

| 30100 MHz    | 60 dB µV/m                    |
|--------------|-------------------------------|
| 100200 MHz   | $40 \text{ dB} \mu\text{V/m}$ |
| 200230 MHz   | 30 dB µV/m                    |
| 2301,000 MHz | 35 dB µV/m                    |
| 110 GHz      | 46 dB µV/m                    |

#### Conducted EMS

Electro Magnetic Susceptibility is measured by injection of electrical disturbances on the input terminals. No deviation outside the Vo tolerance band will occur under the following conditions:

Frequency range Voltage level 0.15...300 MHz 1.0 Vrms

The signal is amplitude modulated with 1 kHz/80% and applied in differential and common mode.

### **Radiated EMS (Electro-Magnetic Fields)**

Radiated EMS is measured according to test methods in IEC Standard publ. 801-3. No deviation outside the Vo tolerance band will occur under the following conditions:

| Frequency range | Voltage level |
|-----------------|---------------|
| 0.01200 MHz     | 3 Vrms/m      |
| 2001,000 MHz    | 3 Vrms/m      |
| 112 GHz         | 10 Vrms/m     |

#### ESD

Electro Static Discharge is tested according to IEC publ. 801-2. No destruction will occur if the following voltage levels are applied to any of the terminal pins:

Test Voltage level  $\pm 4 \ kV$ Air discharge Contact discharge ±2 kV

#### EFT

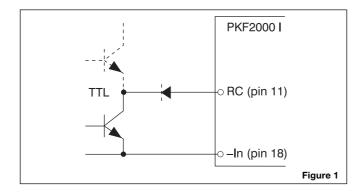
Electrical Fast Transients on the input terminals could affect the output voltage regulation causing functional errors on the Printed Board Assembly (PBA). The PKF power module withstand EFT levels of 0.5 kV keeping Vo within the tolerance band and 2.0 kV without destruction. Tested according to IEC publ. 801-4.

#### Output Ripple & Noise (Voac)

Output ripple is measured as the peak to peak voltage of the fundamental switching frequency.

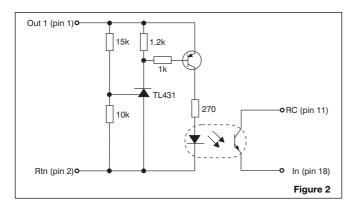
## **Operating Information**

#### **Fuse Considerations**


To prevent excessive current from flowing through the input supply line, in the case of a short-circuit across the converter input, and external fuse should be installed in the non-earthed input supply line. We recommend using a fuse rated at approximately 2 to 4 times the value calculated in the formula below:

$$I_{in}max = \frac{P_{Omax}}{(\eta_{min} \times V_{Imin})}$$

Refer to the fuse manufacturer for further information.


#### **Remote Control (RC)**

Turn-on or turn-off can be realized by using the RC-pin. Normal operation is achieved if pin 11 is open (NC). If pin 11 is connected to pin 18 the power module turns off. To ensure safe turn-off the voltage difference between pin 11 and 18 shall be less than 1.0 V. RC is TTL open collector compatible output with a sink capacity >300  $\mu$ A (see fig. 1).



#### **Over Voltage Protection (OVP)**

The remote control can be utilized also for OVP by using the external circuitry in figure 2. Resistor values are for 5 V output applications, but can easily be adjusted for other output voltages and the desired OVP level.



#### Turn-on/off Input Voltage

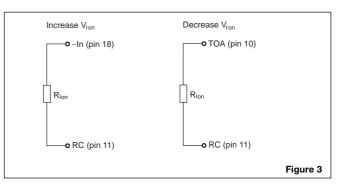
The power module monitors the input voltage and will turn on and off at predetermined levels. Typical turn-on level (without any external resistor) is 18.4 V and the typical turn-off level is 17.0 V, a slight deviation can occur due to tolerances in the manufacturing process. These levels can be adjusted by means of external resistors.

Preliminary Data Sheet EN/LZT 137 21 R6 © Ericsson Components AB, September 1999

To increase  $V_{Ion}$  a resistor should be connected between pin 11 and 18 (see fig. 3).

The resistance is given by the following equation (For  $V_{Ion}{>}18.4~\mbox{V}){:}$ 

 $R_{Ion} = (k_1 - V_{Ion})/(V_{Ion} - k_2) \ k\Omega$ 


where k2 is the typical unadjusted turn-on input voltage (V).

To decrease  $V_{Ion}$  a resistor should be connected between pin 10 and 11 (see fig. 3). The resistance is given by the following equation (for  $17.0 \text{ V} < V_{Ion} > 18.3 \text{ V}$ :

 $R_{Ion} = k_3 \times (V_{Ion} - k_4)/(k_2 - V_{Ion}) \ k\Omega$ 

| $\mathbf{k}_1$ | $k_2$ | $\mathbf{k}_3$ | $\mathbf{k}_4$ |                      |
|----------------|-------|----------------|----------------|----------------------|
| 1020           | 18.3  | 22             | 16.9           | PKF 2111A, PKF 2113A |
| 1020           | 18.4  | 27             | 17.0           | PKF 2610A            |
| 1020           | 18.4  | 25             | 17.0           | PKF 2611             |

Turn-off level.  $V_{Ioff}$  is the adjusted turn-off level and is determined by the following equation:  $V_{Ioff} = V_{Ion} - 1.5V$  (typical value).



#### Output Voltage Adjust (Vadj)

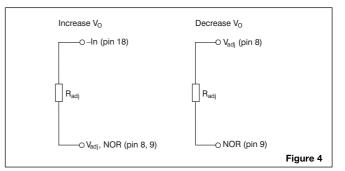
Output voltage, V<sub>O</sub>, can be adjusted by using an external resistor. Typical adjust range is  $\pm$  15%. If pin 8 and 9 is not connected together the output will decrease to a low value. To increase V<sub>O</sub> a resistor should be connected between pin 8/9 and 18, and to decrease V<sub>O</sub> a resistor should be connected between pin 8 and 9 (see fig. 4).

Typical required resistor value to increase Vo is given by:

 $R_{adj} = k_5 \times (k_6 - V_O)/(V_O - V_{Oi}) k\Omega$ 

where V<sub>O</sub> is the desired output voltage,

V<sub>Oi</sub> is the typical output voltage initial setting


| and | k <sub>5</sub> = 4.2 | k <sub>6</sub> = 6.27 V | PKF 2111A |
|-----|----------------------|-------------------------|-----------|
|     | k5= 4.2              | k <sub>6</sub> = 15.0 V | PKF 2113A |
|     | k5= 3.18             | k <sub>6</sub> = 3.90 V | PKF 2610A |
|     | k5= 3.18             | k <sub>6</sub> = 5.85 V | PKF 2611  |

Typical required resistor value to decrease Vo is given by:

 $R_{adj} = k_7 \times (V_{Oi} - V_O)/(V_O - k_8) k\Omega$ 

w

| ,    |                       |                         |           |
|------|-----------------------|-------------------------|-----------|
| here | k <sub>7</sub> = 18.0 | k <sub>8</sub> = 2.76 V | PKF 2111A |
|      | k7= 18.6              | k <sub>8</sub> = 6.50 V | PKF 2113A |
|      | k <sub>7</sub> = 17.2 | k <sub>8</sub> = 1.70 V | PKF 2610A |
|      | k <sub>7</sub> = 12.5 | $k_8 = 4.28 V$          | PKF 2611  |
|      |                       |                         |           |



#### **Capacitive Load**

The PKF series has no limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the start-up time. For optimum start performance we recommend maximum 100  $\mu$ F/A of I<sub>O</sub>. Connect capacitors at the point of load for best performance.

#### **Parallel Operation**

Paralleling of several converters is easily accomplished by direct connection of the output voltage terminal pins. The load regulation characteristic is specifically designed for optimal paralleling performance. Load sharing between converters will be within  $\pm 10\%$ . It is recommended not to exceed  $P_O = n \times 0.9 \times P_{Omax}$ , where  $P_{Omax}$  is the maximum converter output power and n the number of paralleled converters, not to overload any of the converters and thereby decrease the reliability performance.

### Current Limiting Protection (Ilim)

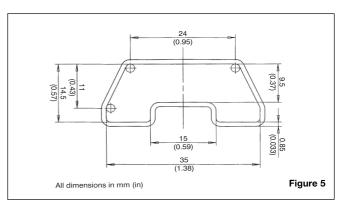
The output power is limited at loads above the output current limiting threshold  $(I_{lim})$ , specified as a minimum value.

### Synchronization (Sync)

It is possible to synchronize the switching frequency to an external symmetrical clock signal. The input is TTL-compatible and refer to the input pin 18.

| Characteristics   | min | typ | max | unit |
|-------------------|-----|-----|-----|------|
| High level        | 2.2 |     | 6.5 | v    |
| Threshold level*) | 1.2 | 1.7 | 2.2 | v    |
| Low level         | 0   |     | 0.4 | v    |
| Sink current      |     |     | 1.5 | mA   |
| Sync. frequency   | 520 |     | 688 | kHz  |

\*) Rise time <10ns

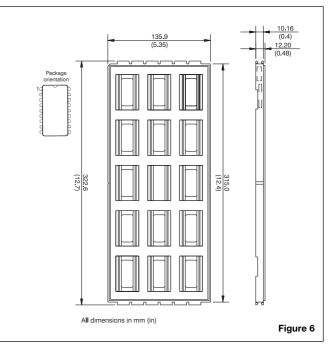

### Input and Output Impedance

Both the source impedance of the power feeding and the load impedance will interact with the impedance of the DC/DC power module. It is most important to have the ratio between L and C as low as possible, i.e. a low characteristic impedance, both at the input and output, as the power modules have a low energy storage capability. Use an electrolytic capacitor across the input if the source inductance is larger than 10  $\mu$ H. Their equivalent series resistance together with the capacitance acts as a lossless damping filter. Suitable capacitor values are in the range 10–100  $\mu$ F.

## **Delivery Package Information**

#### Tubes

The PKF-series is delivered in tubes (designated by /A) with a length of 500 mm (19.69 in), see fig. 5.



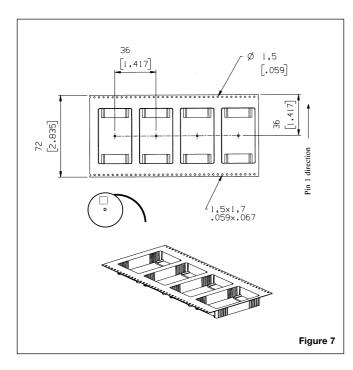

#### Specification

Material: Max surface resistance: Color: Capacity: Weight: End stops: Antistatic coated PVC  $10^{11}\Omega/\Box$ Transparent 10 power modules/tube Typ. 60 g Pins

### Trays

SMD versions, SI, can be delivered in standard JEDEC trays (designated by /B) on request, see fig. 6. For more information, please contact your local Ericsson sales office.




#### Specification

Material: 1 Max temperature: 2 Max surface resistance: 2 Color: 1

Polypropylene (PP) 125 °C 10<sup>5</sup>Ω/□ Black Capacity: Stacking pitch: Weight: Min. order quantity: 15 power modules/tray 10.16 mm Typ. 130 g 150 pcs (one box contains 10 full trays)

#### Tape & Reel

SMD versions, SI, can be delivered in standard tape & reel package (designated by /C) on request, see fig. 7. For more information, please contact your local Ericsson sales office.



#### Specification

| Tape material:          | C |
|-------------------------|---|
| Tape width:             | 7 |
| Tape pitch:             | 3 |
| Max surface resistance: | 1 |
| Tape color:             | В |
| Cover tape color:       | Т |
| Reel diameter:          | 1 |
| Reel hub diameter:      | 7 |
| Reel capacity:          | 1 |
| Full reel weight:       | Т |
| Min. order quantity:    | 3 |

Conductive polystyrene (PS) 72 mm 36 mm 10<sup>5</sup>Ω/□ Black Fransparent 13" 7" 150 power modules/reel Fyp. 3.7 kg 300 pcs (one box contains two reels)

## Quality

#### Reliability

Meantime between failure (MTBF) is calculated to >4.9 million hours at full output power and a pin temperature of +50 °C ( $T_A = +40$  °C), using the Ericsson failure rate data system. The Ericsson failure rate data system is based on field failure rates and is continously updated. The data correspond to actual failure rates of component used in Information Technology and Telecom equipment in temperature controlled environments ( $T_A = -5...+65$  °C). The data is considered to have a confidence level of 90%. For more information see Design Note 002.

#### **Quality Statement**

The products are designed and manufactured in an industrial environment where quality systems and methods like ISO 9000,  $6\,\sigma$  and SPC, are intensively in use to boost the continuous improvements strategy. Infant mortality or early failures in the products are screened out by a burn-in procedure and an ATE-based final test. Conservative design rules, design reviews and product qualifications, plus the high competence of an engaged work force, contribute to the high quality of our products.

#### Warranty

Ericsson Components warrants to the original purchaser or end user that the products conform to this Data Sheet and are free from material and workmanship defects for a period of five (5) years from the date of manufacture, if the product is used within specified conditions and not opened. In case the product is discontinued, claims will be accepted up to three (3) years from the date of the discontinuation. For additional details on this limited warranty please refer to Ericsson Components AB's "General Terms and Conditions of Sales", EKA 950701, or individual contract documents.

#### Limitation of liability

Ericsson Components does not make any other warranties, expressed or implied including any warranty of merchantability or fitness for a particular purpose (including, but not limited to, use in life support applications, where malfunctions of product can cause injury to a person's health or life).

#### **Product Program**

| VI   | V <sub>0</sub> /I <sub>0</sub> max                  | Po max                         | Ordering                                                    | J No.*)                                                     |
|------|-----------------------------------------------------|--------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| •1   | Output 1                                            | Fomax                          | Through-hole                                                | SMD                                                         |
| 24 V | 5 V/2.0 A<br>12 V/1.0 A<br>3.3 V/2.0 A<br>5 V/1.2 A | 10 W<br>12 W<br>6.6 W<br>6.0 W | PKF 2111A PI<br>PKF 2113A PI<br>PKF 2610A PI<br>PKF 2611 PI | PKF 2111A SI<br>PKF 2113A SI<br>PKF 2610A SI<br>PKF 2611 SI |

 $^{\scriptscriptstyle 9}$  See also Delivery Package Information

## **Energy Systems' Sales Offices:**

| Brazil:<br>Denmark:<br>Finland:<br>France: | Phone: +55 11 681 0040 Fax: +55 11 681 2051<br>Phone: +45 33 883 109 Fax: +45 33 883 105<br>Phone: +358 9 299 4098 Fax: +358 9 299 4188<br>Phone: +33 1 4083 7720 Fax: +33 1 4083 7741 |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Germany:                                   | Phone: +49 211 534 1516 Fax: +49 211 534 1525                                                                                                                                          |
| Great Britain:                             | Phone: +44 1793 488 300 Fax: +44 1793 488 301                                                                                                                                          |
| Hong Kong:                                 | Phone: +852 2590 2356 Fax: +852 2590 7152                                                                                                                                              |
| Italy:                                     | Phone: +39 02 7014 4203 Fax: +39 02 7014 4260                                                                                                                                          |
| Japan:                                     | Phone: + 81 3 5216 9091 Fax: +81 3 5216 9096                                                                                                                                           |
| Norway:                                    | Phone: +47 66 841 906 Fax: +47 66 841 909                                                                                                                                              |
| Russia:                                    | Phone: +7 095 247 6211 Fax: +7 095 247 6212                                                                                                                                            |
| Spain:                                     | Phone: +34 91 339 1858 Fax: +34 91 339 3145                                                                                                                                            |
| Sweden:                                    | Phone: +46 8 721 6258 Fax: +46 8 721 7001                                                                                                                                              |
| United States:                             | Phone: +1 888 853 6374 Fax: +1 972 583 7999                                                                                                                                            |

Information given in this data sheet is believed to be accurate and reliable. No responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Ericsson Components. These products are sold only according to Ericsson Components' general conditions of sale, unless otherwise confirmed in writing.

Specifications subject to change without notice.

Energy Systems Ericsson Components AB SE-164 81 Kista-Stockholm, Sweden Phone: +46 8 721 6258 Fax: +46 8 721 7001 Internet: www.ericsson.com/energy

## **Preliminary Data Sheet**