Declaration of Conformity

We

GOOD WILL INSTRUMENT CO., LTD. No.7-1, Jhongsing Rd., Tucheng City, Taipei County, Taiwan GOOD WILL INSTRUMENT (SUZHOU) CO., LTD. No.69 Lushan Road, Suzhou New District Jiangsu, China. declare that the below mentioned products

GDS-2062/2064/2102/2104/2202/2204

are herewith confirmed to comply with the requirements set out in the Council Directive on the Approximation of the Law of Member States relating to Electromagnetic Compatibility (89/336/EEC, 92/31/EEC, 93/68/EEC) and Low Voltage Equipment Directive (73/23/EEC, 93/68/EEC).

For the evaluation regarding the Electromagnetic Compatibility and Low Voltage Equipment Directive, the following standards were applied:

O EMC

EN 61326-1: Electrical equipment for measurement, control and		
laboratory use— EMC requirements (1997+A1: 1998+A2:		
2001+A3:2003)		
Conducted and Radiated	Electrostatic Discharge	
Emission	EN 61000-4-2: 1995+A1:	
EN 55011:	1998+A2:2001	
1998+A1:1999+A2:2002 class A		
Current Harmonic	Radiated Immunity	
EN 61000-3-2: 2000	EN 61000-4-3: 2002+A1: 2002	
Voltage Fluctuation	Electrical Fast Transients	
EN 61000-3-3: 1995+A1:2001	EN 61000-4-4:	
	1995+A1:2001+A2:2001	
	Surge Immunity	
	EN 61000-4-5: 1995+A1:2001	
	Conducted Susceptibility	
	EN 61000-4-6: 1996+A1:2001	
	Voltage Dips/ Interrupts	
	EN 61000-4-11: 1994+A1:2001	
O Safety		

Safety

Low Voltage Equipment Directive 73/23/EEC & amended by 93/68/EEC IEC/EN 61010-1: 2001

GDS-2000 系列数字储存示波器 使用手册

	页数
使用前注意事项	4
安全术语与符号 特定注意事项	
产品介绍	8
包装物品 开机 功能确认	
面板介绍	
前面板 后面板 显示器	
快速操作	
操作快捷方式	
菜单树状结构	
初始值设定	
信号撷取的设定	
选择波形记忆长度	
CURSOR(光标)的设定	
显示器	
累积波形	
设定显示器的对比度	
达伴波形显示区性线 	
大/ 切亚小米平	
徑寬小丁佰与	

检视 XY 模式 47
检视垂直信号
波形反向
频宽限制
选择探棒衰减
其它设定
选择蜂鸣器的音调51
检视系统数据
设定日期53
设定时间
电池的保固(选购配备)55
量测
自动设定 56
进行自动量测 57
检视自动量测结果
GO-NO GO 测试
数学处理
PROGRAM
PROGRAM 有编辑和播放两个操作功能。
触发70
打印显示的图像(面板操作)
恢复初始值设定
远程控制
校正
校正垂直刻度
补偿探棒 91
常见问题与解决方案
<u> </u>

使用前注意事项

安全术语与符号

以下各种安全符号可能会出现在这本操作手册或本产品上:

结果可能会对人体产生伤害甚至于造成生命之损失。

警告:表示产品在某一确认情况下或是在实际应用上之

注意:表示产品在某一确认情况下或是在实际应用上 之结果可能会对本产品或是其它产品造成损坏。

以下各种安全符号可能会出现在这本操作手册或本产品上:

高电压 参考本手册 导电端子 底座端子

特定注意事项

- 请勿输入超过 300V_{peak} 的电压到 BNC 输入端。
- 为避免电线走火或电击,请勿连接火线到 BNC 测试端子的负端 子(接地)。
- 避免其它仪器,重物或易燃物置放于本机上。
- 避免严重的撞击和不当的处理以损伤机器。
- 连接仪器时使用排除静电的预防措施。
- 不要阻塞侧板和后板的通风口。

1) 拆卸仪器

仪器若有任何异常时,请送交固纬公司专业技术维修人员,请勿 自行拆卸仪器检修。

2) AC 电源输入

- AC 电源输入应该在 100V-240V, 47-63Hz ±10%的选择电压范围 以内。
- 第一次使用前先确认安装正确的保险丝值:
 100 V- 240 VAC 输入电压 : T 2A / 250V
- 3) 接地

警告:为避免电击,电源线的地线必须接地。

使用本机时,为确保使用者的安全及周边仪器安全,在与产品的输入与输出端子连接之前,确认产品已正确接地。

4) 保险丝的更换

保险丝规格及更换方式:

请依后面板标示值选用保险丝。更换保险丝的步骤:

警告:为了确保有效的防火措施,只限于更换特定样式 和额定值的保险丝。更换前必须先切断电源,并将电源 线从电源插座上取下来。

- 保险丝的型式: T2A/250V。
- 开机前先确定保险丝已装设妥当。
- 换保险丝前先将仪器电源开关(POWER)关闭。

 假如保险丝烧掉了,机器就不能动作。先找出造成保险丝损 坏的原因并作修正,然后才替换以正确的值和型式的保险丝。

5) 清洁

清洁前必须先切断电源,以中性的洗涤剂和清水沾湿柔软的布擦拭 仪器。不可以直接喷洒清洁剂到机器上,以防渗漏到机器内部而损 坏机器。不要使用含碳氢化合物或氯化物,或类似的溶剂,亦不可 使用含研磨成份的清洁剂。

6) 操作环境

此仪器操作的环境如下:

- 在室内使用,最高不得超过海拔 2000 m。
- 环境温度 0℃~50℃,相对湿度 80%(最大)。
- 安装等级: II, 污染程度: 2。
- 避免直接日晒以及强烈磁场的地方,

7) 储存环境

此仪器的储存环境如下:

- 室内温度: -20°C to 70°C。
- 相对湿度<80%。

警告: 这是甲类的量测设备,在居住的环境中使用时,可 能会造成射频干扰,在这种情况下,使用者会被要求采取 某些适当的对策。

产品介绍

GDS-2000 系列是具有实际用途的双信道或四信道的数字储存示波器,特征如下:

- 频宽范围从 60MHz 到 200MHz, 2 个或 4 个通道。
- 取样率高达 1G Sa/s 实时取样率(每通道 25G Sa/s 等效取样率)
- 最快可侦测 10ns 的脉冲。
- 5.6"彩色 TFT LCD 显示,可视角度宽广,8×12 格波形显示(关闭菜单)。
- 使用 USB 接口的列表机和储存装置。
- 直流电源(选购的电池)操作。
- 每一信道的最高记录长度为 25k 点。
- 自动测量的功能:最多 27 种类型。
- 峰值侦测: 10ns。
- FFT 频谱分析。
- 触发:视频(Video),脉冲宽度(Pulse Width),平均(Average), 延迟(Delay)。
- 具有"Program"和"Play"模式。
- Go-No-Go 测试。
- 在线辅助功能(on-line help menu)。
- 免费计算机软件和使用示波器之 RS-232, GPIB(选购佩备), USB 作为遥控接口。

GDS-2000 系列数字储存示波器 使用手册

包装物品

使用前先检查包装内容,若有缺失,请洽当地的销售商处理。

3. 电源线

4. 使用说明书

9

开机

机器的开机和摆放:

10

功能确认

在新的环境操作GDS-2000系列时,进行以下步骤确认功能是否稳定:

 连接测试探棒
 连接测试探棒到通道1的输入端和测试探棒
 补偿信号校正的输出端(2Vpp ± 3%, 1kHz 方波)。

测试探棒的衰减刻度设定到×10。

2. 信号撷取

确认补偿信号会出现。若通道1没有启动 (CH1键的LED为OFF),按^{CH1}键来开启通 道1(LED为ON)。

GDS-2000 系列数字储存示波器 使用手册

3. 刻度设定

4. 测试探棒补偿

按^{Auto Set}自动设定键,GDS-2000会自动调整水平刻度,垂直刻度和触发水平。

请参考自动设定的详细说明。

测试探棒补偿信号:2Vpp, 1kHz。

根据观查的参考信号波形来补偿测试探棒。 使用Volts/Div(垂直)和Time/Div(水平)的旋 钮调整刻度,详细说明请参考测试探棒补 偿的叙述。

 开始进行测量 继续进行其它测量。主要操作请参考操作快 捷方式的叙述,详细说明则从设定的架构的 章节开始叙述。

11

面板介绍

前面板

GDS-2064/2104/2204

GDS-2062/2102/2202

前面	面板说明	
A	LCD 显示器	TFT 彩色LCD显示器具有320×234 的 分辨率。
B	F1~F5 功能键	一组位于显示器右边相互关连的功能 键。
С	Variable 旋钮	顺时针旋转此钮为增加数值或移动到下 一个参数。
		反时针旋转此钮则减少数值或回到前一 个参数。
D	On/Standby 键	按一次为开机(亮绿灯),再按一次为待 机状态(亮红灯)。
Е	主要功能键	Acquire键为波形撷取模式。 Display键为显示模式的设定。 Utility键为系统设定。用于Go-No Go测 试, 打印,与Hardcopy键并用可作数 据传输和校正。
		Program键与Auto test/Stop 键并用可用于程序设定,和播放。
		Cursor 键为水平与垂直设定的光标。 Measure 键用于自动测试。
		Help 键为操作辅助的说明。
		Save/Recall 键为储存/读取USB和内部

存储器之间的图像,波形和设定储存。 Auto Set 键为自动搜寻信号和设定。

Run/Stop 键进行或停止浏览的信号。

F	Trigger menu 鍵	触发信号的设定。
G	Trigger level 旋钮	设定触发位置:顺时针旋转为增加刻度 反时针旋转为减少刻度。
Н	Horizontal menu 鍵	水平浏览信号。
Ι	Horizontal position 旋钮	将波形往右(顺时针旋转)移动或往左(反 时针旋转)移动。
J	Time/Div 旋钮	设定水平刻度:顺时针旋转为增加刻度, 反时针旋转为减少刻度。
K	Vertical position 旋 钮	将垂直信号向上(顺时针旋转)或向下(反 时针旋转)移动。
L	Channel (Vertical) menu 鍵	开启或关闭通到波形显示与垂直功能选 单。
Μ	Volts/Div 旋钮	选择每一通道垂直的比例系数。
Ν	输入端子	信号输入的BNC 连接器。
0	接地端子	连接待测体的接地导线端子。
Р	Math 鍵	根据信道的输入信号执行数学处理。
Q	USB 连接端子	与1.1/2.0兼容的连接端子,用于打印和 数据存取。
R	Menu On/Off 鍵	在显示器上显示或隐藏功能选单。
S	测棒补偿输出	输出2Vpp的测试棒补偿信号。
Т	外部触发输入	(限两个信道的机种)外部触发信号之输 入接头。

后面板

GDS-2062/ 2064/ 2102/ 2104/ 2202/ 2204

后面板说明

- A 主 Power 开关 —: ON_{\circ} O_{\circ}_{\circ} OFF.
- **B RS232C** 连接端子 9 pin 公座RS-232连接端子。
- C GPIB 插槽 (选购配置) 24 pin 母座GPIB连接端子。
- D 电池插槽(选购配置) 11.1V Li-Ion锂电池包,充电8小时 (主电源开关切到ON时)/操作4小时 (依操作情况)。
- E USB Device 连接端子 B型母座连接端子用于计算机的软件连接的端子(请注意,此后面板之USB Device端子与USB Host端子不能同时动作,每次以先插入装置者为优先,前面板之USB Host端子为独立装置,不在此限制内)。
- F USB Host 连接端子 A型Host母座端子与1.1/2.0 相容。 功能与前面板的USB连接端子相同 (请注意,此后面板之USB Device 端子与USB Host端子不能同时动 作,每次以先插入装置者为优先, 前面板之USB Host端子为独立装 置,不在此限制内)。
- G Go-NoGo 输出端子 Go-NoGo脉波信号输出。
- H 校正输出端子 GDS-2000自校信号输出。

显示器

GDS-2062/ 2064/ 2102/ 2104/ 2202/ 2204

GDS-2000 系列数字储存示波器 使用手册

G

L

J

显示器的说明

- 输入信号波形,按Channel键即可启动。 A 波形 Channel1: 琥珀色 Channel2: 蓝色 Channel3: 粉红色 Channel4: 绿色 安装电池后,指示会显示电池剩余的状态。 B 电池状态 (选购配备)
- C 远程控制的连 计算机软件/远程控制的接口开启: ■**□□**: RS232C启动。 接状态
 - -----: USB 启动。

 - ── : GPIB (选购配备)启动。
- 28-Apr'06 0:24:(预设)现在的时间和日 D 日期/记忆指针 期,设定在Utility的功能选单内。

当设定水平刻度,记忆长 度和调整影像大小时,内存的指针会暂时出现 指示显示波形的比例和位置与内部储存的数 据作比较。T

- **HULO**:可自动调整触发位置。 E 触发状态 ■ : 找不到触发状况。 **5** 停止触发。
- 」[™]L: Normal(正常模式)。 F 撷取状态
 - 」[™]L: Peak Detect(峰值侦测模式)。
 - 「 · Average(平均模式)。

功能键 这些选项由F1~F5 软键来执行。 H **触发频率计数器** 选择信道的输入信号频率: <20Hz 表示输入频率小于20Hz。 ■CH1 EDGE / 触发状态 (从左边)触发通道,类型和斜缘。 CH1L \sim 500mV 通道状态 (从左边)通道,频宽限制,耦合模式和Time/Div 刻度。

快速操作

操作快捷方式

这一章节介绍快速操作的快捷方式。

符号说明

Di <u>spl</u> ay→F1	=按 Display 键, 然后按 F1。
_{F1} ₽	=若需要,可重复按 F1。
F1~F4	=使用所有 F1,F2,F3,和 F4 来完成操作。

设定系统

撷取信号

选择撷取模式	Acquire→F1~F4
选择记忆长度	Acquire→F5
游标	
选择水平光标	$Cursor \rightarrow F1 \sim F2$
选择垂直光标	Cursor \rightarrow F1, F3

显示器

固定住波形	Run/Stop
更新显示画面	Display→F3
选择显示网格线	Display→F5
选择 vectors/dots 波形	Display→F1
设定显示对比	Display→F4
F1~F5 功能选单开关	Menu ON/OFF
检示储存的波形	Display→F2

水平

缩小放大水平画面	HORIMENU \rightarrow F2~F3
转动水平画面	HORIMENU→F4
检视 XY 模式	$HORIMENU \rightarrow F5$
垂直	
反转波形	$CH1/2/3/4 \rightarrow F2$
限制频宽	$CH1/2/3/4 \rightarrow F3$
选择耦合模式	$CH1/2/3/4 \rightarrow F1$
选择测棒衰减	$CH1/2/3/4 \rightarrow F4$

其它设定

选择蜂鸣器的声音	
选择语言	
设定日期/时间	
显示系统数据	

Utility \rightarrow F4 Utility \rightarrow F5 \rightarrow F5 \rightarrow F2 \rightarrow F1 $\overleftarrow{\leftarrow}$ Utility \rightarrow F5 \rightarrow F2

Utility→F3

量测信号

自动量测	
自动量测延迟	$Measure \rightarrow F1 \rightarrow F3 \overleftarrow{}$
自动设定刻度	Auto Set
自动量测时间	$Measure \rightarrow F1 \rightarrow F3 $
检视所有量测结果	Measure→Measure
自动量测电压	$Measure \rightarrow F1 \rightarrow F3 \overleftarrow{}$

Go-No Go 测试

编辑 Go-No Go 测试模式	$Utility \rightarrow F3 \rightarrow F2 \sim F3$
	$Utility \rightarrow F3 \rightarrow F1 \rightarrow F1 \sim F4$
	$Utility \rightarrow F5 \rightarrow F4$
进行 Go-No Go 测试	Utility \rightarrow F5 \rightarrow F3 \rightarrow F4

 $MATH \rightarrow F1 \overrightarrow{\leftarrow} \rightarrow F2 \sim F4$ $MATH \rightarrow F1 \overrightarrow{\leftarrow} \rightarrow F2 \sim F5$

 $\begin{array}{c} \operatorname{Program} \to F1 \xrightarrow{\frown} F2 \sim F5 \\ \operatorname{Program} \to F1 \xrightarrow{\leftarrow} F2 \sim F5 \end{array}$

數學處理設定

加/减	
进行 FFT 操作	
程序设定和播放	
编辑程序步骤	
播放程序	

触发

使用延迟(Delay)触发	$Trigger \rightarrow F1 \overrightarrow{\leftarrow} \rightarrow F2 \sim F4 \rightarrow F5 \rightarrow$
使用边缘(Edge)触发	F1~F4 Trigger \rightarrow F1 $$ \rightarrow F2~F3 \rightarrow F5 \rightarrow
使用脉宽(Pulse width)触发	$F1 \sim F4$ Trigger $\rightarrow F1 \qquad \rightarrow F2 \sim F4 \rightarrow F5 \rightarrow$
使用视频(Video)触发	$F1 \sim F4$ Trigger $\rightarrow F1 \leftarrow F2 \sim F5$

打印和数据传输

打印

打印显示图像/波形
储存和读出 快速存到 USB
储存所有图像/设定/波形 储存图像 储存设定
储存波形 读出设定
读出波形 在 USB 内存建立数据夹

Utility $\rightarrow F1 \xrightarrow{\frown} F1$ Hardcopy

$Utility \rightarrow F1 \rightarrow F1$
Hardcopy
$Save/Recall \rightarrow F5 \rightarrow F2 \rightarrow F1 \sim F4$
$Save/Recall \rightarrow F5 \rightarrow F1 \rightarrow F1 \sim F4$
Save/Recall \rightarrow F3 \rightarrow F1 \sim F4
Save/Recall \rightarrow F4 \rightarrow F1~F4
$Save/Recall {\rightarrow} F5 {\rightarrow} F3 {\rightarrow} F1 {\sim} F4$
$Save/Recall {\rightarrow} F5 {\rightarrow} F4 {\rightarrow} F1 {\sim} F4$
$Save/Recall \rightarrow F3 \rightarrow F5 \rightarrow F1 \sim F4$

远程控制

设定接口

Utility \rightarrow F2 \rightarrow F1 $\overleftarrow{\leftarrow}$

校正

校正 GDS-2000	$Utility \rightarrow F5 \rightarrow F1 \rightarrow F1$
测棒补偿	$Utility \rightarrow F5 \rightarrow F5 \rightarrow F1 \rightarrow F1 \sim F3$

菜单树状结构

下面结构键不包括:Auto Set, Run/Stop, Help, Auto test/Stop, Hardcopy。

Acquire, Channel, Cursor, Display(信号撷取,信道,光标,显示器)

GDS-2000 系列数字储存示波器 使用手册

Horizontal, Math, Measure(1)(水平,数学运算,和量测)

Press once)	(1	Press twice)	
Measure		Measure	
Vpp :		CH1	F 1
Vavg :		CH2	F 2
Frequency :		CH3 (4CH model)	F 3
Duty Cycle :		CH4 (4CH model)	F 4
Rise Time : F 5		OFF	F 5

Measure(2), Program(量测,程序设定)

GDS-2000 系列数字储存示波器 使用手册

Save/Recall(1)(储存/叫出)

Save/Recall(2)(储存/叫出)

GDS-2000 系列数字储存示波器 使用手册

Trigger(触发)

Utility (1)

GDS-2000 系列数字储存示波器 使用手册

Utility (2)

Utility (3)

GDS-2000 系列数字储存示波器 使用手册

初始值设定

工厂在安装设定时,按Save/Recall key→F1(初始 值设定),会出现左边的数据。

Acquisition	模式:Normal	记忆长度: 500
Channel (Vertical)	刻度:2V/Div	反向: Off
	耦合:DC	测棒衰减: x1
	频宽限制:Off	
Cursor	信号源: CH1	水平:无
	垂直:无	
Display	类型: 点阵	累积模式: Off
	网格线: 📰	
Go-NoGo	Go-NoGo:Off	信号源:CH1
	NoGo:	越界值:停止
Horizontal	刻度:2.5us/Div	模式:主时基
Math	类型:+	通道: CH1+CH2
	位置: 0.00 Div	Unit/Div: 2V
Measure	信号源1: CH1	信号源2: CH2
	电压类型: VPP	时间类型:频率
	延迟类型:FRR	
Ducanom	模式:编辑	步骤:1
rrogram	项目: 内存	
Trigger	类型: Edge	信号源:通道1
	模式: Auto	斜率: 🗸
	耦合: DC	拒斥: Off
	噪声拒斥: Off	
Utility	Hardcopy:图像储存	界面: GPIB
	Inksaver Off	地址:8
	声音: Off	

信号撷取的设定

信号撷取程序是转换取样的模拟输入信号成为数字格式,再重塑成波 形。

选择撷取模式:

- 1. 按Acquire键,从F1~F3之间选择撷取模式,撷取的图标会跟着改变显示。
- 2. 重复按F3选择取样号码,设定平均(Average)模式。
- 3. 重复按F4选择取样模式。

选项 ACQUIRE Mode(撷取模式)

正常」	依内存长度与 SEC/div 设定来
	显示波形。
峰值侦测」	撷取波形的最小和最大值所
	形成的间格, 有利于发生假象
	的可能性。
平均「□	由多次波形撷取次数的平均
	值来减少显示波形中随机或
	无关连之噪声。
	平均值:
	2, 4, 8, 16, 32, 64, 128, 256 °

GDS-2000 系列数字储存示波器 使用手册

Sampling Mode(取样模式)

记录每一波形撷取间格的第一个取样。

Equ. Time	等效取样率
(等效取样率)	由累积取样记录形成的波形只
	用于重复信号。
Real Time	实时取样率
(实时取样率)	由单一取样记录形成波形。

例:

选择波形记忆长度

注意显示器上的记忆长度显示一直都是 250 点(关掉菜单时为 300 点)。

Cursor(光标)的设定

选择水平光标

1. 按Cursor 键→F1

重复按F1选择信号。

- 2. 重复按F2选择欲开启的光标。
- 3. 使用Variable旋钮移动光标。
- 显示器右下角显示2个光标(T1和T2)的位置,它们 的时差(Δ)和两光标之间的频率(f)。

選項	波形通道	
	CH1~CH4 (4 个通道)	信道 1~信道 2 的波形。
	CH1~CH2 (2个通道)	信道1~信道2的波形。
	MATH(数学处理)	由数学处理产生的波形。
	水平光标	
		T1 和 T2 都关闭。
	1	开启T2,T1定格,用Variable 旋 钮只能移动T2。
		开启T1,T2定格,用Variable 旋 钮只能移动T1。
	11	T1和T2都开启,用Variable 旋钮 可以一起移动T1和T2。

选择垂直光标

1. 按Cursor 键→F1

重复按F1选择信号。

- 2. 重复按F3选择欲开启的光标。
- 3. 使用Variable旋钮移动光标。
- 4. 显示器右下角显示2个光标(V1和V2)的位置,它们 的电压差(Δ)。

選項	波形通道	
	CH1~CH4 (4 个通道)	信道 1~信道 4 的波形。
	CH1~CH2 (2 个通道)	信道 1~信道 2 的波形。
	MATH(数学处理)	由数学处理产生的波形。
	垂直游标	
		V1 和 V2 都关闭。
		开启 V2, V1 定格, 用 Variable 旋 钮只能移动 V2。
		开启 V1, V2 定格, 用 Variable 旋 钮只能移动 V1。
	=	V1 和 V2 都开启,用 Variable 旋 钮可以一起移动 V1 和 V2。

GDS-2000 系列数字储存示波器 使用手册

显示器

面板操作	Display -> Type F 1 ->	Vectors/ Dots
	1. 按Display 键→F1	
	2. 重复按F1选择波形显示格式	t o
選項	向量(Vector) 模式	将取样点连接成线的波形。
	取样点(Dot) 模式	只显示取样点。

例:

取样点模式

累积波形

011	
Off	关闭累积波形模式。

例:

设定显示器的对比度

固定住波形

 面板操作
 Run/Stop

 1. 按Run/Stop键,固定住波形(和触发)。

 2. 再按一次Run/Stop键可解除。

选择波形显示区框线

例:

GDS-2000 系列数字储存示波器 使用手册

关闭显示菜单

面板操作

选项

1. 按MENU ON/OFF键。

2. 再按一次此键将菜单打开。

例:

检视水平信号 转动水平窗口 面板操作 HORI F 4 Roll MENU 1. 按 Horizontal 键→F4。 2. 按 F1 回到初始值设定窗口。 缩放水平窗口 面板操作 F 2 Window HORI MENU Window F 3 Zoom 1. 按 Horizontal 键→F2。 2. 使用 Time/Div 旋钮设定缩放大小。 3. 使用 Horizontal Position 旋钮设定缩放位置。 4. 按 F3 放大窗口。

检视 XY 模式

范围

这个模式只适用于信道3和信道4。

1ns~10s

面板操作	HORI MENU XY F 5
	1. 输入信号到信道 1(水平)和通道 2(垂直)。
	2. 按 Horizontal 键→F5。
	3. 使用通道 1 的 Volts/Div 和 Position 钮设定水
	平刻度和位置。
	4. 使用通道 2 的 Volts/Div 和 Position 钮设定垂
	直刻度和位置。

检视垂直信号

选择耦合的方法

面板操作	CH1 Coupling F 1 -> ~ / /			
	 按 Channel 键→ 重复按 F1 选择 	→F1。 耦合。		
 选项	$\sim \frac{1}{4}$	AC 耦合 DC 耦合 接地耦合		

波形反向

例:

打开通道2的反向

GDS-2000 系列数字储存示波器 使用手册

频宽限制

面板操作	CH1 BW Limit F 3 On/ Off					
	1. 按 Channel 键→F3。					
	2. 重覆按 F3 取消執行。					
选项	打开频宽限制	频宽: 20MHz				
	关闭频宽限制	频宽: 依机器频宽而定				

选择探棒衰减

面板操作	CH1 Probe F 4 x1/x10/x100					
	1. 按 Channel 键→F4。					
	2. 重覆按 F4 选择探棒衰减位置。					
	3. 調整垂直刻度。					
选项	x1	没有衰减。				
	x10	衰减10倍。				
	x100 衰减100倍。					

其它设定

选择蜂鸣器的音调

000000	局频首调
	混合频率音调
OFF	关闭蜂鸣器

检视线上辅助说明功能

GDS-2000 有内建在线帮手的功能,可从面板按"HELP"键进入操作。

面板操作

Help

- 1. 按 Help 键,波形随即定住,前面板切换到"Help" 模式。
- 按内建的 Help 键,从显示的 Acquire, Cursor, Display, Measure, Program, Utility 等菜单,选 择需要在线帮手解说的项目。
- 3. 在按一次 Help 键即回到正常操作状态。

GDS-2000 系列数字储存示波器 使用手册

检视系统数据

- 1. 按Utility键→F5→F2。
- 2. 以下数据会显示:

Model name, Serial No, Firmware version, battery voltage and capacity (选购配备)。

	28-Apr ² 06	6:20	J	UTILITY
GOOD W	ILL INSTRUMEN	IT CO., LTD.		Self CAL, Menu
1 Serial NO Firmware:	.: P941116 .V0.03.YY			System Info.
URL:http://	∕∕www.goodఘil	l.com.tw	****	Go-NoGo, Menu
	BATTERY INFO	RMATION	: :	NoGo When
2		BAT.#2	2	
Voltage:	12550m	V: : 125	73mU	
Capacity:	86%	100	4	More 🕖
<u> </u>	21EQ.1	000 s	<u> </u>	4.000000000
CH1.8 500mV		CH3 == 2V	СН	4.96962KH: 4 === 20

3. 回到信号画面, 按其它键。

设定日期

面板操作

- 按 Utility 键→F5→F5→F2, 若 "Date"没有出现,再按一次 F1。
- 2. 重复按 F2 选择日期项目。
- 3. 用 Variable 旋钮设定年月日。
- 4. 按两次 F4 储存设定。
- 5. 按 F5 回到上一层菜单。

	月	1~12	
选项	日	1~31	

GDS-2000 系列数字储存示波器 使用手册

设定时间

电池的保固(选购配备)

这颗电池属于选购配备,请恰当地的经销商购买并安装。

- 规格 Li-Ion, 11.1V 1600mAh/每颗 (一台机器两颗) 充电时间:约8小时(主电源,开闢切到ON) 操作时间:约4小时
- **电池讯息** 按Utility 键→F5→F2查看电池讯息。

电池的电压和充电讯息会显示在画面下方。

量测

自动设定

自动设定的功能会自动找到适合输入信号的设定(Vertical, Horizontal, Trigger)。

限制条件:信号低于30mV或30Hz不会动作。

面板操作 	Auto Set 以下是自动设定的项目:				
信号撷取	模式:	取样。			
显示	类型: 格式:	向量。 YT。			
水平	刻度: 位置:	信号频率。 在网格线窗口的中央。			
觸發	耦合: 位置: 斜面: 类型: 触发源: 位准:	DC。 中央。 正向。 边缘。 最高频率。 触发源数据的中间点。			
水平	频宽: 偏移: 耦合: 刻度:	全频宽。 0。 视信号而定。 视信号而定。			

进行自动量测

- 5. 重复按 F3 选择量测型式。
- 6. 使用 Variale 旋钮选择量测显示项目, F4 会显示 对应的图标。
- 7. 按 F5 回到量测显示的画面。

GDS-2000 系列数字储存示波器 使用手册

选项	量测显示 信道		
	信道1~4(4通道	宜机种)	信道1~4(4通道机种)
	信道1~2(2通道	宜机种)	信道1~2(2通道机种)
	电压类型		
	Vpp	<u> </u>	正向和负向峰值电压的 差。
	Vmax		正向峰值电压
	Vmin		负向峰值电压
	Vamp	<u>↓</u> PP	整体最高和最低电压的 差(-Vhi-Vlo)
	Vhi	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	整体最高的电压
	Vlo	Ţ Ţ	整体最低的电压
	Vavg	t↔	第一周期的平均电压
	Vrms	tWV	均方根值电压
	ROVShoot		上升过激电压
	FOVShoot		下降过激电压
	RPREShoot		上升前激电压
	FPREShoot		下降前激电压

时间类型 Freq	ţŢŢ	波形频率	FFF		信号源1和信号源2的第 一个下降缘之间的时
Period	ŢŢ	波形周期时间(=1/Freq)	LRR	ⅎ∟ୣ	问。 信号源1的第一个上升
Rise time	∕⊷	脉冲的上升时间(~90%)			缘和信号源2的最后一 个上升缘之间的时间。
Fall time	-++-	脉冲的下降时间(90%~)	LRF	ᢖᢉ ᡗ᠋ᢩᡘᠮ	信号源1的第一个上升 缘和信号源2的最后一
+Width	ŢŢ	正向脉冲宽度			个下降缘之间的时间。
Width	Ţ	负向脉冲宽度	LFR	_⋥、 _ヿ _ੑ ţヿ	信号源1的第一个下降 缘和信号源2的最后一 金上升卷之间的时间
Duty cycle	ŢIJ	脉冲信号比率和整个周 期的比较(=100x 波形 宽度/周期)	LFF	_A _LA	信号源1的第一个下降 缘和信号源2的最后一
延迟类型					个下降嫁之间的时间。
FRR		信号源1和信号源2的第 一个上升缘之间的时 间。			
FRF	≝╹ 」∓โ	信号源1的第一个上升 缘和信号源2的第一个 下降缘之间的时间。			
FFR	_₽ Ŧſ_"ſſ	信号源1的第一个下降 缘和信号源2的第一个			

缘和信号源2的第一个 上升缘之间的时间。

59

检视自动量测结果

- 有两个检视模示可供选择:从面板菜单观看选择 的功能的测试结果(按 Measure 键一次)或从显示器 展示所有测试结果。
- 2. 重复按 Measure 键直到检视模式出现,观查整个 测式结果。
- 选择 F1 到 F4 对应的信道 1,信道 2,或信道 3, 信道 4(4 信道机种),观查测视结果。GDS-2000 可 以同时显示 19 种量测之结果,请参考以下显示的 结果:

	<u> </u>	28-Apr [*] 07	8:51	<u>"</u>	۳.	DISPALL
		Channe	1 1			CH 1
	RiseOVSho	ot: 1.61	Vpp:	1.32 V	- T	
1	FallOVSho RisePRESh	ot: 0.00% oot: 0.00%	Umax	620mV		CH 2
	FallPRESh	oot: 0.00%	Umin	-700mV		
	Frequency	444 800	Vamp	-4w24U.		CH 3
	RiseTime:	3.252us	Uhi:	3.96 V		
	FallTime:	3.149us	010:	2.72 U	-	C11.4
2	" +Width: -Width:	224.1us	Vaug:	-37.ØmV		LH 4
	DutyCycle	50.47%	- Vrms:	603mV		
		and the second	h.			OFF
		100us CH2 == 500m	CH1 EC)GE / 2V	СН	2.24838kHz 4 === 20
4	. 按 F5	离开量测	回显示	画面。		

Go-No Go 测试

Go-No Go 的测试条件

- 1. 按 Utility 鍵→F5。重复按 F4 选择 No Go When(越界条件)功能。
- 2. 按 F3 进入 Go-No Go 菜单选单。
- 3. 重复按F2选择测试信号。
- 4. 重复按F3选择越界事件。
- 5. 按 F1 进入模块编辑菜单选单。
- 6. 重复按 F1 选择模块。
- 7. 重复按 F2 选择模块信号源。
- 8. 使用 Variable 旋钮选择模块位置(最大/最小)或容许误差。
- 9. 按F4储存编辑模块。
- 10. 按 F5 回到先前的菜单画面。

选项	Go-No Go When (越界条件)		自动	从输入的信号自动创造出越界波形之上下限
		No Go表示主信号没有越过模块。		值,开在波形标示辺界(容忍误差)可调。 信号源: CH1:使用信道1的信号
		No Go表示主信号正在越过模块。		
	模块			CH2:使用信道2的信号
	越界波形之上限	设定越界波形之上限值。		谷忍侯差 0.4%~40% 在自动模式创造一组越界波形: Tolerance Tolerance Tolerance Tolerance Tolerance Output Output <
	值	信号源:		
		RefA:参考波行必需先被储存。M1~20: 模块先被储存在内部存储器内(请参考储 存波形的详细介绍)。		
		越界波形可调位置范围: ±12/Div		
	下限值	设定越界波形之下限值。		
		信号源: RefB:参考波行必需先被储存。M1~20: 模块先被储存在内部存储器内(请参考储 存波形的详细介绍)。	信号源:	
			CH1	信道1为主测试信号。
			CH2 越界条件:	信道2为主测试信号
		越界波形可调位置范围:	Stop	信号越界,测试停止。
		±12/Div	Stop+	信号越界,峰鸣器响,测试停止。
			Continue	即使当待测信号越界,测试仍然继续。
			Cont.+ t	当待测信号越界,峰鸣器响,测试仍然继续。

进行 Go-No Go 测试

- 2. 按 Utility 键→F5→F3。
- 3. 按 F4 进行 Go-No Go 测试。
- 4. 再按一次 F4 停止 Go-No Go 测试。
- 5. 按 F5 显示测试结果(测试次数:越界次数)
- 6. 可从后板输出 10 µ s 脉冲信号的测试结果。

(开集极型Open Collector)

数学处理

加(add)/减(subtract)的信号

- 2. 重复按 F1 选择操作项目。
- 重复按 F2 选择两个通道(只适用于 4 个通道的机 种)。
- 4. 按 F4 设定测试所得的波形的位置,然后使用 Variable 旋钮调整。

选项	数学处理种类	
	+	加法
	—	减法
	通道配对	
	CH1_CH2	通道1和通道2之间的数学处理。
	CH3_CH4	通道3和通道4之间的数学处理。
		(只适用于4个通道的机种)。
	位置	
	-12Div~+12Div	

进行 FFT 操作

面板操作

通道3和通道4不提供。

- 1. 按 Math 键→F1。重复按 F1 直到"FFT"出现为止。
- 2. 重复按F2选择主要通道。
- 3. 重复按F3选择FFT窗口种类。
- 4. 按 F4 设定测试所得的波形的位置,然后使用 Variable 旋钮调整。
- 5. 重复按 F5 选择振幅刻度。

选项 FFT 窗口

Rectangular	适用于瞬时的分析。		
Blackman	频率分辨率不像 Hanning 那么好		
	但是旁瓣抑制比较好。		
Hanging	适用于高频率分辨率。		
Flattop	适用于高振幅精确度。		
位置			
-12Div~+12Div			
振幅刻度			
1, 2, 5, 10, 20 dB/Div			

GDS-2000 系列数字储存示波器 使用手册

PROGRAM

Program 有编辑和播放两个操作功能。

编辑步骤:

- 1. 按Program键→F1进入编辑功能选项。假如编辑功能 选项的画面没有出现,再按一次F1。
- 2. 按F2选择编辑步骤,然后使用Variable旋钮,显示器 的光标会随着选择步骤移动。
- 按F3选择Program功能选项,使用Variable旋钮选择 参数。
- 4. 按F5储存编辑步骤。
- 5. 重复执行以上的步骤进行下一个功能的操作。

选项	步骤	
	1~20	
	功能选项	
	Menu	"AutoMeasure"或"Cursor"。
	Memory	M1~M20预先显示波形。
	Time	每一步骤 1~99 秒。

播放步骤

面板操作

	Play	F 1	
	Cycle	F 2 →	1 ~ 99
Program >	From:/ To:	F 3 →	1 ~ 15
	Start	F 5	

- 1. 编辑Program。
- 按Program键→F1。假如播放功能选项的画面没有 出现,再按一次F1。
- 3. 按2设定重复的次数,然后使用Variable旋钮调整。
- 按F3选择"From:"步骤(Program的开始),假如 "From:"功能选项的画面没有出现,再按一次F3。 然后使用Variable旋钮调整。
- 5. 按F5或按Auto test/Stop键开始Program的播放。
- 6. 再按一次Auto test/Stop键结束Program的播放。

选项 周期 (重复的次数) 1~99 From: / To: (开始和结束步骤) 1~15 From: ≤ To:

GDS-2000 系列数字储存示波器 使用手册

触发

边缘触发

- 按 Trigger 功能选项键。重复按 F1 直到"Edge"出现 为止。
- 2. 重复按 F2 选择触发源信号。
- 3. 重复按F3选择触发模式。
- 4. 按 F5 选择斜率和耦合方式。
- 5. 重复按 F1 选择触发斜率。
- 6. 重复按 F2 选择触发耦合。
- 7. 重复按F3选择频率拒斥模式。
- 8. 按 F4 打开噪声拒斥功能,再按一次关闭此功能。
- 9. 按 F5 回到前一个菜单画面。

选项	触发源	
	CH1~CH2	信道 1~信道 2 (2 信道机种)。
	CH1~CH4	信道 1~信道 4 (4 信道机种) 。
	External	外部触发输入信号(只适用于2通道机
		种) 。
	Line	AC 电源。
	觸發模式	
	Auto	假如没有输入波形触发产生, GDS-2000
		依然会自动产生内部触发。选择这个模式
		用在观测低至 10s/div 之慢速讯号。
	Normal	当没有输入波形触发时,示波器将停止撷
		取波形。
	Single	在选择单击触发之后,示波器将在下一个
		有效触发后停止触发,按Run/Stop 键进行
		下一次有效之触发。
	Auto Level	在此模式触发准位指示之调整,将仅在输
		入波形之最高与最低准位之间,如果调整
		超出范围, 触发准位指示将跳回输入波形
		之中心处。外部触发不支持本功能。
	斜率	
		上升缘
		下降缘
	耦合	
	\sim	AC 耦合
		DC 耦合
	频率拒斥	
	LF	低頻率拒斥排斥频率在 50kHz 以下。
	HF	高頻率拒斥排斥频率 50kHz 以上。
	Off	停止頻率拒斥。
	噪声拒斥	
	ON	使用 DC 耦合和低灵敏度排斥噪声。
	OFF	停止噪声拒斥。

视频触发

西长堤步		Video F 1	
Ⅲ1 以1 来17F		Source F 2 (4CH) CH1/2/3/4 (2CH) CH1/2	
	MENU	Standard F 3 > NTSC/ SECAM/ PAL	
		Polarity F 4	
		Line F 5 Field1/2, NTSC:1 ~ 263 PAL/SECAM:1~313	
	1. 按口 出现	Frigger 功能选项键。 重复按 F1 直到"Video" 见为止。	
	2. 重复	夏按 F2 选择触发源信号。	
	3. 重复	夏按F3选择视频标准。	
	4. 重复	夏按 F4 选择触发极性。	
	5. 按 I	F5 选择触发图场,然后用 Variable 旋钮调整。	
选项	触发源		
	CH1~2(4)	信道 1~信道 2 (信道 4)。	
	视频标准		
	NTSC	美国国家电视系统委员会制定的视频标准。	
	PAL	相位交替线式扫描的视频标准。	
	SECAM	具内存的序贯颜色的视频标准。	
	极性		
	fL	正向脉冲。	
		负向脉冲。	
	视频图场		
	1~263	为NTSC。	

脉冲宽度触发

面板操作	MENU >	$ \begin{array}{c} (2CH) \\ CH1/2/ \\ External/ \\ Line \\ (4CH) \\ Cupling \\ F 2 \\ Line \\ F 3 \\ Auto' \\ Normal/ \\ Single' \\ Auto Level \\ \hline F 4 \\ 20ns- \\ 200us \\ F 5 \\ \hline \end{array} \begin{array}{c} Slope \\ F 1 \\ \hline \hline f 1 \\ Coupling \\ F 2 \\ \hline \hline f 2 \\ Coupling \\ \hline f 2 \\ \hline \hline f 3 \\ Coupling \\ \hline f 2 \\ \hline \hline f 3 \\ Coupling \\ \hline f 4 \\ \hline \hline f 4 \\ Coupling \\ \hline f 4 \\ \hline \hline f 4 \\ Coupling \\ \hline \hline f 4 \\ \hline \hline f 5 \\ \hline \hline \end{array} \begin{array}{c} Slope \\ \hline f 4 \\ \hline \hline f 5 \\ \hline \hline \end{array} \begin{array}{c} Slope \\ \hline f 4 \\ \hline \hline \hline f 6 \\ \hline \hline \hline f 6 \\ \hline \hline \hline f 6 \\ \hline \hline \hline \hline f 6 \\ \hline \hline \hline \hline f 6 \\ \hline \hline \hline f 6 \\ \hline \hline \hline \hline f 6 \\ \hline \hline$
	1. 按 Trigger 3	功能选项键。重复按F1直到"Pulse"出现
	为止。	
	2. 重复按 F2 :	选择触发源信号。
	3. 重复按 F3	选择触发模式。
	4. 重复按 F4 注	选择触发条件,使用 Variable 旋钮设定参
	数。	
	5. 按 F5 选择	斜面和耦合方式。
	6. 重复按 F1	选择触发斜面。
	7. 重复按 F2 ;	选择触发耦合。
	8. 重覆按 F3	選擇頻率拒斥模式。
	9. 按 F4 打開發	雜訊拒斥功能,再按一次關閉此功能。
	10. 按 F5 回到	前一个菜单画面。
	11. 使用 Trigge	r 旋钮设定触发准位。
选项	触发源	
	CH1~CH4	信道 1~信道 4
	外部	外部触发输入信号 (只适用于两个通道

外部	外部触发输入信号 (只适用于两个通道
	机种)
Line	AC 电源输入

GDS-2000 系列数字储存示波器 使用手册

触	发	模	力
/	~	\sim	- u

假如没有触发事件, GDS-2000 会产生内部触发。
GDS-2000 在触发事件中撷取波形。
在触发事件中只撷取一次波形。按 Run/Stop 键 再撷取一次波形。
GDS-2000 自动调整触发准位指示器到波形的中央。
2
触发脉冲宽度小于设定的时间值。
触发脉冲宽度大于设定的时间值。
触发脉冲宽度等于设定的时间值。
触发脉冲宽度不同于设定的时间值。
正向脉冲宽度触发。
负向脉冲宽度触发。
AC 耦合
DC 耦合
低頻率拒斥排斥频率在 50kHz 以下。
高頻率拒斥排斥频率 50kHz 以上。
停止頻率拒斥。
使用 DC 耦合和低灵敏度排斥噪声。
停止噪声拒斥。

进阶延迟触发

只有具有两个通道的机种才提供进阶延迟触发。

面板操作

通道的机种力 旋铁斑阴 延迟 融及。				
Delay F 1 By Time F 2 100ns~ 1.3ms By Event F 3 2 ~ 65000 Ext: F 4 ECL:-1.35V Slope/ Coupling F 5 5	Slope F 1 Coupling F 2 Rejection F 3 LF/HF/Off Noise Rejection F 4 On/Off Previous Menu F 5			
 连接开始触发信号到外部 道1或2。 	触发信号源,主信号到信			

- 按 Trigger 功能選項鍵。 重覆按 F1 直到"Delay"出 現為止。
- 3. 按 F2 設定延遲時間,然後用 Variable 旋鈕調整。
- 4. 按F3 設定触发事件次数,然後用 Variable 旋鈕調整。
- 5. 重覆按 F4 設定开始信号的触发准位,然後用 Variable 旋鈕調整。
- 6. 按 F5 选择触发斜率,然後重覆按 F1。
- 7. 重复按 F2 选择耦合模式。
- 8. 重覆按 F3 選擇頻率拒斥模式。
- 9. 重覆按 F4 選擇雜訊拒斥模式。

选项 By Time (触发延迟时间)
 100ns ~ 1.3ms
 By Event(触发事件次数)
 2 ~ 65000

GDS-2000 系列数字储存示波器 使用手册

Ext. (开始信号的	的触发准位)
TTL	+1.48V
ECL	-1.35V
USER	±12V 范围,由使用者自行定义 准位。
斜率	上升缘 下降缘
耦合 ~~ 	AC 耦合 DC 耦合
频率拒斥 LF	低頻率拒斥排斥频率在 50kHz 以下。 高頻率拒斥排斥频率 50kHz 以
Off	上。 停止频率拒斥功能。
噪声拒斥 On	使用 DC 耦合和低灵敏度排斥噪声。
Off	停止噪声拒斥功能。

触发只发生在用户定义的延迟时间过后。

打印

打印显示的图像(面板操作)

HardCopy

- 1. 按 Utility 键→F1。重复按 F1 直到"Printer"出现为止。
- 2. 重复按 F2 选择省墨模式打印。
- 3. 重复按F3选择彩色,灰阶,直印,和横印之方式。
- 4. 按 F4 选择图像大小比例,然后用 Variable 旋钮调整。
- 5. 将列表机连接到前面或后面的 USB Host 端(請注意,後面板之 USB Device 端子與 USB Host 端子不能同時動作,每次以先 插入裝置者為優先,前面板之 USB Host 端子為獨立裝置, 不在此限制內)。

前面板 USB

6. 按 Hardcopy 键开始打印(GDS-2000 会记住打印的设定,除非 更换列表机,否则下次打印时不需要再设定)。

InkSaver (省墨模式)

On/ Off

InkSaver On

选项

InkSaver Off

颜色/图像 Color Landscape Color Portrait Gray Landscape Gray Portrait 比例 (图像比例) 5~75

储存/取出

用快闪随身碟快速储存

面板操作

HardCopy

- 1. 按 Utility 键→F1。
- 2. 重复按 F1 选择储存讯号。
- 3. 重复按 F2 选择省墨模式。
- 将快闪随身碟连接到前面或后面的 USB Host 端(请注意,后面板 之 USB Device 端子与 USB Host 端子不能同时动作,每次以先 插入装置者为优先,前面板之 USB Host 端子为独立装置,不在 此限制内)。

前面板 USB

5. 按 Hardcopy 键储存数据。

选项	影像	储存显示影像(GWxxxx.BMP) 。
	All	在资料夹儲存以下数据(Allxxxx).
		顯示影像: Axxx.BMP
		波形: Axxx.CSV
		设定: Axxx.SET
	InkSaver (省墨模式)
	On/Off	参考前面章节的叙述。

储存影像/波形/设定

- 1. 将快闪随身碟连接到前面或后面的 USB Host 端(请注意, 后面板 之 USB Device 端子与 USB Host 端子不能同时动作,每次以先插 入装置者为优先,前面板之 USB Host 端子为独立装置,不在此 限制内)。
- 2. 按 Save/Recall key→F3 (设定)或 F4 (波形)或 F5→F1(影像)或 F5 →F2 (所有功能)。
- 3. 按 F2 选择省墨模式。
- 4. 按 F3, 然后用 Variable 旋钮选择波形信号源(用于波形的功能),。
- 5. 按 F4 储存。
- 6. USB 数据夹的设定请参考后面的说明。

GDS-2000 系列数字储存示波器 使用手册

前面板 USB 后面板 USB

储存数据的屏幕 -JML SAVE/REC Source Destinatio Ref A HE CONTRACTOR

CH2

СНЗ сна

Math

Ref A

Ref B

Ref D

Ref B

Ref C

Ref D

Memory

«M1»

USB Ref C

Save

Waveform

Source

Destination

USB

Save

File Utilities

选项 档案种类

Setup	设定档案 (Gxxx.SET).
Waveform	波形档案 (Gxxx.CSV).
Image	影像档案 (Gxxx.BMP).
All	一个数据夹(Axxx)包含设定
	(Axxx.SET), 波形(Axxx.CSV), 和影
	像档案(Axxx.BMP)。
InkSaver (显示	背景颜色)
On/Off	实际效果请参考后面的说明。
来源	
CH1~CH4	信道 1 ~信道 4 的波形
MATH	波形由数学处理产生。
RefA~D	参考波形A~D。
储存位置	
RefA~D	参考波形 A~D。
Memory	M1~M20 内部存储器。
USB	USB 快闪随身碟。

CH1 $\sim 2mV$

...

File Utilities

1.

GDS-2000 系列数字储存示波器 使用手册

设定快闪随身碟的数据夹和档案 进行此单元时,已将快闪随身碟连接到GDS-2000,并且已经选择了 Save/Recall菜单的F5 "File Utlities"功能。 **面板操作** Save/Recal ↓ ... F1 Select F1 Character F1 ... F2 New Folder F2 Back F2 Back F2

数据夹的内容

2. 按 F1 进入其它数据夹。

Delete

Previous

Menu

使用 Variable 旋钮选则数据夹。

3. 回到上一层的功能,按F1选择ROOT功能。

Save

Previous

Menu

重开一个数据夹并更 1 新档案和数据夹的名称

 按 F2 (新数据夹)或 F3 (档案或数据夹重新命 名)后,会出现编辑屏幕。

- 使用 Variable 旋钮并按 F1 进入字母画面选择 一个字。
- 3. 按 F2 则删除光标前的字母。
- 4. 按 F4 储存结果。

刪除档案/数据夹	1.	使用 Variable 旋鈕移动档案或数	数据夹。
	2.	按 F4 刪除选定档案或数据夹, 删除。	再按一次确认

GDS-2000 系列数字储存示波器 使用手册

取出储存的波形/设定

- 將快閃隨身碟連接到前面或後面的 USB Host 端(請注意,後面板 之 USB Device 端子與 USB Host 端子不能同時動作,每次以先插 入裝置者為優先,前面板之 USB Host 端子為獨立裝置,不在此 限制內)。
- 2. 按 Save/Recall 键→F5→F3 (设定)/F4 (波形)。
- 3. 按 F2 選擇叫出档案来源。
- 4. 使用 Variable 旋钮选择来源的位置。

前面板 USB

后面板USB

- 5. 按 F3 選擇储存位置(参考波形 RefA, B 或 C, D(4 通到机种)。
- 6. 按 F4 叫出波形/设定。
- 7. 设定 USB 数据夹。
- 8. 按 Save/Recall 键→F2。选择 F2 到 F4 之间的按键显示被呼教出的 波形。

取出 Ref B 的参考波形

诜项 档案种类 Waveform 波形档案(xxxx.CSV) 面板设定档案(xxxx.SET). Setup 档案取出来源 M1~M20 内部存储器 Memory USB快闪随身碟(Gxxx.SET) USB 档案储存位置 储存在机器内部的参考波形 Ref A/B/C/D (4 个通道 机种), Ref A/B(2 个通道机种)

恢复初始值设定

面板操作	Save/Recall > Default Setup F 1	
	按Save/Recall键→F1。取 如以下名细:	出GDS-2000出厂设定,
Acquisition	模式:正常	记忆长度: 500
Channel	刻度: 2V/Div	反向: Off
(Vertical)	耦合: DC 频宽限制: Off	探棒衰减: x1
Cursor	通道: CH1 垂直: 无	水平:无
Display	类型: 点 标线:■■	累积: Off
Go-NoGo	Go-NoGo: Off	通道: CH1
	NoGo :	越界:停止
Horizontal	刻度: 2.5us/Div 模式: 主时基	
Math	类型:+ 通道: CH1+CH2	
	位置: 0.00 Div	Unit/Div: 2V
Measure	通道: CH1 通道: CH2	
	电压类型: VPP 时间类型: 频率	
	延迟类型:FRR	
Program	模式:编辑	步骤:1
	项目: 记忆	
Trigger	类型: Edge 通道: Channel	
	模式: Auto	斜度: _/
	耦合: DC	拒斥: Off
	噪声拒斥: Off	
Utility	打印: SaveImage,	界面:GPIB,地址8
	Inksaver Off	
	声音: Off	

GDS-2000 系列数字储存示波器 使用手册

远程控制

设定接口

- 定 RS232. (只适用于 RS232C)。
- 4. 重复按 F2 选择地址(只适用于 GPIB)。
- 5. 将 USB/RS232C/ GPIB 电缆线连接到后板。

* 不允许封闭或平行架构。

GDS-2000 系列数字储存示波器 使用手册

校正

校正垂直刻度

在以下两个状况下必需行校正时:

1. 在新的测试环境。

2. 测试的环境的温度改变 5°C 以上。

面板操作:

测试环境必需符合以下条件:

温度: 26 ± 5°C,相对湿度: ≤ 80%

后板的校正输出端子与通道1连接(BNC 公座- 公座连接端子)。

校正输出端子

连接到通道1

按 Utility 键→F5→F1。 按 F1 校正垂直刻度。 按 F5 校开始校正(约 2 分钟) 完成后,连接到信道 2 或其它信道,执行同样的校正。

补偿探棒

探棒第一次被使用时必需先进行探棒补偿。

面板操作

1. 将探棒连接到信道1和参考信号输出端。

GDS-2000 系列数字储存示波器 使用手册

- 按 Utility 键→F5→F5→F1→F1. 再按一次 F1 选择波型 □」。
- 2. 按F2,使用 Variable 旋钮设定频率。
- 3. 按F3,使用 Variable 旋钮设定工作周期。
- 4. 观察补偿探棒波型。

选项	波型种类	
		探棒补偿信号,2Vpp 在 x10 探 棒衰减。
	m m	显示有效记忆长度的参考信号。
	பா	显示有效峰值侦测的参考信号。
	频率	
	1k~100k	1k 步阶
	Duty Cycle	
	5%~95%	5%步阶

常见问题与解决方案

- 按前板的电源键,但是机器没有反应。
- 探棒波形失真。
- 连接信号但是屏幕上没有出现。
- 自动设定不能完整的抓取信号。
- 如何清理零乱的面板设定。
- 打印出来的显示图像背景太暗。
- 装置选购的电池组,仪器没有动作。
- 日期与时间的设定不正确。
- USB 无法启动。
- 精确度与规格不符。

按前板的电源键,但是机器没有反应。 确认是否后板的开关已切换到 On。 注意:若操作正确,显示画面要 15~20 秒才会出现。

探棒波形失真。

可能需要补偿探棒。

注意:频率的精确度和工作因素没有规范在探棒补偿波形中,所以不 应将这些数据做为其它的参考目地。

连接信号但是屏幕上没有出现。 确认是否按了^{CHT} 信道键开启信道(LED 亮)。 自动设定不能完整的抓取信号。

自动设定功能不能抓取低于 30mV 或 30Hz 的信号,请参考操作手册的说明。

如何回复出厂值的设定。 按 Save/Recall 键→F1 叫出初始值的设定。

打印出来的显示图像背景太暗。 使用 Inksaver 功能使色彩逆转:从(黑色的背景和白色波形)到 (白色的 背景和黑色波形。

日期与时间的设定不正确。

请根据操作说明设定,若是不行,可能是控制时钟的电池已损耗,请 治询你的经销商。

USB 无法启动。

确认后板的 USB Host 端与 device 端没有同时使用。拔除连接再重试 一次。

精确度与规格不符。

确认仪器是否暖机至少 30 分钟,在+20°C~+30°C 的测试温度,这个步骤可以使机器维持稳定符合规格。

若仍有其它问题,请洽当地的销售商或进入以下网址与 GWInstek 连 络:<u>www.gwinstek.com.tw</u> / marketing@goodwill.com.tw,我们将尽速为 您服务。

规格说明

此规格只有在以下条件下才适用:

仪器开机至少30 分钟,周围温度在+20°C~+30°C之间。

	GDS-2062/64	GDS-2102/04	GDS-2202/04
通道	2/4	2/4	2/4
频宽	DC~60MHz	DC~100MHz	DC~200MHz
	(-3dB)	(-3dB)	(-3dB)
上升时间	约 5.8ns(计算值)	约 3.5ns(计算值)	约 1.75ns(计算值)

GDS-2062/2064/2102/2104/2202/2204

垂直 灵敏度 精确度	2mV/div~5V/div (1-2-5 增大) ± (3% x 读出 +0.05div +0.8 Volts/div)	
	输入偶合	AC, DC, & Ground
	输入阻抗	1MΩ±2%, ~16pF
	极性	正常 & 反向
	最大输入	300V (DC+AC 峰值), CATII
	波形信号	+, -, FFT
	偏置檔位	$2mV/div \sim 20mV/div: \pm 0.5V$
		50mV/div~200mV/div: ±5V
		$500 \text{mV/div} \sim 2 \text{V/div} = \pm 50 \text{V}$
		$5V/div: \pm 300V$
	频宽限制	20MHz (-3dB)
触发	触发源	CH1, CH2(只适用 2 个通道机种),
		CH3&CH4(只适用4个通道机种)

	模式 耦合 灵敏度	Auto-Level, Auto, Normal, Single, TV, Edge, Pulse Width, Time-Delay, Event-Delay(只适用 2 个通道机种) AC, DC, LFrej, HFrej, Noise rej DC~25MHz: 约 0.5div 或 5mV 25MHz~max: 约 1div 或 10mV
外部触发 (只 適用2個通道 機種)	檔位 灵敏度 输入阻抗 最大输入	±15V DC~30MHz: ~50mV 30MHz~最大: ~100mV 1MΩ±2%, ~16pF 300V (DC + AC peak), CAT II
水平	檔位 模式 精确度 前触发 后触发	1ns/div~10s/div, 1-2-5 增大 Main, Window, Window Zoom, Roll, X-Y ±0.01% 20 div 最大 1000 div
X-Y 模式	X-轴输入 Y-轴输入 相位转换	通道 1 通道 2 ±3 °在 100kHz
信号撷取	实时时间 等效时间 垂直分辨率 记录长度 单击频宽 撷取模式 峰值侦测 平均	最大 1G Sa/s 最大 25G Sa/s 8 位 最大 25k 点 100MHz 取样,峰值侦测,平均,累积。 10ns 2,4,8,16,32,64,128,256
游标与量测	电压	Vpp, Vamp, Vavg, Vrms, Vhi, Vlo, Vmax, Vmin, Rise Preshoot/ Overshoot, Fall Preshoot/ Overshoot 96

	时间	频率,周期,上升时间,下降时间, 正向宽度 反向宽度 工作周期
	延迟	FRR, FRF, FFR, FFF, LRR, LRF, LFR, LFF
	游标	电压差(ΔV) 时间差 (ΔT)
自动计数器	自动计数器	分辨率: 6 位数 精确度: ±2% 信号源: All available trigger source except the Video trigger
控制面板功能	自动设定	自动调整垂直电压/div,水平时间 /div,和触发准位
	储存设定	内部记忆:20组 USB 快闪随身碟: 依随身碟容量 而定。
	储存波形+ 模 块	I 内部记忆: 24 组 USB 快闪随身碟: 依随身碟容量而 定。
显示器	LCD 分辨率(点阵) 标线	5.6 inch, TFT, 明亮度调整 234 (垂直) x 320 (水平) 8 x 10 格 (menu On) 8 x 12 格 (menu Off)
界面	Go-No Go 输出	5V 最大/ 10mA TTL 开集极型(open collector)
	RS-232C GPIB (选购配	DTE DB 9-pin 公座 IEEE488.2 24-pin 母座
	备) USB	Host: 快闪随身碟, 打印机

GDS-2000 系列数字储存示波器 使用手册

电压电源	电压	100V~240V AC, 47Hz~63Hz
	电池(选购配备)	11.1V Li-Ion 组, 6600mAh 每组 8 小时充电时间 (主电源设定 On) 4 小时操作时间 (视情况而定)
其它	语言选择 在线辅助功能 实时时间	英文,繁体中文,简体中文。 显示: yy/mm/dd/hh/ss
	时钟	
材积	254D x 142H x 3	10W (mm)
重量	约 4.3kg	
温度	操作	0°C~50°C
	储存	-20°C~70°C
湿度	操作	80% R.H. @35°C
	储存	80% R.H. @70°C

设备:远程控制