# ·实验技术与方法·

# 高效液相色谱法测定大豆胚轴中 DDMP 皂甙 αg 和 βg

全吉淑1 工藤重光2

(1.延边大学医学院, 吉林 延吉 133000; 2.日本东北食效科学研究所, 青森 030-0842)

Analysis of DDMP-saponin  $\alpha g$  and  $\beta g$  in soybean hypocotyl by high-performance liquid chromatography Quan Jishu , et al.

( Medical College of Yanbian University Jilin Yanji 133000, China )

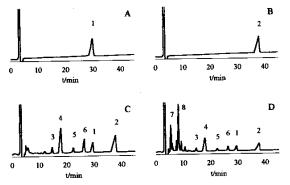
**Abstract**: DDMP-saponin  $\alpha g$  and  $\beta g$  in sayasaonin samples were detected by a high-performance liquid chromatography-differential refractive index detector (HPLC-dRI) with a ODS-AM-303 column (YMC, 4.6 mm × 250 mm, 5  $\mu m$ ) and using acetonitrile + water (40 + 60) containing 0.1% trifluoroacetic acid as a mobile phase. The method was proved to be linear in the range of 1.38 ~ 6.88  $\mu g$  and 1.62 ~ 8.12  $\mu g$ , and the recoveries were 93.4% and 94.2% with *RSD* of 4.07% and 4.28% for  $\alpha g$  and  $\beta g$ , respectively. The method is accurate and reproducible, suitable for the determination of DDMP-saponins and other soyasaponins.

Key Words: Chromatography, High Pressure Liquid; Legumes; SAPONINS

大豆皂甙是近年来受到食品科学界广泛关注的非营养成分,是一类五环三萜的糖甙,主要分为 A 类、B 类、E 类和 DDMP 皂甙。 A 类皂甙是以 soyasapogenol A 为配基的双糖链皂甙,B 类和 E 类皂甙是分别以 soyasapogenol B 和 soyasapogenol E 为配基的单糖链皂甙,DDMP 皂甙则是以 soyasapogenol B 作为配基,C - 22 位上结合有 2,3 - dihydro - 2,5 - dihydroxy - 6 - methyl - 4H - pyran - 4 - one( DDMP )的单糖链皂甙,目前认为是天然存在的真正大豆皂甙。研究表明大豆皂甙具有多种药理作用,如抗癌、防治心血管疾病、抗病毒、保肝以及抗血栓等作用。[1~4]而不同种类的大豆皂甙生理作用有所区别,如具有抗癌以及抗病毒活性的主要为单糖链皂甙 B 类、E 类和 DDMP 皂甙。[5]其中 DDMP 皂甙在 DDMP 结构中含有烯醇基和酮基两个活性基团,具有独特的活

性氧清除作用。<sup>[2]</sup>因此,对大豆及其制品中各类皂甙,尤其对单糖链皂甙的定量分析是研究大豆皂甙药理作用的基础。目前,常规 HPLC 法主要以大豆皂甙 Bb 单体作为标准品测定大豆总皂甙。但由于使用较低的紫外检测波长,且紫外光谱图为末端吸收,所以反相高效液相色谱 – 紫外检测的方法测定大豆皂甙有一定的难度,难以得到满意的结果。本文采用高效液相色谱 – 差示折射法测定大豆皂甙样品中 DDMP 皂甙的含量,为 DDMP 皂甙以及其它大豆皂甙的定量分析提供一种可靠的方法。

#### 1 材料与方法


1.1 仪器和试剂 检测单元为 Waters 高效液相色谱系统 ,包括 Waters<sup>™</sup> 717 plus 自动进样器 ;Waters 600E 控制单元 ;Waters <sup>™</sup> 805 数据处理机和 Waters

基金项目 :延边大学科研项目(延大科合字(2002)第1号)。作者简介:全吉淑 女 硕士

This work was supported by the Research Founds of Medical College of Yanbian University, China. 2410 差示折光仪。高效液相色谱用试剂为色谱纯 (WAKO 公司) 其余试剂均为日本试药特级。

1.2 色谱条件 色谱柱为 ODS – AM – 303 柱 (YMC A.6 mm × 250 mm ,5  $\mu$ m ),柱温 40  $^{\circ}$   $^{\circ}$  ,流动相 为含 0.1  $^{\circ}$  三氟乙酸的乙腈 + 水( 40 + 60 ),流速 1 mL/min 高纯氦气脱气 进样量 10  $\mu$ L ,分析时间为 45 min ,

1.3 标样配制 DDMP 皂甙  $\alpha g$  和  $\beta g$  标准品 ,实验室自行制备 ,通过 IR、FAS – MS、 $^1$ H – NMR 和  $^{13}$ C – NMR 鉴定 ,高效液相色谱分析为单一峰( 见图 1 )。 称取 DDMP 皂甙  $\alpha g$  和  $\beta g$  标准品 3.44 mg 和 4.06 mg ,加甲醇溶解定容至 10 mL ,分别配成浓度为 0.344 mg/mL 和 0.406 mg/mL 的溶液 ,作为对照品溶液。分别吸取标准品液 10  $\mu$ L ,供 HPLC 分析。



1.DDMP 皂甙  $\alpha g$  ; 2.DDMP 皂甙  $\beta g$  ; 3. 大豆皂甙 Ba ; 4. 大豆皂甙 Bb ; 5. 大豆皂甙 Bd ; 6. 大豆皂甙 Be ; 7. 大豆皂甙 A1 ; 8. 大豆皂甙 A2。

A. DDMP 皂甙  $\alpha g$  标准品; B. DDMP 皂甙  $\beta g$  标准品; C. 试样  $F_{100}$ ; D. 试样  $F_{80}$ .

图 1 标准品及试样的高效液相色谱图

1.4 试样制备 大豆胚轴 3~kg 用 15~L 50% 甲醇溶液提取后喷雾干燥得大豆胚轴提取物(SHE)562 g。 准确称取 SHE 200~g ,用 500~mL 10% 甲醇溶液溶解,上  $C_{18}$  反相层析柱(YMC,ODS – A60 – S150 , $5~cm \times 74~cm$ ),依次用 2~L 10%、30%、50%、80%、100% 甲醇进行梯度洗脱,收集各流出部分,经减压蒸馏、冷冻干燥得干品,分别称为  $F_{10}$ 、 $F_{30}$ 、 $F_{50}$ 、 $F_{80}$ 和  $F_{100}$ 。 单糖链皂甙主要在  $F_{80}$ 和  $F_{100}$ 中流出。

1.5 测定 称取富含大豆皂甙的  $F_{80}$ 和  $F_{100}$ 各 0.1 g 分别用甲醇定容至 50 mL ,以 Milipore FH  $\Phi 0.5$   $\mu m$  过滤膜过滤后作为试样供试液。分别吸取  $F_{80}$ 和  $F_{100}$ 供试液 10  $\mu L$  ,供 HPLC 分析。

### 2 结果与讨论

2.1 线性关系考察 精密吸取 DDMP 皂甙  $\alpha g$  和  $\beta g$  标准品溶液 4、8、12、16、20  $\mu L$  ,重复进样测定 ,以色

谱峰峰面积对进样量进行线性回归分析。用 Excel 软件处理得回归方程 ,分别为 :DDMP 皂甙  $\alpha g: y = 46499x + 1794$  ,r = 0.9954 ;DDMP 皂甙  $\beta g: y = 54674x + 3867$  ,r = 0.9889。两组分的最小检出量分别为  $1.38~\mu g$  和  $1.62~\mu g$ 。

2.2 精密度试验 精密吸取  $\alpha_g$  和  $\beta_g$  标准品溶液  $10 \mu$ L, 重复进样 5 次。结果大豆皂甙  $\alpha_g$  和  $\beta_g$  的 RSD 均小于 3%(表 1),符合分析要求。

| 表 1 精密度测定结果 µg |        |           |       |  |  |  |
|----------------|--------|-----------|-------|--|--|--|
| DDMP 皂甙        | 测定次数 n | $\bar{x}$ | RSD % |  |  |  |
| αg             | 5      | 3.40      | 1.74  |  |  |  |
| $\beta g$      | 5      | 4.01      | 2.68  |  |  |  |

2.3 回收率试验 称取已知含量的试样 6 份,准确加入 DDMP 皂甙  $\alpha g$  和  $\beta g$  标准品液适量,重复进样 6 次,计算试样的加样回收率和相对标准偏差。结果见表 2。

| 表 2 回收率测定结果 |           |       |       |       |             | mg          |
|-------------|-----------|-------|-------|-------|-------------|-------------|
| 大豆<br>皂甙    | 试样中<br>含量 | 加入量   | 测定值   | 回收率   | 平均回<br>收率 % | 平均<br>RSD % |
|             | 0.235     | 0.172 | 0.392 | 91.3  | 93.4 4.07   |             |
|             | 0.235     | 0.172 | 0.394 | 92.4  |             |             |
|             | 0.235     | 0.172 | 0.388 | 89.0  |             | 4 07        |
| αg          | 0.235     | 0.344 | 0.581 | 100.6 |             | 4.07        |
|             | 0.235     | 0.344 | 0.551 | 91.9  |             |             |
|             | 0.235     | 0.344 | 0.563 | 95.3  |             |             |
|             | 0.318     | 0.203 | 0.498 | 88.7  | 94.2 4.28   |             |
|             | 0.318     | 0.203 | 0.504 | 91.6  |             | 4.28        |
| βg          | 0.318     | 0.203 | 0.507 | 93.1  |             |             |
|             | 0.318     | 0.406 | 0.729 | 101.2 |             |             |
|             | 0.318     | 0.406 | 0.708 | 96.1  |             |             |
|             | 0.318     | 0.406 | 0.702 | 94.6  |             |             |

2.4 试样测定 在  $C_{18}$ 柱层析中 ,DDMP 皂甙主要在 80%和 100% 甲醇溶液中流出。HPLC 色谱结果表明 , $F_{80}$ 主要成分为 A 类、B 类、E 类和 DDMP 皂甙 , $F_{100}$ 主要成分为 B 类、E 类和 DDMP 皂甙。 大豆胚轴中 A 类皂甙主要有 A1 和 A2 ;B 类皂甙主要有 Ba 和 Bb ;E 类皂甙主要有 Bd 和 Be ;DDMP 皂甙主要有  $\alpha g$  和  $\beta g$ 。  $F_{80}$ 、 $F_{100}$ 和大豆胚轴提取物( SHE )中 DDMP 皂甙的含量测定结果见表 3 ,HPLC 色谱图见图 1。

表 3 皂甙试样中 DDMP 皂甙含量测定结果 n=3

| 试样              | ag % | βg % |
|-----------------|------|------|
| F <sub>80</sub> | 3.14 | 7.62 |
| $F_{100}$       | 8.98 | 27.6 |
| SHE             | 0.42 | 1.11 |

#### 3 结论

本法建立了大豆胚轴中 DDMP 皂甙  $\alpha g$  和  $\beta g$  的高效液相色谱测定方法。大豆皂甙的最大吸收波长

(203 nm)较低,且紫外光谱图为末端吸收,对所用流动相的纯度要求很高,因此采用紫外检测法容易造成基线不稳,重复性较差,难以得到满意的结果。本法采用差示折射法检测大豆皂甙,结果峰面积值和进样量之间呈良好的线性关系,用于大豆皂甙的分析优于紫外检测法。本文建立的检测方法灵敏度、重现性均能满足一般分析要求,可用于大豆皂甙样品中 DDMP 皂甙的含量分析,也可用于其它大豆皂甙的分析,具有普遍意义。

#### 参考文献:

- [1] 王银萍,吴家祥,王心蕊,等.大豆皂甙和人参茎叶皂 甙的抗糖尿病动脉粥样硬化作用[J].白求恩医科大 学学报,1994,20(6);551—554.
- [2] Yoshiki Y, Okubo K. Active oxygen scavenging activity of

- DDMP ( 2 , 3-dihydro-2 , 5-dihydroxy-6-methyl-4H-pyran-4-one ) saponin in soybean seed [ J ]. Biosci Biotechnol Biochem , 1995 , 59( 8 ) :1556—1557 .
- [3] Yoshikoshi M, Yoshiki Y, Okubo K, et al. Prevention of hydrogen peroxide damage by soybean saponins to mouse fibroblast [J]. Planta Med, 1996, 62(3) 252—255.
- [4] Kinjo J, Imagire M, Udayama M, et al. Structure-hepatoprotective relationships study of soyasaponins I-IV having soyasapogenol B as aglycone J]. Planta Med, 1998, 64(3) 233—236.
- [5] 吉诚由美子,大久保一郎.大豆サポニンの機能性 [J]. 食品と開發,1999,34(7)8—11.
- [6] Kudou S, Tonomura M, Tsukamoto C, et al. Isolation and structural elucidation of the major genuine soybean saponin
  [J]. Biosci Biotechnol Biochem, 1992, 56(1):142—143.

[ 收稿日期 2003-01-06]

中图分类号:R15;0657.72 文献标识码:B 文章编号:1004-845((2004)01-0030-03

## 单扫描极谱法测定猪肉中克伦特罗残留量

汤晓勤! 向仕学! 龚志华2 何 扬2

(1.四川省卫生防疫站,四川 成都 610031;2.四川大学华西公共卫生学院,四川 成都 610041)

摘 要:为研制一个适用于基层实验室测定猪肉中克伦特罗的极谱分析方法,将试样用 75% 乙醇和正己烷二种不同极性溶剂提取和纯化,用拟定的极谱分析方法进行定性和定量测定。在盐酸 — 高锰酸钾 — 草酸介质中,克伦特罗峰电位为 — 840~mV(vs.SCE)。克伦特罗浓度在  $0.5 \sim 4.0~\mu\text{g/mL}$ 之间线性关系良好 相关系数 r=0.9994,回归方程 y=9.563x-32.15。最低检出量为  $1.2~\mu\text{g}$ 。平均相对标准偏差( RSD )为 7.7%( n=7 ) 加标平均回收率为 85.2%。该法准确、快速、简便、仪器价廉,适于基层实验室检测猪肉中克伦特罗残留量。 关键词: 极谱法、猪:克伦特罗

### Determination of clenbuterol residues in pork by the single-sweep polarography

Tang Xiaoqin, et al.

( Health and Anti-epidemic Station of Sichuan Province , Sichuan Chengdu 610031 , China )

**Abstract**: A method using single-sweep polarography for determining the clenbuterol residues in pork was established for middle and small sized laboratories. Clenbuterol in samples were extracted and purified with 75% alcohol and n-Hexane and then determined qualitatively and quantitatively by polarography. Peak potential of clenbuterol was found at -840 mV(vs. SCE) in the mediums of HCl KMnO<sub>4</sub>-H<sub>2</sub>C<sub>2</sub>O<sub>4</sub>. The linear relation was well to the standard contents of clenbuterol within the range of  $0.5 \sim 4.0 \,\mu\text{g/mL}$ . The coefficient of correlation was r = 0.9994 (n = 7), regression equation was y = 9.563x - 32.15. The detectability of the method was  $1.2 \,\mu\text{g}$ . Its relative standard deviation (RSD) was 7.7% (n = 7) and average recovery was 85.2% (n = 5). The method is accurate, rapid and simple, and the instrument is cheap. It is fit for middle and small sized laboratories to determine clenbuterol residues in pork.

作者简介:汤晓勤 女 副主任技师