Standard Specification for Adhesives for Field-Gluing Plywood to Lumber Framing for Floor Systems

This standard is issued under the fixed designation D 3498; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification covers minimum performance standards and test requirements for gap-filling construction adhesives for bonding plywood to lumber framing, particularly floor joists, at the construction site.

1.2 This specification provides a basis for ensuring the quality of the adhesives and is not intended as an application specification.

1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.

1.4 The following precautionary caveat pertains only to the test method portion, Section 11, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
D 572 Test Method for Rubber—Deterioration by Heat and Oxygen
D 905 Test Method for Strength Properties of Adhesive Bonds in Shear by Compression Loading
D 907 Terminology of Adhesives
D 2016 Test Methods for Moisture Content of Wood
D 4300 Test Methods for Ability of Adhesive Films to Support or Resist the Growth of Fungi
D 4783 Test Methods for Resistance of Adhesive Preparations in Container to Attack by Bacteria, Yeast, and Fungi
E 4 Practices for Force Verification of Testing Machines
E 177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods

3. Terminology

3.1 Definitions—Many terms in this specification are defined in Terminology D 907.

3.1.1 gap-filling adhesive, n—an adhesive capable of forming and maintaining a bond between surfaces that are not close-fitting.

3.1.2 open assembly time, n—the time interval between applying adhesive on the substrates and closing them together before bonding.

4. Significance and Use

4.1 This specification establishes test methods and performance requirements for adhesives bonding plywood to wood framing members.

4.2 This specification provides a basis for ensuring the quality of the adhesives.

4.3 The tests provide shear strength performance data when the substrates are conditioned to simulate various conditions that may occur during sub-floor adhesive application and curing.

4.4 The tests are suitable for product performance certification and quality control programs, and can be useful to the general public, adhesive manufacturers, distributors, specifiers, architects, contractors, testing laboratories and other businesses and professionals.

4.5 The results do not include all possible conditions, which may occur during final assembly, but indicate a set of performance characteristics for laboratory controlled bonding variables.
5. Ordering Information

5.1 The adhesive may be furnished by the manufacturer in any suitable form agreeable to the purchaser.

6. Materials

6.1 The adhesive shall be a gap-filling construction adhesive that sets at temperatures as low as 40°F (4.4°C).

6.2 The adhesive shall not support mold or bacterial growth. If amylaceous or protein fillers and extenders are used in the adhesive formulation, the adhesive must not only pass the performance requirements of this specification, but in addition, possess sufficient anti-fungal properties to inhibit the growth of selected fungal species when tested in accordance with Test Methods D 4300 and selected bacterial species in accordance with Test Methods D 4783. The adhesive manufacturer shall notify in writing the agency responsible for testing, certifying, and compliance labeling of the adhesive whether any such materials are present in the adhesive.

6.3 The adhesive, when completely set, shall form a resilient bond that shall be durable when protected from direct exposure to the weather, as defined by the requirements of this specification.

6.4 The adhesive shall be a uniform mixture suitable for extrusion by a caulking gun or other pressurized application equipment.

6.5 The adhesive shall permit an open assembly time of not less than 10 min when applied to the lumber framing in accordance with the manufacturer’s instructions. It shall be functional, as defined in this specification, when applied to surfaces having a temperature range from 0 to 100°F (−17.8 to 37.8°C).

6.6 The adhesive shall be functional when applied to lumber framing free of standing water, ice, or snow.

7. Requirements

7.1 The adhesive shall conform to the strength and durability properties shown in Table 1.

8. Sampling

8.1 A representative sample totaling not less than 1 qt (946 cm³) of the adhesive shall be taken from each lot to be tested.

8.2 For the purpose of sampling, a lot shall consist of material from the same batch or blending operation subject to the same processing operations and conditions.

9. Number of Tests

9.1 The number of test specimens shall be as specified in each test method designated in Section 11 and Table 1. The average result for the specimens tested shall conform to the requirements prescribed in this specification.

10. Specimen Preparation

10.1 Materials—Use the following materials for the tests outlined:

10.1.1 Plywood— 5/8 -in. or (19/32 -in. (15.1-mm) thick, U.S. Product Standard PS-1–95 grade marked stamped, commercial plywood, Group 1 Species, exterior glue, or sanded exterior-grade plywood, underlayment type with A grade face ply for the adhesion surface. The plywood must be flat within 1/16 in. (2 mm); that is, the maximum permissible bow for a 16-in. (406-mm) length of plywood shall be 1/16 in. (2 mm). Make the measurement across the top surface of the plywood. Use bowed plywood only if it meets the limitation above and if the convexity occurs on the bottom surface that will contact the lumber. The plywood must be free of patches, core voids, and knot holes in the glueline area.

10.1.2 Lumber—2-in. (51-mm) (nominal) Douglas-fir and southern pine; (Note 2) clear dry lumber (moisture content of 8 to 15 %) (Note 3). The surface shall be free of bark, knots, splits, and pitch.

10.1.3 Adhesive—applied with a caulking gun.

10.2 Number of Test Assemblies—Prepare three wood-adhesive composite test assemblies as shown in Fig. 1 for each condition specified.

Table 1: Adhesive Strength and Durability Requirements

<table>
<thead>
<tr>
<th>Test</th>
<th>Property</th>
<th>Number of Specimens</th>
<th>Requirement</th>
<th>Section Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test A (wet lumber)</td>
<td>shear strength</td>
<td>24</td>
<td>150 psi (1.035 MPa), min avg</td>
<td>11.2</td>
</tr>
<tr>
<td>Douglas-fir</td>
<td>shear strength</td>
<td>24</td>
<td>150 psi (1.035 MPa), min avg</td>
<td>11.2</td>
</tr>
<tr>
<td>Southern pine</td>
<td>shear strength</td>
<td>24</td>
<td>100 psi (0.689 MPa), min avg</td>
<td>11.2</td>
</tr>
<tr>
<td>Test B (frozen lumber)</td>
<td>shear strength</td>
<td>24</td>
<td>100 psi (0.689 MPa), min avg</td>
<td>11.2</td>
</tr>
<tr>
<td>Douglas-fir</td>
<td>shear strength</td>
<td>24</td>
<td>150 psi (1.035 MPa), min avg</td>
<td>11.2</td>
</tr>
<tr>
<td>Southern pine</td>
<td>shear strength</td>
<td>24</td>
<td>100 psi (0.689 MPa), min avg</td>
<td>11.2</td>
</tr>
<tr>
<td>Test D (dry lumber)</td>
<td>shear strength</td>
<td>24</td>
<td>150 psi (1.035 MPa), min avg</td>
<td>11.3</td>
</tr>
<tr>
<td>Douglas-fir</td>
<td>shear strength</td>
<td>24</td>
<td>150 psi (1.035 MPa), min avg</td>
<td>11.4</td>
</tr>
<tr>
<td>GAP-filling</td>
<td>shear strength</td>
<td>24</td>
<td>a minimum of 22 of 24 specimens shall show no delamination.</td>
<td>11.4</td>
</tr>
<tr>
<td>Douglas-fir</td>
<td>delamination</td>
<td>24</td>
<td>no fracture of free film on mandrel bend or visible signs of melting after exposure</td>
<td>11.5</td>
</tr>
<tr>
<td>Durability (moisture resistance)</td>
<td>shear strength</td>
<td>24</td>
<td>150 psi (1.035 MPa), min avg</td>
<td>11.4</td>
</tr>
<tr>
<td>Durability (oxidation resistance)</td>
<td>flexibility</td>
<td>3</td>
<td>no fracture of free film on mandrel bend or visible signs of melting after exposure</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Note 1—Open assembly times that are less than 10 min as agreed upon between the manufacturer and user, are acceptable provided the adhesive meets the requirements of Table 1.

Note 2—Only the sapwood of loblolly, slash, longleaf, and shortleaf pine may be used.

Note 3—Test Methods D 2016 can be used to determine moisture content.

10.1.3 Adhesive—applied with a caulking gun.

10.2 Number of Test Assemblies—Prepare three wood-adhesive composite test assemblies as shown in Fig. 1 for each condition specified.
10.3 Conditioning of Materials

10.3.1 Cut lumber and plywood to the required size as shown in Fig. 1. If the lumber must be reduced in height, retain at least one mill-finished surface as the surface to be bonded. If the lumber must be reduced in width to achieve a maximum 1 1/2-in. (38-mm) dimension, plane both sides in equal amounts.

10.3.2 Predrill the plywood and lumber with a No. 37 (diameter 0.104 in. (2.64 mm)) to receive nails as shown in Fig. 1. Predrill the lumber to a depth of 1 in. (25 mm).

10.3.3 Condition the adhesive at 70 ± 5°F (21.1 ± 2.8°C) for a period of 48 h prior to use.

10.3.4 Condition the lumber and plywood in accordance with the schedules shown in Table 2, and the following procedures:

10.3.4.1 Run Test A (wet lumber) and Test B (frozen lumber) with both Douglas-fir and southern pine lumber.

10.3.4.2 Before fabricating samples with wet lumber surfaces (Test A), seal both ends of the lumber sections with paraffin. Completely submerge the lumber in water at 70 ± 5°F (21.1 ± 2.8°C) for 48 h for Douglas-fir, and for 2 h for southern pine. After submersion, wipe off visible surface water and expose the lumber for 48 h at 100 ± 5°F (37.8 ± 2.8°C), and 90 ± 5% relative humidity. At the completion of the humidity cycle, submerge the lumber in water at 70 ± 5°F (21.1 ± 2.8°C) for 15 min. Wipe off visible surface water with a clean, dry cloth and immediately begin the fabrication procedure as outlined in 10.4.1.

10.3.4.3 Seal lumber for test assemblies with frozen lumber surfaces (Test B) at both ends with paraffin and submerge in water as described in Table 2. After submersion, wipe off visible surface water with a clean, dry cloth and store immediately at 0 ± 5°F (−17.8 ± 2.8°C) for 48 h.

NOTE 4—For safety, conditioning chambers should have no ignition sources within the vapor space.

10.4 Preparation of Shear Strength Specimens:

10.4.1 Apply an adhesive bead along the center line of a mill-finished surface of the lumber, such that the bead extends from one predrilled hole to the other, but not beyond. Apply sufficient adhesive to give 100% coverage of the lumber surface, as evidenced by a "squeeze-out." If it is necessary to apply the adhesive outside of the lumber conditioning chamber, remove only one piece of lumber at a time, apply the adhesive...
bead, then condition the lumber with adhesive applied for a minimum of 10 min and a maximum of 12 min in accordance with Table 3.

10.4.2 Before placing the plywood on the adhesive-covered surface, insert spacers, ¼ in. in width by 0.006 in. thick by 4 in. long (6 by 0.15 by 102 mm), at the midpoint of the lumber and at the outboard side of each nail, as shown in Fig. 2. Before the spacer is inserted at the midpoint, scrape away a 1-in. (25-mm) segment of the adhesive bead at the midpoint. Do not permit adhesive between the spacer and substrate.

NOTE 5—Aluminum embossing tape is suggested for use as spacers.

10.4.3 Position the plywood on the adhesive-covered surface with the aid of a positioning jig as shown in Fig. 3. Nail in place with 6-penny (2 in. (51 mm) in length) scaffold nails. Make the top of the lower head of a scaffold nail flush with the surface of the plywood.

10.4.4 Apply a uniform pressure of 4 ± 0.25 psi (28 ± 2 kPa) across the entire bonded area of the assembly for a period of 1 min at 70 ± 5°F (21.1 ± 2.8°C). Apply this pressure by any appropriate means, including a press with a suitable insert between the nails or a combination of uniformly distributed weights between the nails.

10.4.5 Set the adhesive in the assemblies in accordance with the schedules shown in Table 4.

10.4.6 After the specified setting time, remove the nails, but leave the spacers in place. Using a sharp saw, cut off the plywood flush with the side surfaces of the lumber, at the same time removing any excess adhesive. Cut eight block-shear specimens from each assembly as shown in Figs. 4 and 5.

10.5 Preparation of Specimens for Test of Gap-Filling Effect on Strength—Prepare assemblies as described in 10.4.1-10.4.4, except for thickness of spacers. Before placing the plywood on the adhesive-covered lumber surface, insert spacers, ¼ in. wide by 0.062 in. thick by 4 in. long (6 by 1.57 by 102 mm), as shown in Fig. 2. Avoid disturbing the location of the spacers. Do not permit adhesive between the spacer and substrate.

NOTE 6—Teflon-fluorocarbon sheet is suggested for use as spacers.

10.5.1 After the specified setting time (Table 4), remove the nails and spacers before cutting eight block-shear specimens from each assembly, as shown in Figs. 4 and 5.

10.5.2 Set the completed casting of adhesive at the conditions shown in Table 4. After setting, cut three, 1 by 3-in. (25 by 76-mm) specimens from the free adhesive films.

11. Test Methods

11.1 Test Conditions—Perform all tests of shear strength at 70 ± 5°F (21.1 ± 2.8°C) and 50 ± 10 % relative humidity. Maintain the specimens at these conditions after removal from the setting area, and test within 8 h after setting has been completed.

11.2 Shear Strength (Tests A, B, and C)—Test the specimens for shear strength by compression-shear loading in a testing machine that has an accuracy of ±1 % when calibrated in accordance with Practices E 4. Use a loading rate of 0.20 in. (5 mm)/min. A shearing tool described in Test Method D 905 is recommended for these tests, but other equipment may be used, including loading devices that apply compression loads in tension testing machines. The ultimate load for each condition (Tests A and B, each wood species, and Test C) shall be read to the nearest 1 lbf (0.45 N) for each of the 24 specimens (three assemblies per test condition, eight specimens per assembly). After testing, determine the overall bonded area of each test specimen.
specimen by measuring it, at least once in each dimension, to
the nearest 0.010 in. (0.25 mm). Report the shear strengths in
pounds-force per square inch (megapascals) for each specimen,
together with the overall average of the 24 specimens for each
test condition, and for each wood species in Tests A and B.

11.3 Gap-Filling Effect on Strength—Test the 24 specimens
as described in 11.2. Report the shear strengths in pounds-force
per square inch (megapascals) for each specimen, together with
the overall average of the 24 specimens.

11.4 Durability (Moisture Resistance)—This test is to be
run with Douglas-fir lumber only.

11.4.1 Place the specimens in a vacuum-pressure vessel and
weight them. Introduce water at 110°F (43°C) and maintain it for
30 min. Release the vacuum and continue to soak the specimens in
the same water at atmospheric pressure for 41⁄2 h with no additional
heating. Remove specimens from water, then dry them
for 16 h in an oven at 150°F (66°C) with forced-air
circulation to 45 to 50 air changes per minute.

11.4.2 Immediately after drying, examine the edges of the
specimens for adhesive bond failure (delamination) to the
plywood or lumber. Voids in the adhesive bond shall not be
considered delamination. Report the number of specimens with
and without visible delamination.

11.4.3 After examining the specimens for adhesive bond
failure, condition them at 70°F (21.1°C) and 50 ± 10 % relative humidity for 7 days and prepare them as
block-shear specimens as shown in Fig. 5. Test the specimens
as described in 11.2 to evaluate any degradation in shear
strength after exposure to moisture. Report the shear strength
in pounds-force per square inch (megapascals) for each speci-
men, together with the overall average of the 24 specimens.
The shear strength of any specimens that came apart during the
moisture resistance test, report as 0 psi (0 MPa) and include in
the average.

11.5 Durability (Oxidation Resistance):

11.5.1 Suspend the adhesive specimens vertically in an
oxygen atmosphere at 158°F (70°C) and 300 ± 15
psi (2.07 ± 0.10 MPa) pressure for 500 h. Provide a separate
test atmosphere for each adhesive. The apparatus and test
procedure are described in Test Method D 572. Note that, in
relieving the pressure from the oxygen pressure chamber
preparatory to removing the specimens, it is essential that the
release be slow and uniform, requiring at least 5 min, so as to
avoid possible formation of porosity in the specimen.
11.5.2 After exposure, condition the specimens, with minimum handling, at 70 ± 5°F (21.1 ± 2.8°C) and 50 ± 10% relative humidity for 24 h before testing. Then, bend the specimens 180° around a 0.25-in. (6.4-mm) mandrel to test for brittleness.

11.5.3 None of the three specimens shall break to pass the requirements of this specification. Surface checks shall not constitute failure. In addition, none of the three specimens shall exhibit visible evidence of having melted during the exposure period.

12. Retest and Rejection

12.1 If the results of any test do not conform to the requirements prescribed in this specification, at the option of the manufacturer, that test shall be repeated on two additional sets of specimens from the same lot of adhesive, each of which shall conform to the requirements specified. If either of these two additional sets of specimens fails to meet the requirements, the lot or batch of material may be rejected at the option of the purchaser. Notice of failure of material based on tests made in accordance with this specification shall be reported to the manufacturer.

13. Certification

13.1 Upon request of the purchaser in the contract or order, a manufacturer’s certification that the adhesive was manufactured and tested in accordance with this specification together with a report of the test results shall be furnished at the time of shipment.

14. Packaging and Marking

14.1 Packaging—The material shall be packaged in standard commercial containers, so constructed as to ensure acceptance by common or other carrier for safe transportation
at the lowest rate to the point of delivery, unless otherwise specified in the contract or order.

14.2 **Marking**—Shipping containers shall be marked with the following information:

14.2.1 Manufacturer’s name, product code number, and batch lot number,
14.2.2 Date of manufacture of the product,
14.2.3 Special handling instructions during product transfer, and
14.2.4 Special precautions required because of product toxicity, flammability, or such information pertinent to the proper handling and storage of the product.

15. **Precision and Bias**

15.1 The precision information given below is in the units of measurement (psi), each of which is the average of ten test determinations:

<table>
<thead>
<tr>
<th>Average</th>
<th>Sr</th>
<th>Sr</th>
<th>r</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>464</td>
<td>127</td>
<td>138</td>
<td>354</td>
<td>386</td>
</tr>
</tbody>
</table>

A Repeatability Standard Deviation.
B Reproducibility Standard Deviation.
C 95 % Repeatability Limit (within a laboratory).
D 95 % Reproducibility Limit (between laboratories).

15.2 The table was calculated using the relationship:

\[95 \% \text{ Limit} = 2.8 \times \text{standard deviation} \]

15.3 The term repeatability and reproducibility limits are used as specified in Practice E 177.

16. **Keywords**

16.1 adhesives; bacteria resistance; durability; gap-filling; mold-resistance; oxidation resistance; shear strength

\[^{8} \text{Supporting data are available from ASTM International Headquarters. Request} \]

FIG. 7 Specimen Preparation for Test of Durability (Oxidation Resistance)

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).