

 Rudolf-Wissell-Str. 28

 37079 Göttingen, Germany

 Phone:
 +49 551-50556-0

 Fax:
 +49 551-50556-384

 E-mail:
 sales@sysy.com

 Web:
 www.sysy.com

Kv1.2

Cat.No. 402 015; Polyclonal Guinea pig antibody, 50 µg specific antibody (lyophilized)

Data Sheet

Reconstitution/ Storage	50 μ g specific antibody, lyophilized. Affinity purified with the immunogen. Guinea pig serum albumin was added for stabilization. For reconstitution add 50 μ l H ₂ O to get a 1mg/ml solution in PBS. Then aliquot and store at -20°C until use.
Applications	WB: not recommended IP: not tested yet ICC: not tested yet IHC: 1 : 500 up to 1 : 1000 IHC-P/FFPE: 1 : 1000 up to 1 : 2000
Immunogen	Synthetic peptide corresponding to AA 463 to 482 from rat Kv1.2 (UniProt Id: P63142)
Reactivity	Reacts with: rat (P63142), mouse (P63141). Other species not tested yet.
Specificity	Specific for Kv 1.2

TO BE USED IN VITRO / FOR RESEARCH ONLY NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS

A high diversity of K+ channels is formed in the nervous system by heteromeric assembly of subunits encoded by a large number of K+ channel genes. They play an important role in regulating the level of neuronal excitability.

Deletion of **Kv 1.2** is lethal in mice and mutations lead to severe consequences including epileptic encephalopathy, intellectual disability and episodic ataxia in humans.

Selected General References

Extracellular redox sensitivity of Kv1.2 potassium channels. Baronas VA, Yang RY, Kurata HT Scientific reports (2017) 7(1): 9142.

Extracellular Linkers Completely Transplant the Voltage Dependence from Kv1.2 Ion Channels to Kv2.1. Elinder F, Madeja M, Zeberg H, Århem P Biophysical journal (2016) 111(8): 1679-1691.

Determinants of frequency-dependent regulation of Kv1.2-containing potassium channels. Baronas VA, Yang R, Vilin YY, Kurata HT Channels (Austin, Tex.) (2016) 10(2): 158-66.

Activity-dependent downregulation of D-type K+ channel subunit Kv1.2 in rat hippocampal CA3 pyramidal neurons. Hyun JH, Eom K, Lee KH, Ho WK, Lee SH The Journal of physiology (2013) 591(22): 5525-40.

Cellular mechanisms and behavioral consequences of Kv1.2 regulation in the rat cerebellum. Williams MR, Fuchs JR, Green JT, Morielli AD The Journal of neuroscience : the official journal of the Society for Neuroscience (2012) 32(27): 9228-37.

Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment. Jogini V, Roux B Biophysical journal (2007) 93(9): 3070-82.

Age-related changes in the distribution of Kv1.1 and Kv1.2 channel subunits in the rat cerebellum. Chung YH, Shin CM, Kim MJ, Lee BK, Cha CI Brain research (2001) 897(1-2): 193-8.

Expression of Kv1.2 potassium channels in rat sensory ganglia. An immunohistochemical study. Yokoyama S, Takeda H, Higashida H Annals of the New York Academy of Sciences (1999) 868: 454-7.

Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. Wang H, Kunkel DD, Schwartzkroin PA, Tempel BL The Journal of neuroscience : the official journal of the Society for Neuroscience (1994) 14(8): 4588-99.