VRM64 Series **Single Output**

Input Voltage: 12VDC # of Outputs: Single

Special Features Meets AMD64 Processor specification Allows dynamic VID code changes 5 Bit VID input

- 0.8 Vdc to 1.55 Vdc in 25 mV steps
- Up to $100^{\circ} A/\mu s$ load transient • Differential remote sense for improved load regulation
- Vertical plug-in to standard motherboard connector with or without retention latch
- Output current up to 80 A continuous
- Open collector power good signal
- Monotonic turn-on and turn-off
- Fused input
- SMBus interface
- Available RoHS compliant
- 2 Year Warranty

Safety

VDE Certificate No. 2487000-3336-0016

The AMD VRM non-isolated dc-dc converter is designed to meet the exceptionally fast transient response requirements of today's microprocessors and fast switching logic in a compact size at an affordable price. Advanced circuit techniques, component selection, placement optimization, and state-of-the-art silicon integration thermal packaging, provide a high power density, highly reliable, and very precise voltage regulation system for advanced microprocessors.

Rev.07.20.07 vrm series 1 of 7

Rev.07.20.07 vrm series 2 of 7

Unless otherwise stated, all specifications are typical at nominal input, maximum continuous rated load at 25 $^\circ C$ and voltages are referenced to Vin-.

OUTPUT SPECIFICATIONS

Control St Lenter monts			
Voltage adjustability	(See VID codes, Ta	ible 3)	0.8-1.55 Vdc
Output current		80 A	
Voltage setting accuracy			±0.8%
Ripple and noise (See Notes 1, 2)	20 MHz bandwid	th	50 mV pk-pk
Short circuit protection (See Note 7)			s current limit, setting as trip
Remote sensing compensa	ating voltage	Up to	300 mV max.
INPUT SPECIFICATIONS			
Input voltage range	12Vin nominal		10.8-13.2 Vdc
Input current	Operation No load Remote OFF		12.5 A max. 1.1 A max. 45 mA max.
UVLO	Turn ON voltage Turn OFF voltage Hysteresis		10.5 V typ. 9.8 V typ. 0.65 V typ.
Start-up time	Nominal line		10 ms max.
Enable Logic compatibility ON OFF			Ref. to -input >1.7 Vdc <0.8 Vdc
+5_ALWAYS	Current demand		250 mA typ.

GENERAL CHARACTERIST	ICS	
Efficiency	1.5 V output @ 60 /	A 84% typ.
Switching frequency	Fixed (See Note 4)	830 kHz
Approvals and standards		IEC/EN60950 VDE
Material flammability		UL94V-0
Weight		<52 g (<2 oz)
MTBF	Telcordia SR-332	>2,000,000 hours
Mating connector (See Table 1 for pin out)	Tyco/Elcon	283-0172-01303
Connector fingers	(Gold plated, 30 μ-inches
ENVIRONMENTAL SPECIF	ICATIONS	
Maximum temperature shock	Operating	5 °C/10 min.
Temperature shock	Operating Non-operating	10 °C/hour 20 °C/hour
Humidity (Non-condensing)	Operating Non-operating	85% RH 95% RH
Altitude	Operating Non-operating	10,000 feet max. 50,000 feet max.
Shock	Operational and non-operational	30 G 11ms Half sine wave
Vibration (See Note 8)	Operational and non-operational	0.02 G ² /Hz max.
Electrostatic discharge IEC61000-4-2 (See Note 6)	Indirect air Indirect contact	15 kV 8 kV
Thermal performance (See Note 5)	Operating ambient temperature	
	Non-operating	-40 °C to +100 °C

Rev.07.20.07 vrm series 3 of 7

INPUT VOLTAGE	OUTPUT VOLTAGE	OVP	OUTPUT CURRENT (MIN)	OUTPUT CURRENT (MAX.)	EFFICIENCY (TYP.)	REGULATION LOAD	MODEL NUMBER ^(10,11)
12 Vdc	0.8-1.55 Vdc	2.2 Vdc	0 A	80 A	84%	50 mV	VRM64-80-12-UY

PIN CONNECTIONS							
PIN NO.	FUNCTION	PIN NO.	FUNCTION				
1	GND	54	+12 Vin				
2	GND	53	+12 Vin				
3	GND	52	+12 Vin				
4	VID4	51	VID3				
5	VID2	50	VID1				
6	VID0	49	Current Share				
7	COREFB H	48	COREFB L				
8	PWRGD	47	CB _{OUT}				
9	Enable	46	ADD 0				
10	SM _{DA}	45	ADD 1				
11	SM _{CL}	44	-VRMPRES				
12	SGND	43	+5 V_always				
13	V _{DD} Core +	42	V _{DD} Core +				
14	V _{DD} Core +	41	V _{DD} Core +				
15	V _{DD} Core +	40	V _{DD} Core +				
16	GND	39	GND				
17	GND	38	GND				
18	GND	37	GND				
19	V _{DD} Core +	36	V _{DD} Core +				
20	V _{DD} Core +	35	V _{DD} Core +				
21	V _{DD} Core +	34	V _{DD} Core +				
22	V _{DD} Core +	33	V _{DD} Core +				
23	V _{DD} Core +	32	V _{DD} Core +				
24	V _{DD} Core +	31	V _{DD} Core +				
25	GND	30	GND				
26	GND	29	GND				
27	GND	28	GND				

Table 1: Pin Connections

VOLTAGE IDENTIFICATION (VID) CODES							
VID4	VID3	VID2	VID1	VID0	VDAC		
1	1	1	1	1	Off		
1	1	1	1	0	0.800		
1	1	1	0	1	0.825		
1	1	1	0	0	0.850		
1	1	0	1	1	0.875		
1	1	0	1	0	0.900		
1	1	0	0	1	0.925		
1	1	0	0	0	0.950		
1	0	1	1	1	0.975		
1	0	1	1	0	1.000		
1	0	1	0	1	1.025		
1	0	1	0	0	1.050		
1	0	0	1	1	1.075		
1	0	0	1	0	1.100		
1	0	0	0	1	1.125		
1	0	0	0	0	1.150		
0	1	1	1	1	1.175		
0	1	1	1	0	1.200		
0	1	1	0	1	1.225		
0	1	1	0	0	1.250		
0	1	0	1	1	1.275		
0	1	0	1	0	1.300		
0	1	0	0	1	1.325		
0	1	0	0	0	1.350		
0	0	1	1	1	1.375		
0	0	1	1	0	1.400		
0	0	1	0	1	1.425		
0	0	1	0	0	1.450		
0	0	0	1	1	1.475		
0	0	0	1	0	1.500		
0	0	0	0	1	1.525		
0	0	0	0	0	1.550		

Table 2: Voltage Identification (VID) Codes

SIGNAL ELECTRICAL INTERFACE						
CHARACTERISTIC - SIGNAL NAME	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES AND CONDITIONS
ENABLE - on	ENABLE (on)	1.7		5.5	V	No pull up resistor provided by the VRM
ENABLE - off	ENABLE (off)	-0.3		0.8	V	No pull up resistor provided by the VRM
PWRGD - high	V _{PWRGD} (high)	1.7			V	No pull up resistor provided by the VRM
PWRGD - low	V _{PWRGD} (low)	-0.3		0.8	V	Open-collector output to not more than 5.5 V, max current 5 mA
PWRGD - low threshold			150		mV	Below VID setting
PWRGD - turn-on response to ENABLE going high	T _{rise}	2	2.5	10	ms	For waveforms, refer to Application Note 185
VID - high	V _{ih (VID)}	1.7		5.5	V	
VID - low	V _{il (VID)}	-0.3		0.8	V	
OVP1 (See Note 7)			2.2		V	Default setting is trip. At OVP1 or OVP2 whichever is smaller
OVP2 (See Note 7)			133		%	Of VID Setting
OVP drive voltage	CB_OUT		4		V	
SMBus Address high	ADD_x (high)	3.8			V	
SMBus Address low	ADD_x (low)	-0.3		0.7	V	
SMBus Data high	SM _{DA (high)}	2.1		5.5	V	
SMBus Data low	SM _{DA_x (low)}	-0.3		0.8	V	

ELECTROMAGNETIC COMPATIBILITY

CHARACTERISTIC - SIGNAL NAME	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES AND CONDITIONS
ESD - Indirect air				15	kV	EN61000-4-2 In end user equipment
ESD - Indirect contact				8	kV	EN61000-4-2 In end user equipment
Input characteristics: Input current - operating	I _{IN}		12		A	V _{in} = V _{in} (typ.), I _{out (cont.)} = 80 A, VID = 1.5 V
Input capacitance - external bypass	C _{INext}		1600		μF	

Notes

- 1 Recommended output capacitance, 48 x 22 µF ceramic MLCC.
- 2 50 mV pk-pk ripple. Vin = 12 V, Vout = 1.5 V, lout = 80 A.
- 3 With the recommended capacitors (See Note 1) across the output, the output voltage stays within the load regulation window for all loads and transient events, up to 80 A. It will also allow instantaneous VID-on-the-fly changes of up to 500 mV at 80 A.
- VRM64 uses a five phase buck topology. Each phase switches at 830 kHz. This gives an equivalent switching frequency of 4.2 MHz
- 5 Maximum current requires adequate forced air over the converter. Please consult Figure 1 for thermal derating.
- When the VRM detects an output over-voltage event, the OVP pin transitions to logic high. This signal can be used to shut down the supply to the VRM, or drive an external crowbar device.
- 7 These are default settings. The current limit may be set to 'trip' or 'hiccup'. The output overvoltage limits, input overvoltage and undervoltage settings, the output droop and offset, the current limit setpoint and many others can be changed by component changes. Please consult the factory for details.
- $8 \quad 0.01 \ G^2/Hz$ from 5 Hz to 20 Hz, maintaining 0.02 G²/Hz from 20 Hz to 500 Hz, all axes.
- 9 In accordance with AMD requirements, PWRGD will go high at least 2 ms after VDD settles within specifications.
 10 The 'Y' suffix indicates that these parts are TSE RoHS 5/6 (non Pb-free)
- The 'Y' suffix indicates that these parts are TSE RoHS 5/6 (non Pb-free) compliant. Pb-free (RoHS 6/6) compliant versions may be available on special request, please contact your local sales representative for details.
 NOTICE: Some models do not support all options. Please contact your local
- 11 NOTICE: Some models do not support all options. Please contact your local Artesyn representative or use the on-line model number search tool at http://www.artesyn.com/powergroup/products.htm to find a suitable alternative.

Rev.07.20.07 vrm series 4 of 7

70

60

50

40

30

20

40 50 60

70

80

Figure 1: Typical Thermal Derating At Sea Level (12 Vin, 1.5 Vout)

OUTPUT CURRENT (A)

90

100

TEMPERATURE (°C)

0 **OUTPUT VOLTAGE (V)** -5 -10 11Vin 12Vin -15 ---- 13Vin -20 -25 0 10 20 30 40 50 60 70 80 90 100 110 **OUTPUT CURRENT (A)**

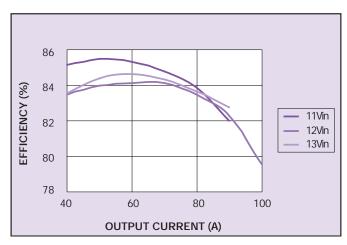
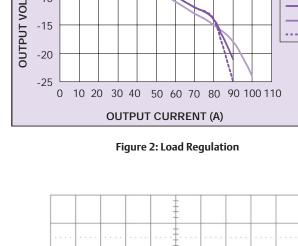



Figure 3: Typical Efficiency Vs Load

Figure 4: Output Ripple and Noise 10 mV Per Square, 2 μs Per Square

White and the second with the second second

WW

WW

NW

600LFM (3 m/s)

500LFM (2.5m/s)

400LFM (2m/s)

300LFM (1.5m/s)

Rev.07.20.07 vrm series 6 of 7

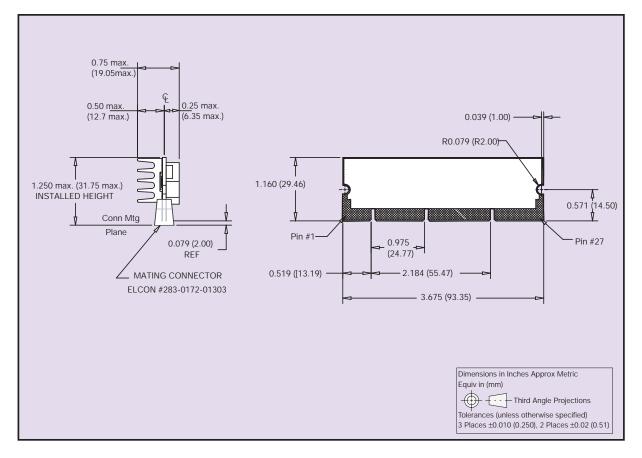


Figure 5: Mechanical Drawing

Rev.07.20.07 vrm series 7 of 7

Americas

5810 Van Allen Way Carlsbad, CA 92008 USA Telephone: +1 760 930 4600 Facsimile: +1 760 930 0698

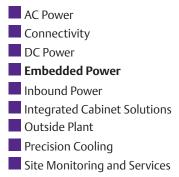
Europe (UK)

Waterfront Business Park Merry Hill, Dudley West Midlands, DY5 1LX United Kingdom Telephone: +44 (0) 1384 842 211 Facsimile: +44 (0) 1384 843 355

Asia (HK)

16th - 17th Floors, Lu Plaza 2 Wing Yip Street, Kwun Tong Kowloon, Hong Kong Telephone: +852 2176 3333 Facsimile: +852 2176 3888

For global contact, visit:


www.powerconversion.com

technicalsupport@powerconversion.com

While every precaution has been taken to ensure accuracy and completeness in this literature, Emerson Network Power assumes no responsibility, and disclaims all liability for damages resulting from use of this information or for any errors or omissions.

Emerson Network Power.

The global leader in enabling business-critical continuity.

EmersonNetworkPower.com

Emerson Network Power and the Emerson Network Power logo are trademarks and service marks of Emerson Electric Co. ©2007 Emerson Electric Co.