Advanced Specification 6.3-12.5A DC/DC Power Modules 48V Input, 12V Output

- High efficiency 93% Typ (12V) at full load
- Industry standard footprint
- Max case temperature + 100°C
- Wide input voltage range according to ETSI specifications
- High power density, up to 55W/in³
- 1,500 Vdc isolation voltage
- MTBF > 3 million hours in accordance with Bellcore TR-332

The PKJ series represents a "third generation" of High Density DC/DC Power Modules providing 90% efficiency. To achieve this high efficiency, Ericsson uses proprietary drive and control circuits with planar magnetics and low resistivity multilayer PCB technology, and a patent pending topology with active rectification. The PKJ series can be used without bulky and height consuming heatsinks, resulting in a lower total cost. This also provides narrow board spacing for electronic, shelf based applications.

The products are in the industry standard package size and offer a beneficial alternative to competing products on the market. Because for certain applications they may not require heatsinks, they are ideal for cost sensitive or high-density applications.

The PKJ series also offers the flexibility of using a heatsink when needed, enabling reduced airflow, extended reliability or higher ambient temperature operation in a wide range of 48V and 60V DC powered systems. Similar to other Ericsson Power Modules, the PKJ series includes an undervoltage shut down facility, protecting the associated batteries from being too deeply discharged. The PKJ series also offers over-voltage protection, over-temperature protection and is short circuit proof.

These products are manufactured using highly automated manufacturing lines with a world-class quality commitment and a five-year warranty. Ericsson Components AB has been an ISO 9001 certified supplier since 1991.

For product program please see back cover.

General

Connections

Designation	Function
-In	Negative input
Case	Connected to base plate
RC	Remote control (primary).
	To turn-on and turn-off the output
+In	Positive input
-Out	Negative output
-Sen	Negative remote sense
	(if sense is not needed, connect to -Out)
Trim	Output voltage adjust
+Sen	Positive remote sense
	(if sense is not needed, connect to +Out)
+Out	Positive output

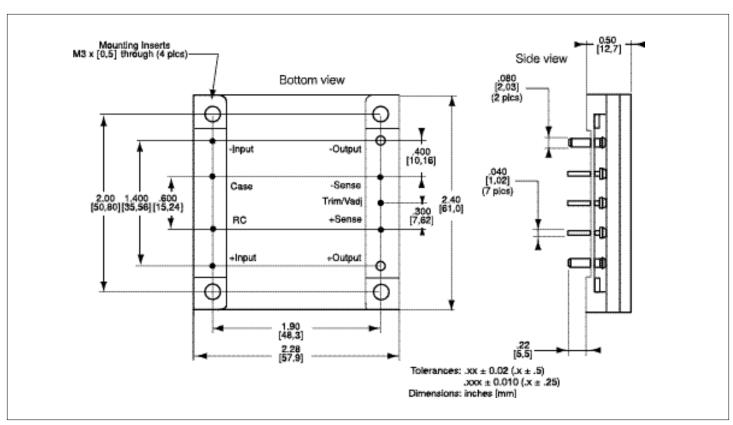
Weight

85 grams

Case

Aluminum baseplate with metal standoffs.

Pins


Pin material: Brass

Pin plating: Tin/Lead over Nickel.

Input $T_C < T_{Cmax}$

Characteristics		Conditions		min	typ	max	Unit
VI	Input voltage range			36		75	Vdc
V _{loff}	Turn-off input voltage	Ramping from higher voltage		31	33		Vdc
V _{Ion}	Turn-on input voltage	Ramping from lower voltage			34	36	Vdc
Cı	Input capacitance				2.8		μF
I _{lac}	Reflected ripple current	5 Hz to 20 MHz			20		mA p-p
I _I max	Maximum input current	$V_I = V_I \min$	75 W 100 W 150 W			2.4 3.2 5.3	А
P _{li}	Input idling power		I _O = 0		2.5	7.5	W
P _{RC}	Input stand-by power (turned off with RC)	V _I = 50V	RC open		0.05	2.5	W
TRIM	Maximum input voltage on trim pin					6	Vdc

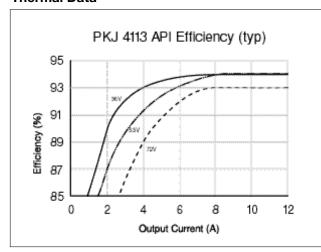
Mechanical Data

PKJ 4113 API/PKJ 4113 PI/PKJ 4713 PI $T_C = -40...+100$ °C, $V_I = 36...75$ V dc unless otherwise specified.

Output

Characteristics		Conditions	Device	Output			Unit
				min	typ	max	
V _{Oi}	Output voltage initial setting and accuracy	$T_C = +25$ °C, $V_I = 53V$, $I_O = I_{Omax}$	All	11.8	12.0	12.2	V
	Output adjust range	I _O = 0 to I _O max	All	9.6		13.3	V
lo	Output current		PKJ 4113 API PKJ 4113 PI PKJ 4713 PI	0 0 0		12.5 8.3 6.25	Α
Vo	Output voltage tolerance band	I _O = 0 to I _O max	All	11.64		12.36	V
	Line regulation	$I_{O} = I_{O}$ max	All		3	10	mV
	Load regulation	$V_I = 53V$, $I_O = 0$ to I_{Omax}	All		3	10	mV
V _{tr}	Load transient voltage deviation	Load step = 0.25 x I _{Omax} dl/dt = 1A/µs	All		±100		mV _{peak}
t _{tr}	Load transient recovery time		All		150		μs
ts	Start-up time	From V _I connection to V _O = 0.9 x V _{Onom}	All		30	50	ms
l _{lim}	Current limit threshold	V _O = 0.96 V _{Onom} @ T _C <100°C	PKJ 4113 API PKJ 4113 PI PKJ 4713 PI	13.5 9.0 7.0	14.5 10.5 8.0	16.0 12.0 9.0	Α
I _{SC}	Short circuit current		PKJ 4113 API PKJ 4113 PI PKJ 4713 PI	7.0	16.5 12.0 10.0	18 14 12	Α
V _{Oac}	Output ripple and noise	I _O = I _{Omax} f ≤ 20 MHz	All		75	100	mVp-p
SVR	Supply voltage rejection (ac)	f<1kHz	All	-53			dB
OVP	Over voltage protection	Vin = 50V	All		14.9	15.5	V

Miscellaneous


Char	acteristics	Conditions	Device	min	typ	max	Unit
	Efficiency	$T_A = +25^{\circ}C$, $V_I = 53V$, $I_O = I_{Omax}$	All		93		%
P _d	Power dissipation	$I_O = I_{O}$ max, $V_I = 53V$	PKJ 4113 API PKJ 4113 PI PKJ 4713 PI		11.3 7.5 5.6		W

Absolute Maximum Ratings

Characteristics		min	max	Unit
T _C	Case temperature @ max output power	-40	+100	°C
T _S	Storage temperature	-40	+125	°C
VI	Continuous input voltage	-0.5	+75	Vdc
V _{ISO}	Isolation voltage (input to output test voltage)	1,500		Vdc
V _{RC}	Remote control voltage		15	Vdc
I²t	Inrush transient		1	A ² s

Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as "no destruction limits," are normally tested with one parameter at a time exceeding the limits of output data or electrical characteristics. If exposed to stress above these limits, function and performance may degrade in an unspecified manner.

Thermal Data

Product Program

Vı	V _O /I _O	P _{Omax}	Ordering Number
48/60 V	12V/12.5A	150W	PKJ 4113 API
48/60 V	12V/8.3A	100W	PKJ4113 PI
48/60 V	12V/6.25A	75W	PKJ 4713 PI

To order with Optional Remote Control add P to end of ordering number. For example: PKJ 4719 PIP

Ericsson Energy Systems' Sales Offices:

Brazil:	Phone: +55 11 681 0040	Fax: +55 11 681 2051
Denmark:	Phone: +45 33 883 109	Fax: +45 33 883 105
Finland:	Phone: +358 9 299 4098	Fax: +358 9 299 4188
France:	Phone: +33 1 4083 7720	Fax: +33 1 4083 7741
Germany:	Phone: +49 211 534 1516	Fax: +49 211 534 1525
Great Britain:	Phone: +44 1793 488 300	Fax: +44 1793 488 301
Hong Kong:	Phone: +852 2590 2356	Fax: +852 2590 7152
Italy:	Phone: +39 2 7014 4203	Fax: +39 2 7014 4260
Japan:	Phone: +81 3 5216 9091	Fax: +81 3 5216 9096
Norway:	Phone: +47 66 841 906	Fax: +47 66 841 909
Russia:	Phone: +7 095 247 6211	Fax: +7 095 247 6212
Spain:	Phone: +34 91 339 1858	Fax: +34 91 339 3145
Sweden:	Phone: +46 8 721 6258	Fax: +46 8 721 7001
United States:	Phone: +1 888 853 6374	Fax: +1 972 583 7999

Information given in this data sheet is believed to be accurate and reliable. No responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Ericsson Inc. These products are sold only according to Ericsson Inc.'s general conditions of sale, unless otherwise confirmed in writing.

The contents of this document are subject to revision without notice due to continued progress in design and manufacturing.

Ericsson Inc.

701 North Glenville Drive Richardson, Texas 75081 Phone: 888-85-ENERGY www.ericsson.com/us/energy **Advanced Specification**

AE/LZT 108 3486 © Ericsson Inc., December 1999