Q2S30 Series – 30A Quarter-Brick DC/DC Converter 48, 24V Input 3.3V, 2.5V, 2.0V, 1.8V, 1.5V Output

Data Sheet

Applications

- Distributed power architectures
- Telecommunications equipment
- LAN/WAN applications
- Data processing applications

Features

- Low profile (8.5mm)
- 1500 VDC input-to-output isolation meets basic insulation
- High efficiency to 90% at full load
- Start-up into high capacitive load
- Low conducted and radiated EMI
- Output overcurrent protection
- Output overvoltage protection
- Overtemperature protection
- Back drive protection
- Remote sense
- Set point accuracy ± 1%
- Remote on/off (primary referenced), positive or negative logic
- Output voltage trim adjust, positive or negative
- UL 1950 Recognized, CSA 22.2 No. 950-95 certified, TUV IEC950

Description

The new Q2S30 Series of single-output DC/DC converters offer unprecedented density and performance in an industry-standard, quarter-brick footprint. Patent pending technology combined with state-of-the-art packaging techniques allows the Q2S30 to provide 30A of output current in an 8.5mm package without a heatsink. The 100% surface mount design provides consistent high quality and reliability, and the SMT mounting option eliminates the need for separate (additional manual) operations to mount the converters to the motherboards during mass production.

	Selection Chart								
Model	Input voltage range, VDC	Input current, max, ADC	Output voltage, VDC	Output rated current, I rated ADC	Output Ripple / Noise, Typ, mV p-p	Efficiency @ I rated, Typical, %			
Q2S30ZA	36-75	1.5	1.5	30	30	83			
Q2S30ZB	36-75	1.7	1.8	30	30	85			
Q2S30ZC	36-75	1.9	2.0	30	30	85			
Q2S30ZD	36-75	2.3	2.5	30	30	87			
Q2S30ZE	36-75	3.1	3.3	30	30	88			
Q2S30YA	18-36	3.1	1.5	30	30	82			
Q2S30YB	18-36	3.6	1.8	30	30	83.5			
Q2S30YC	18-36	4.0	2.0	30	30	84.5			
Q2S30YD	18-36	4.9	2.5	30	30	86			
Q2S30YE	18-36	6.3	3.3	30	30	88			

POWEF-ONE[®]

Q2S30 Series – 30A Quarter-Brick DC/DC Converter 48, 24V Input 3.3V, 2.5V, 2.0V, 1.8V, 1.5V Output

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings may cause performance degradation, adversely effect long-term reliability, and cause permanent damage to the converter.

Parameter	Conditions/Description	Min	Max	Units
Input voltage	Continuous		75	VDC
	Per GR-513, tp = 10μs		100	VDC
Operating Temperature	At 100% load	-40	100	°C
Storage Temperature		-40	125	°C
ON/OFF Control Voltage	Referenced to -Vin		20	VDC

Environmental and Mechanical Specifications

All specifications apply over specified input voltage, output load, and temperature range, unless otherwise noted.

Parameter	Conditions/Description	Min	Nom	Max	Units
Shock	Halfsine wave, 3 axes	50			g
Sinusoidal Vibration	GR-63-Core, Section 5.A.2	1			
Weight			102(28)		Oz/g
Water Washing	Standard process		Yes		
MTBF	Telcordia TR-332, Method I Case 1		2.6		MHrs

Isolation Specifications

All specifications apply over specified input voltage, output load, and temperature range, unless otherwise noted.

Parameter	Conditions/Description	Min	Nom	Max	Units
Insulation Safety Rating			Basic		
Isolation Voltage		1500			VDC
Isolation Resistance		10			MΩ
Isolation Capacitance			230		pF

Input Specifications

All specifications apply over specified input voltage, output load, and temperature range, unless otherwise noted.

Parameter	Conditions/Description	Min	Nom	Max	Units
Input Voltage	Continuous	36	48	75	VDC
		18	24	36	
Turn-On Input Voltage	Ramping Up Vin= 36-75	33		35	VDC
	Vin = 18-36	16		17.5	
Turn-Off Input Voltage	Ramping Down Vin = 36-75	31		33	VDC
	Vin = 18-36	15		16.5	
Turn-On Time	To Output Regulation Band		2.5		ms
	100% Resistive Load				
Input Reflected Ripple Current	25 MHz Bandwidth			10	mA _{pk.pk}
Inrush Transient	Vin = Vin max			0.1	A ² s

Power-one

Q2S30 Series – 30A Quarter-Brick DC/DC Converter
48, 24V Input
3.3V, 2.5V, 2.0V, 1.8V, 1.5V Output

Output Specifications

All specifications apply over specified input voltage, output load and temperature range, unless otherwise noted.

Parameter	Conditions/Description	Min	Nom	Max	Units
Output Voltage Setpoint Accuracy	Vin=Vin.nom, Full Load	-1		1	%Vout
Output Current*		0		30	ADC
Line Regulation	Vin min to Vin max,		±2	±5	mV
	lout max				
Load Regulation	Vin=Vnom, lout min to		±2	±5	mV
	lout max				
Total Output Voltage Regulation	Over all input voltage, load,	-3		3	%Vout
	and temperature conditions				
Remote Sense Headroom***				10%	%Vout
Dynamic Regulation	50-75% load step change				
Peak Deviation	di/dt = 5 A/µs		160		mV
Settling Time	to 1% error band		100		μs
Admissible Load Capacitance	lout max, Nom Vin			30,000	μF
Output Current Limit Threshold**	Vout ≤0.97Vout nom	33	36	40	ADC
Switching Frequency			435		kHz
Over voltage Protection,	Over all input voltage and	117	122	127	%Vout
Non Latching	load conditions				
Trim Range	lout max, Vin=Vnom	-20		+10	%Vout

** Overcurrent protection is non-latching with auto recovery.

*** Vout can be increased up to 10% via the sense leads or up to 10% via the trim function, however total output voltage trim from all sources should not exceed 10% of Vout (NOM) in order to ensure specified operation of over-voltage protection circuitry.

Feature Specifications

All specifications apply over specified input voltage, output load, and temperature range, unless otherwise noted.

Parameter	Conditions/Description	Min	Nom	Max	Units
Shutdown (ON/OFF)					
Negative Logic	On/Off signal is low – converter is ON				
- Converter ON	Low logic range	-20		0.8	VDC
- Converter OFF	High logic range	2.4		20	VDC
Positive Logic	On/Off signal is low –converter is OFF				
- Converter ON	High logic range	2.4		20	VDC
- Converter OFF	Low logic range	-20		0.8	VDC
Overtemperature	Shut down		118		°C
Protection					

Q2S30 Series – 30A Quarter-Brick DC/DC Converter 48, 24V Input 3.3V, 2.5V, 2.0V, 1.8V, 1.5V Output

Data Sheet

Characteristic curves

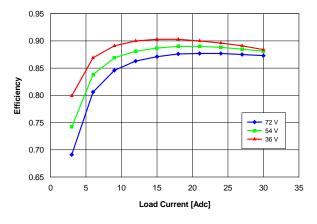
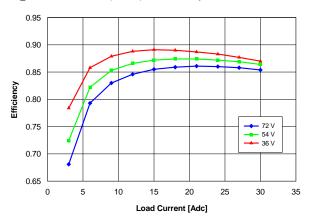
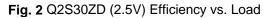




Fig .1 Q2S30ZE (3.3V) Efficiency vs. Load

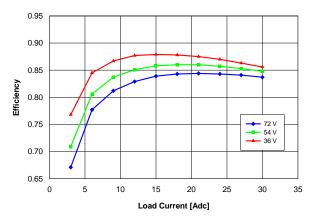


Fig. 3 Q2S30ZC (2.0V) Efficiency vs. Load

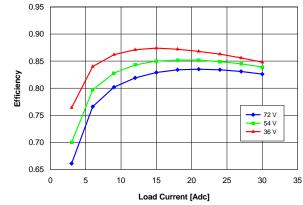


Fig. 4 Q2S30ZB (1.8V) Efficiency vs. Load

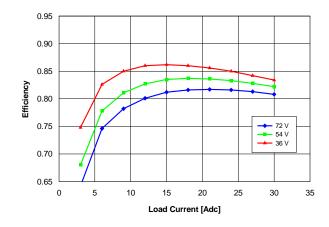


Fig. 5 Q2S30ZA (1.5V) Efficiency vs. Load

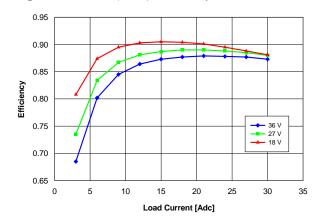


Fig. 6 Q2S30YE (3.3V) Efficiency vs. Load

Q2S30 Series – 30A Quarter-Brick DC/DC Converter 48, 24V Input 3.3V, 2.5V, 2.0V, 1.8V, 1.5V Output

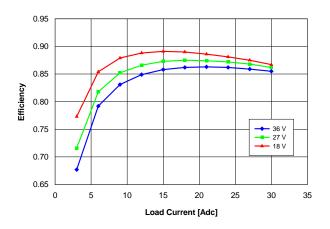
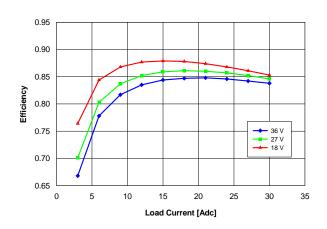



Fig. 7 Q2S30YD (2.5V) Efficiency vs. Load

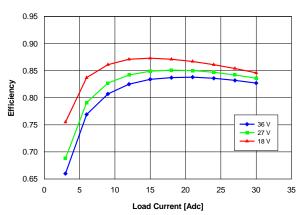


Fig. 8 Q2S30YC (2.0V) Efficiency vs. Load

Fig. 9 Q2S30YB (1.8V) Efficiency vs. Load

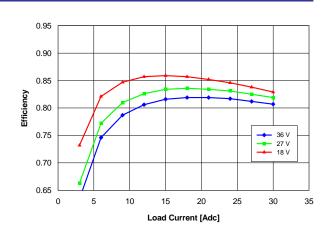


Fig. 10 Q2S30YA (1.5V) Efficiency vs. Load

Typical Application

Fig. 11 shows the recommended connections for the Q2S30 Series converter.

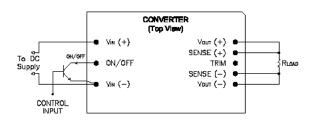


Fig. 11 Typical Application of Q2S30 Series

The Q2S30 Series converters do not require any external components for proper operation. However, if the distribution of the input voltage to the converter contains significant inductance, an input capacitor may be required to enhance performance of the converter. A minimum of a 100μ F electrolytic capacitor with the ESR<0.7 Ω is recommended for the Q2S30 series.

If magnitude of the inrush current needs to be limited, see the "Inrush Current Control Application Note" on the Power-One website at www.power-one.com.

For output decoupling we recommend using 10μ F tantalum and 1μ F ceramic capacitors connected directly across the output pins of the converter. Note that the capacitors do not substitute the filtering required by the load.

POWEF-ONE[®]

Q2S30 Series – 30A Quarter-Brick DC/DC Converter 48, 24V Input 3.3V, 2.5V, 2.0V, 1.8V, 1.5V Output

Shutdown Feature Description

The ON/OFF pin of the Q2S30 Series converters functions as a normal soft shutdown. It is referenced to the –Vin pin. With positive logic, when the ON/OFF pin is pulled low, the output is turned off and the unit goes into a very low input power mode. With negative logic, when the ON/OFF pin is pulled low, the unit is turned on.

An open collector switch is recommended to control the voltage between the ON/OFF pin and the -Vin pin of the converter. The ON/OFF pin is pulled up internally, so no external voltage source is required. The user should avoid connecting a resistor between the ON/OFF pin and the +Vin pin.

When the ON/OFF pin is used to achieve remote control, the user must take care to ensure that the pin reference for the control is really the -Vin pin. The control signal must not be referenced ahead of EMI filtering or remotely from the unit. Optically coupling the information and locating the optical coupler directly at the module will solve any of these problems.

Note:

If the ON/OFF pin is not used, it can be left floating (positive logic), or connected to the -Vin pin (negative logic).

Output Voltage Trim

The trim feature allows the user to adjust the output voltage from the nominal value. This can be used to compensate distribution drops, perform margining in production, or accommodate other requirements when output voltage needs to be adjusted from the nominal.

The converter's output voltage (at the terminals) can be adjusted up 10% or down 20% relative to the nominal output voltage by connecting the TRIM pin to sense (+) or sense (-) via a trim resistor. The Trim pin should be left open if the trimming function is not to be used.

To trim up the output voltage, a trim resistor, RT-INCR, should be connected between TRIM (Pin 6) and SENSE(+) (Pin 7), as illustrated in Fig. 12. The trim-up resistor can be calculated from:

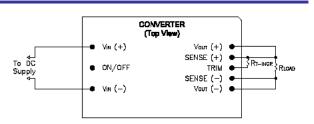
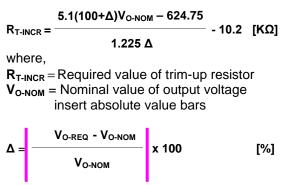



Fig. 12 Output Voltage Trim-up

Vo-REQ = Desired (trimmed) output voltage

When trimming up, care must be taken not to exceed the converter's maximum allowable output power.

To trim down the output voltage, a trim resistor, R_{T-DECR} , should be connected between TRIM (Pin 6) and SENSE(-) (Pin 5), as illustrated in Fig.13.

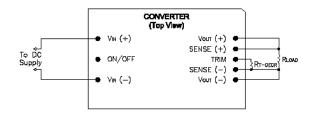


Fig. 13 Output Voltage Trim-down

The trip-down resistor can be calculated from:

$$R_{T-DECR} = \frac{510}{\Delta} - 10.2 \qquad [K\Omega]$$

where,

 $R_{T-DECR} =$. Required value of trim-down resistor and Δ is as defined above.

Q2S30 Series – 30A Quarter-Brick DC/DC Converter

48, 24V Input

3.3V, 2.5V, 2.0V, 1.8V, 1.5V Output

Data Sheet

- t₀ ON/OFF pin is ON; system front end power is toggled on, V_{IN} to converter begins to rise. t₁ V_{IN} crosses Under-Voltage Lockout
- protection circuit threshold; converter enabled. t₂ Converter begins to respond to turn-on
- t₂ Converter begins to respond to turn-on command (converter turn-on delay).
- $t_3 \qquad \mbox{Converter V}_{OUT} \mbox{ reaches 100\% of nominal value.}$

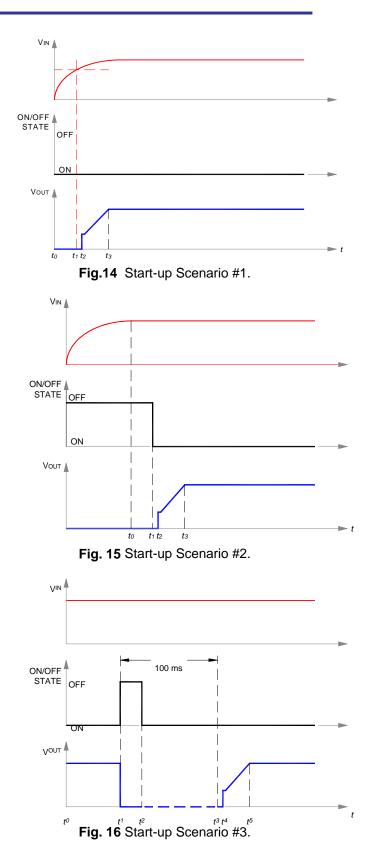
For this example, the total converter start-up time (t_3 - t_1) is typically 2.5 ms.

Scenario #2: Initial Start-up Using ON/OFF Pin With V_{IN} previously powered, converter started via ON/OFF pin. See Figure 15.

Time

- e Comments V_{INPUT} at nominal value.
- t₀ V_{INPUT} at nominal value.
 t₁ Arbitrary time when ON/OFF pin is enabled (converter enabled).
- t₂ End of converter turn-on delay.
- t_3 Converter V_{OUT} reaches 100% of nominal value.

For this example, the total converter start-up time (t_3-t_1) is typically 2.5 ms.


Scenario #3: Turn-off and Restart Using ON/OFF Pin

With V_{IN} previously powered, converter is disabled and then enabled via ON/OFF pin. See Figure 16.

Time Comments

- t_0 V_{IN} and V_{OUT} are at nominal values; ON/OFF pin ON.
- t1 ON/OFF pin arbitrarily disabled; converter output falls to zero; turn-on inhibit delay period (100 ms typical) is initiated, and ON/OFF pin action is internally inhibited.
 t2 ON/OFF pin is externally re-enabled.
 - $lf(t_2 t_1) \le 100 \text{ ms}$, external action of ON/OFF pin is locked out by start-up inhibit timer.
 - If $(t_2-t_1) > 100 \text{ ms}$, ON/OFF pin action is internally enabled.
- t₃ Turn-on inhibit delay period ends. If ON/OFF pin is ON, converter begins turn-on; if off, converter awaits ON/OFF pin ON signal; see Figure 8.
- t₄ End of converter turn-on delay.
- t₅ Converter V_{OUT} reaches 100% of nominal value.

For the condition, $(t_2-t_1) \le 100$ ms, the total converter start-up time (t_5-t_2) is typically 102.5 ms. For $(t_2-t_1) > 100$ ms, start-up will be typically 2.5 ms after release of ON/OFF pin

Destination of the second sec

Safety Considerations

The Q2S30 Series converters feature 1500 Volt DC isolation from input-to-output. The input-tooutput DC resistance is greater than 10 M Ω . These converters are provided with basic insulation between input and output circuits according to all IEC60950 based standards. Nevertheless, if the system using the converter needs to receive safety agency approval, certain rules must be followed in the design of the system. In particular, all of the creepage and clearance requirements of the end-use safety requirements must be observed. These documents include UL60950, CSA60950-00 and EN60950, although other additional requirements may be needed for user's specific applications.

The Q2S30 Series converters have no internal fuse. An external fuse must be provided to protect the system from catastrophic failure. The fuse with a rating not greater than 10A is recommended. The user can select a lower rating fuse based upon the highest inrush transient at the maximum input voltage and the maximum input current of the converter at the minimum input voltage. Both input traces and the chassis ground trace (if applicable) must be capable of conducting a current of 1.5 times the value of the fuse without opening. The fuse must not be placed in the grounded input line, if any.

In order for the output of the Q2S30 Series converter to be considered as SELV (Safety Extra Low Voltage) or TNV-1, according to all IEC60950 based standards, one of the following requirements must be met in the system design:

- If the voltage source feeding the module is SELV or TNV-2, the output of the converter may be grounded or ungrounded.
- If the voltage source feeding the module is ELV, the output of the converter may be considered SELV only if the output is grounded per the requirements of the standard.
- If the voltage source feeding the module is a Hazardous Voltage Secondary Circuit, the voltage source feeding the module must be provided with at least basic insulation between the source to the converter and any hazardous voltages. The entire system,

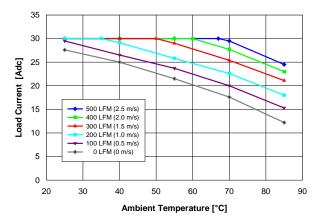
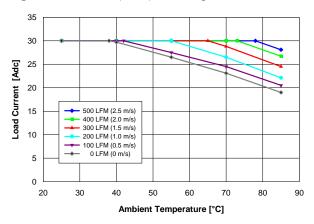
including the Q2S30 converter, must pass a dielectric withstand test for Reinforced insulation. Design of this type of systems requires expert engineering and understanding of the overall safety requirements and should be performed by qualified personnel.

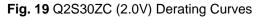
Data Sheet

Thermal Considerations

The Q2S30 Series converters are designed for natural or forced convection cooling. The maximum allowable output power of the converters is determined by meeting the derating criteria of all electronic components used in the power supplies. An example of the derating criteria for the semiconductor junction temperature is not to exceed 120 °C to provide reliable long-term operation of the converters. Note: Please contact Power-One for more derating criteria for other components.

The graphs below show the maximum output current of the Q2S30 Series converters at different ambient temperatures under both natural and forced (airflow direction from pin 1 to pin 3) convection. As an example, the Q2S30ZE operating at 50 °C can deliver 30A reliably with 300LFM forced air, while up to 30A at 60 °C reliably with 400LFM forced air.


Fig. 17 Q2S30ZE (3.3V) Derating Curves

Q2S30 Series – 30A Quarter-Brick DC/DC Converter 48, 24V Input 3.3V, 2.5V, 2.0V, 1.8V, 1.5V Output

35 30 25 Load Current [Adc] 20 500 LFM (2.5 m/s) 15 400 LFM (2.0 m/s) 300 LFM (1.5 m/s) 10 200 LFM (1.0 m/s) 100 LFM (0.5 m/s) 0 LFM (0 m/s) 5 0 70 20 30 40 60 80 90 50 Ambient Temperature [°C]

Fig. 18 Q2S30ZD (2.5V) Derating Curves

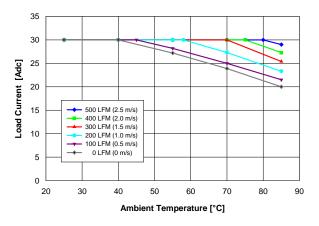


Fig. 20 Q2S30ZB (1.8V) Derating Curves

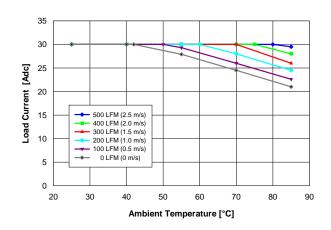


Fig. 21 Q2S30ZA (1.5V) Derating Curves

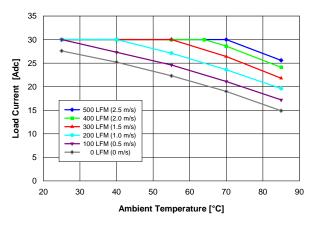


Fig. 22 Q2S30YE (3.3V) Derating Curves

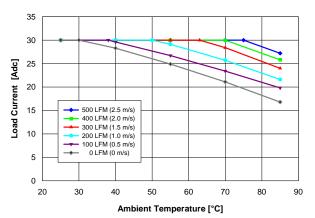


Fig. 23 Q2S30YD (2.5V) Derating Curves

Q2S30 Series – 30A Quarter-Brick DC/DC Converter 48, 24V Input 3.3V, 2.5V, 2.0V, 1.8V, 1.5V Output

35 30 25 Load Current [Adc] 20 500 LFM (2.5 m/s) 400 LFM (2.0 m/s) 300 LFM (1.5 m/s) 200 LFM (1.0 m/s) 15 10 100 LFM (0.5 m/s) 0 LFM (0 m/s) 5 0 20 30 40 50 60 70 80 90 Ambient Temperature [°C]

Fig. 24 Q2S30YC (2.0V) Derating Curves

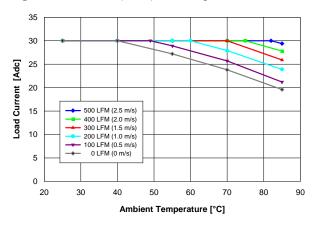


Fig. 25 Q2S30YB (1.8V) Derating Curves

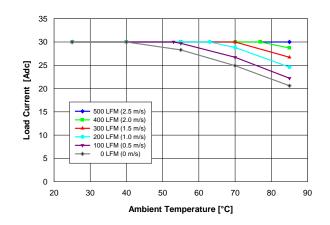
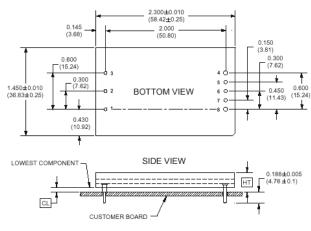
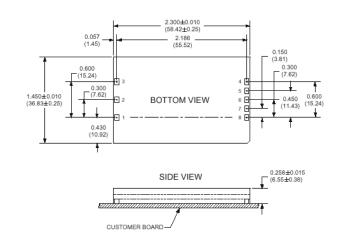




Fig. 26 Q2S30YA (1.5V) Derating Curves

Q2S30 Series – 30A Quarter-Brick DC/DC Converter 48, 24V Input 3.3V, 2.5V, 2.0V, 1.8V, 1.5V Output

MECHANICAL DRAWING Inches (mm)

Through Hole

Height option	HT (Max Height)	CL (Min Clearance)
blank	0.303 [7.69]	0.030 [0.77]
C2	0.336 [8.53]	0.063 [1.600]

- Pins 1-3 and 5-7 are 0.040" (1.02) with 0.078" (1.98) shoulder
- Pins 4 and 8 are •0.062" (1.57) without shoulder
- Pin material: Brass
- Pin Finish: Tin/Lead over Nickel
- Module Weight: 0.95 oz (27 g)

ORDERING INFORMATION

Surface Mount

PIN	CONNECTIONS			
PIN FUNCTION				
1	Vin (+)			
2	Remote ON/OFF			
3	Vin (-)			
4	Vout (-)			
5	Sense (-)			
6	Trim			
7	Sense (+)			
8	Vout (+)			

					ON/OFF			
Q2S	30	Z	G	-	Ν	M6		C2
Single Output Quarter-Brick Format	ADC	Z = 48Vin Nom. Y= 24Vin Nom.	E = 3.3VDC D = 2.5VDC C = 2.0VDC B = 1.8VDC A = 1.5VDC		N ⇒ Negative (Blank) ⇒ Positive	M6 ⇒ Surface Mount (Blank) ⇒ Through Hole	Blank \Rightarrow 0.188" $7 \Rightarrow 0.145$ " $8 \Rightarrow 0.110$ " Not valid w/M6 Option	See Chart Not Valid w/M6 Option

Example: Q2S30ZA-NM6 indicates a 1.5V output model with Negative On/Off logic in a SMT mounting package. **Notes**

1. Consult factory for the complete list of available options.

2. Power-One products are not authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written consent of the President of Power-One, Inc.

3. Specifications are subject to change without notice.