

Kv1.2

Cat.No. 402 005; Polyclonal Guinea pig antibody, 50 µg specific antibody (lyophilized)

Data Sheet

Reconstitution/ Storage	50 µg specific antibody, lyophilized. Affinity purified with the immunogen. For reconstitution add 50 µl H ₂ O to get a 1mg/ml solution in PBS. Then aliquot and store at -20°C until use.
Applications	WB: 1 : 1000 (AP staining) (see remarks) IP: not tested yet ICC: not tested yet IHC: not recommended IHC-P/FFPE: 1 : 500
Immunogen	Synthetic peptide corresponding to AA 463 to 482 from rat Kv1.2 (UniProt Id: P63142)
Reactivity	Reacts with: rat (P63142), mouse (P63141). Other species not tested yet.
Specificity	Specific for Kv1.2.
Remarks	WB: Kv1.2 aggregates after boiling, making it necessary to run SDS-PAGE with non-boiled samples.

Selected General References

Extracellular redox sensitivity of Kv1.2 potassium channels.
 Baronas VA, Yang RY, Kurata HT
 Scientific reports (2017) 7(1): 9142.

Extracellular Linkers Completely Transplant the Voltage Dependence from Kv1.2 Ion Channels to Kv2.1.
 Elinder F, Madeja M, Zeberg H, Århem P
 Biophysical journal (2016) 111(8): 1679-1691.

Determinants of frequency-dependent regulation of Kv1.2-containing potassium channels.
 Baronas VA, Yang R, Vilin YY, Kurata HT
 Channels (Austin, Tex.) (2016) 10(2): 158-66.

Activity-dependent downregulation of D-type K⁺ channel subunit Kv1.2 in rat hippocampal CA3 pyramidal neurons.
 Hyun JH, Eom K, Lee KH, Ho WK, Lee SH
 The Journal of physiology (2013) 591(22): 5525-40.

Cellular mechanisms and behavioral consequences of Kv1.2 regulation in the rat cerebellum.
 Williams MR, Fuchs JR, Green JT, Morielli AD
 The Journal of neuroscience : the official journal of the Society for Neuroscience (2012) 32(27): 9228-37.

Dynamics of the Kv1.2 voltage-gated K⁺ channel in a membrane environment.
 Jogini V, Roux B
 Biophysical journal (2007) 93(9): 3070-82.

Age-related changes in the distribution of Kv1.1 and Kv1.2 channel subunits in the rat cerebellum.
 Chung YH, Shin CM, Kim MJ, Lee BK, Cha CI
 Brain research (2001) 897(1-2): 193-8.

Expression of Kv1.2 potassium channels in rat sensory ganglia. An immunohistochemical study.
 Yokoyama S, Takeda H, Higashida H
 Annals of the New York Academy of Sciences (1999) 868: 454-7.

Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain.
 Wang H, Kunkel DD, Schwartzkroin PA, Tempel BL
 The Journal of neuroscience : the official journal of the Society for Neuroscience (1994) 14(8): 4588-99.

TO BE USED IN VITRO / FOR RESEARCH ONLY

NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS

A high diversity of K⁺ channels is formed in the nervous system by heteromeric assembly of subunits encoded by a large number of K⁺ channel genes. They play an important role in regulating the level of neuronal excitability.

Deletion of **Kv 1.2** is lethal in mice and mutations lead to severe consequences including epileptic encephalopathy, intellectual disability and episodic ataxia in humans.