

GluN 2 A/B

Cat.No. 244 004; Polyclonal Guinea pig antibody, 100 µl antiserum (lyophilized)

Data Sheet

Reconstitution/ Storage	100 µl antiserum, lyophilized. For reconstitution add 100 µl H ₂ O, then aliquot and store at -20°C until use.
Applications	WB: 1 : 1000 (AP staining) IP: not tested yet ICC: not tested yet IHC: not tested yet IHC-P/FFPE: not tested yet
Immunogen	Synthetic peptide corresponding to AA 1448 to 1464 from mouse GluN2A (UniProt Id: P35436)
Reactivity	Reacts with: rat (Q00959, Q00960), mouse (P35436, Q01097). Other species not tested yet.
Specificity matching control	Cross-reacts to GluN 2B due to sequence homology. 244-OP

**TO BE USED IN VITRO / FOR RESEARCH ONLY
NOT TOXIC, NOT HAZARDOUS, NOT INFECTIOUS, NOT CONTAGIOUS**

GluNs (NMDA-receptors) represent a class of glutamate receptors that are of central importance in synaptic plasticity. Multiple NMDA receptor subtypes exist: GluN 1 and **GluN 2 A-D**. GluN 1 is the most important as it is required for activity. NMDA-receptors allow Ca²⁺ influx and are thought to trigger Ca²⁺ dependent postsynaptic processes involved in long term potentiation and depression.

Selected General References

NMDA receptor surface mobility depends on NR2A-2B subunits.
Groc L, Heine M, Cousins SL, Stephenson FA, Lounis B, Cognet L, Choquet D
Proceedings of the National Academy of Sciences of the United States of America (2006) 103(49): 18769-74.

Synaptic distribution of the NR1, NR2A and NR2B subunits of the N-methyl-d-aspartate receptor in the rat lumbar spinal cord revealed with an antigen-unmasking technique.
Nagy GG, Watanabe M, Fukaya M, Todd AJ
The European journal of neuroscience (2004) 20(12): 3301-12.

NMDA receptors and PSD-95 are found in attachment plaques in cerebellar granular layer glomeruli.
Petalia RS, Wang YX, Wentholt RJ
The European journal of neuroscience (2002) 15(3): 583-7.

A developmental change in NMDA receptor-associated proteins at hippocampal synapses.
Sans N, Petralia RS, Wang YX, Blahos J, Hell JW, Wentholt RJ
The Journal of neuroscience : the official journal of the Society for Neuroscience (2000) 20(3): 1260-71.

Neuronal and glial localization of NR1 and NR2A/B subunits of the NMDA receptor in the human cerebral cortex.
Conti F, Barbaresi P, Melone M, Ducati A
Cerebral cortex (New York, N.Y. : 1991) (1999) 9(2): 110-20.

The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1.
Petalia RS, Wang YX, Wentholt RJ
The Journal of neuroscience : the official journal of the Society for Neuroscience (1994) 14(10): 6102-20.

Heteromeric NMDA receptors: molecular and functional distinction of subtypes.
Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seuberg PH
Science (New York, N.Y.) (1992) 256(5060): 1217-21.