Advanced Specification 40A DC/DC Power Modules 48V Input; 1.8V, 2.5V, and 3.3V Outputs

- High efficiency 89% Typ at full load
- High power density, 57.9 W/in³, (3.3V @ 40A)
- Fast dynamic response, 200µs, ± 200 mVpeak Typ
- Low output ripple, 80 mVp-p Typ
- Parallelable with no external components
- Wide input voltage range (36-75V)
- 1,500Vdc isolation voltage
- Max case temperature $+100^{\circ}C$
- Designed to meet UL 1950 and EN 60950

The PKJ 4000B series represents another one of Ericsson's "industry first" achievements in the continued development of our "Third Generation" of high-density, high-efficiency power modules. This module packs 57.9 W/in³ at 89% efficiencies (3.3V @ 40A) in an industry standard half-brick package. These breakthrough features come from using the most advanced patented topology utilizing integrated magnetics and synchronous rectification on a low-resistivity multilayer PCB.

This product features fast dynamic response times and low output ripple, which are important parameters when supplying low-voltage logics. The PKJ 4000B series also is especially suited for limited board space and high dynamic load applications. Ericsson's PKJ 4000B Power Module has been designed with the converging "New Telecoms" market in mind, by specifying the input voltage range in accordance with ETSI specifications. The PKJ 4000B series also offers over-voltage protection, under-voltage protection, over-temperature protection, softstart, and is short circuit proof.

These modules are manufactured on highly automated manufacturing lines. Ericsson's world-class quality commitment is reflected in our standard five-year warranty. Ericsson Microelectronics has been an ISO 9001 certified supplier since 1991.

For a complete product program, please reference the back cover.

General

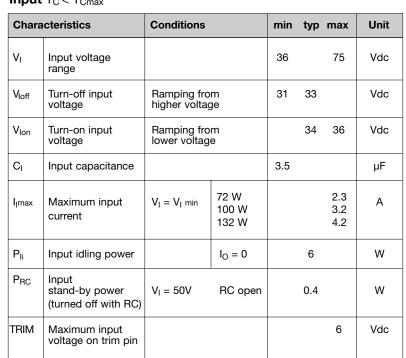
Connections

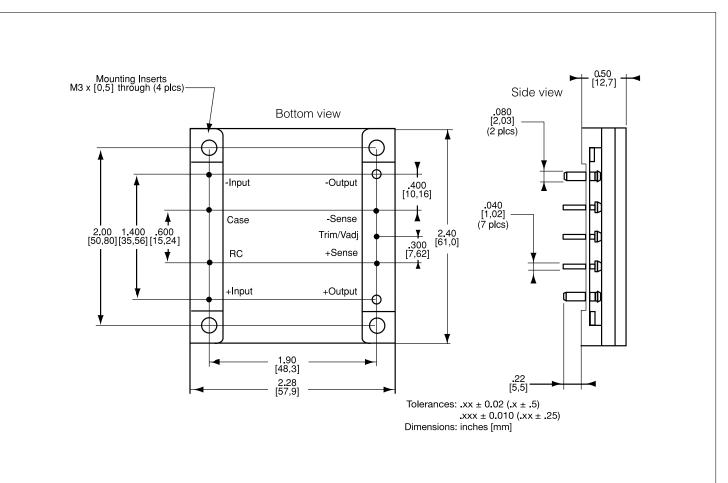
Designation	Function
-In	Negative input
Case	Connected to base plate
RC	Remote control (primary). To turn-on and turn-off the output
+ln	Positive input
-Out	Negative output
-Sen	Negative remote sense
Trim	Output voltage adjust
+Sen	Positive remote sense
+Out	Positive output

Note: If the remote sense is not needed the -Sen should be connected to -Out and +Sen should be connected to +Out.

Weight

100 grams


Case


Aluminum baseplate with metal standoffs.

Pins

Pin material: Copper Alloy Pin plating: Tin/Lead over Nickel.

Mechanical Data

Input T_C < T_{Cmax}

PKJ 4718B PIT $T_C = -40...+100^{\circ}C$, $V_I = 36...75$ V dc unless otherwise specified.

Output

Charact	teristics	Conditions		Output		
			min	min typ		Unit
V _{Oi}	Output voltage initial setting and accuracy	T_{C} = +25°C, V_{I} = 53V, I_{O} = I_{O} max	1.77	1.8	1.83	v
	Output adjust range	$I_{\rm O} = 0$ to $I_{\rm Omax}$	1.44		2.0	V
I _O	Output current		0		40	A
Vo	Output voltage tolerance band	$I_{O} = 0$ to I_{Omax}	1.71		1.89	V
	Line regulation	I _O = I _O max		5	15	mV
	Load regulation	$V_I = 53V$, $I_O = 0$ to I_{Omax}		5	15	mV
V _{tr}	Load transient voltage deviation	Load step = 0.25 x I _{Omax} dl/dt = 1A/µs		±200		mV _{peak}
t _{tr}	Load transient recovery time	_		200		μs
t _s	Start-up time	From V _I connection to V _O = 0.9 x V _{Onom}		20	30	ms
l _{lim}	Current limit threshold	$V_{O} = 0.96 V_{Onom} @ T_{C} < 100^{\circ}C$	41	46	51	A
I _{SC}	Short circuit current			50	55	A
V _{Oac}	Output ripple and noise	I _O = I _{Omax} f≤20 MHz		80	150	mVp-p
SVR	Supply voltage rejection (ac)	f<1kHz	-50			dB
OVP	Over voltage protection	Vin = 50V	2.2	2.5	2.9	v

Miscellaneous

Charact	Characteristics Conditions		min	typ	max	Unit
η	Efficiency	$T_A = +25^{\circ}C$, $V_I = 53V$, $I_O = I_Omax$		89		%
Pd	Power dissipation	$I_O = I_Omax$, $V_I = 53V$		8.9		W

Absolute Maximum Ratings

Charact	haracteristics min		min max	
TC	Case temperature @ max output power	-40	+100	C°
TS	Storage temperature	-40	+125	۵°C
VI	Continuous input voltage	-0.5	+80	Vdc
V _{ISO}	Isolation voltage (input to output test voltage)	1,500		Vdc
V _{RC}	Remote control voltage		12	Vdc
l ² t	Inrush transient		1	A ² s

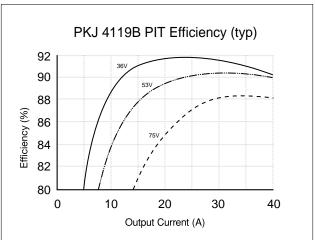
Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as "no destruction limits," are normally tested with one parameter at a time exceeding the limits of output data or electrical characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

PKJ 4119B PIT $T_C = -40...+100^{\circ}C$, $V_I = 36...75$ V dc unless otherwise specified.

Output

Charact	eristics	Conditions		Output		
			min	typ	max	Unit
V _{Oi}	Output voltage initial setting and accuracy	T_{C} = +25°C, V_{I} = 53V, I_{O} = I_{O} max	2.45	2.5	2.55	v
	Output adjust range	I _O = 0 to I _O max	2.0		2.75	V
I _O	Output current		0		40	A
Vo	Output voltage tolerance band	$I_{\rm O} = 0$ to $I_{\rm Omax}$	2.38		2.63	V
	Line regulation	I _O = I _O max		5	15	mV
	Load regulation	$V_{I} = 53V$, $I_{O} = 0$ to I_{Omax}		5	15	mV
V _{tr}	Load transient voltage deviation	Load step = 0.25 x I _{Omax} dI/dt = 1A/µs		±200		mV _{peak}
t _{tr}	Load transient recovery time			200		μs
t _s	Start-up time	From V _I connection to V _O = 0.9 x V _{Onom}		20	30	ms
l _{lim}	Current limit threshold	V _O = 0.96 V _{Onom} @ T _C <100°C	41	46	51	A
I _{SC}	Short circuit current			50	55	A
V _{Oac}	Output ripple and noise	$I_{O} = I_{Omax} f \le 20 \text{ MHz}$		80	150	mVp-p
SVR	Supply voltage rejection (ac)	f<1kHz	-50			dB
OVP	Over voltage protection	Vin = 50V	3.0	3.3	3.9	V

Miscellaneous


Chara	Characteristics Conditions		min	typ	max	Unit
η	Efficiency	$T_A = +25^{\circ}C, V_I = 53V, I_O = I_Omax$		89		%
Pd	Power dissipation	I _O = I _{Omax} , V _I = 53V		12.4		W

Absolute Maximum Ratings

Cha	Characteristics		max	Unit
T _C	Case temperature @ max output power	-40	+100	°C
Τ _S	Storage temperature	-40	+125	°C
VI	Continuous input voltage	-0.5	+80	Vdc
V _{ISO}	Isolation voltage (input to output test voltage)	1,500		Vdc
V _{RC}	Remote control voltage		12	Vdc
l ² t	Inrush transient		1	A ² s

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as "no destruction limits," are normally tested with one parameter at a time exceeding the limits of output data or electrical characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Thermal Data

PKJ 4110B PIT $T_C = -40...+100^{\circ}C$, $V_I = 36...75$ V dc unless otherwise specified.

Output

Charact	teristics	Conditions		Output		
			min	typ	max	Unit
V _{Oi}	Output voltage initial setting and accuracy	T_{C} = +25°C, V_{I} = 53V, I_{O} = I_{O} max	3.25	3.30	3.35	v
	Output adjust range	I _O = 0 to I _O max	2.64		3.63	V
lo	Output current		0		40	A
Vo	Output voltage tolerance band	$I_{O} = 0$ to I_{O} max	3.2		3.4	V
	Line regulation	I _O = I _O max		5	15	mV
	Load regulation	$V_I = 53V$, $I_O = 0$ to I_{Omax}		5	15	mV
V _{tr}	Load transient voltage deviation	Load step = 0.25 x I _{Omax} dl/dt = 1A/µs		±200		mV _{peak}
t _{tr}	Load transient recovery time			200		μs
ts	Start-up time	From V _I connection to V _O = 0.9 x V _O nom		20	30	ms
l _{lim}	Current limit threshold	V _O = 0.96 V _{Onom} @ T _C <100°C	41	46	51	A
I _{SC}	Short circuit current			50	55	A
V _{Oac}	Output ripple and noise	I _O = I _{Omax} f≤20 MHz		80	150	mVp-p
SVR	Supply voltage rejection (ac)	f<1kHz	-50			dB
OVP	Over voltage protection	Vin = 50V	3.9	4.4	5.0	V

Miscellaneous

Charac	Characteristics Conditions		min	typ	max	Unit
η	Efficiency	$T_A = +25^{\circ}C, V_I = 53V, I_O = I_Omax$		89		%
Pd	Power dissipation	$I_O = I_Omax$, $V_I = 53V$		16.3		W

Absolute Maximum Ratings

Characte	eristics	min	max	Unit
тс	Case temperature @ max output power	-40	+100	٦°
TS	Storage temperature	-40	+125	°C
VI	Continuous input voltage	-0.5	+80	Vdc
VISO	Isolation voltage (input to output test voltage)	1,500		Vdc
VRC	Remote control voltage		12	Vdc
l2t	Inrush transient		1	A2s

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as "no destruction limits," are normally tested with one parameter at a time exceeding the limits of output data or electrical characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Product Program

Vi	V _O /I _O	Pomax	Ordering Number
48/60 V	1.8V/40A	72W	PKJ 4718B PIT
48/60 V	2.5V/40A	100W	PKJ 4119B PIT
48/60 V	3.3V/40A	132W	PKJ 4110B PIT

The PKJ 4000B DC/DC power modules will be available with the different options listed in the Product Options table.

Please check with the factory for availability.

Product Options

Option	Suffix	Example
Negative remote on/off logic Industry Standard Trim, (i.e. V _{out} Adjust)	-	PKJ 4110B PIT
Positive remote on/off logic	Р	PKJ 4110B PIPT
Lead length of 0.145" ± 0.010"	LA	PKJ 4110B PITLA

Ericsson Microelectronics' Sales Offices:

Finland:Phone: +358 9 299 4098Fax: +358 9 299 4188to be accurat assumed for any infringer third partiesFrance:Phone: +33 1 4083 7720Fax: +33 1 4083 7741assumed for any infringer third partiesGermany:Phone: +49 211 534 1516Fax: +49 211 534 1525third parties third partiesGreat Britain:Phone: +44 1793 488 300Fax: +44 1793 488 301license is gra under any pa Inc. These pa Ericsson Inc.Hong Kong:Phone: +852 2590 2356Fax: +852 2590 7152under any pa Inc. These pa Ericsson Inc.Japan:Phone: +81 3 5216 9091Fax: +81 3 5216 9096otherwise content to revision we to revision w				
	Denmark: Finland: France: Germany: Great Britain: Hong Kong: Italy: Japan: Norway: Russia: Spain: Sweden:	Phone: +45 33 883 109 Phone: +358 9 299 4098 Phone: +358 9 299 4098 Phone: +33 1 4083 7720 Phone: +49 211 534 1516 Phone: +44 1793 488 300 Phone: +852 2590 2356 Phone: +39 2 7014 4203 Phone: +39 2 7014 4203 Phone: +81 3 5216 9091 Phone: +47 66 841 906 Phone: +7 095 247 6211 Phone: +34 91 339 1858 Phone: +46 8 721 6258	Fax: +45 33 883 105 Fax: +358 9 299 4188 Fax: +33 1 4083 7741 Fax: +49 211 534 1525 Fax: +44 1793 488 301 Fax: +852 2590 7152 Fax: +39 2 7014 4260 Fax: +81 3 5216 9096 Fax: +47 66 841 909 Fax: +7 095 247 6212 Fax: +34 91 339 3145 Fax: +46 8 721 7001	Information g to be accurate assumed for th any infringen third parties v license is gran under any pat Inc. These pro Ericsson Inc.'s otherwise con The contents to revision w progress in de
	United States:	Phone: +1 877 374 2642	Fax: +1 972 583 8355	

Information given in this data sheet is believed to be accurate and reliable. No responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of chird parties which may result from its use. No icense is granted by implication or otherwise ander any patent or patent rights of Ericsson Inc. These products are sold only according to Ericsson Inc.'s general conditions of sale, unless otherwise confirmed in writing.

The contents of this document are subject to revision without notice due to continued progress in design and manufacturing.

Ericsson Inc. Microelectronics 701 North Glenville Drive Richardson, Texas 75081 Phone: 877-ERICMIC www.ericsson.com/micro

Advanced Specification

AE/LZT 108 3971 R2 © Ericsson Inc., April 2000