Standard Test Methods of Sampling and Testing Pulps to be Used in the Manufacture of Electrical Insulation

1. Scope

1.1 These test methods cover the sampling and testing of cellulosic pulps for use in the manufacture of electrical insulating papers and boards or in the direct application of pulp fibers as insulation to electrical conductors.

Note 1—The significance of any one pulp property test method, as set forth herein, should be considered with discretion depending on the product made from the pulp.

1.2 Sections on Reagents, Sampling, and Report are integral parts of each of the individual test methods that follow.

1.3 Each test method is described as being a measure of either a bulk property of the pulp or a property of a handsheet formed from the pulp.

1.3.1 Bulk characteristics determinable by these procedures appear in the following sections:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Section</th>
<th>ASTM Method Reference</th>
<th>TAPPI Method Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqueous Extract Conductivity</td>
<td>8 and 9</td>
<td>D 202</td>
<td>...</td>
</tr>
<tr>
<td>Aqueous Extract pH</td>
<td>10 and 11</td>
<td>D 202</td>
<td>...</td>
</tr>
<tr>
<td>Aqueous Extractable Acidity-Alkalinity</td>
<td>12 and 13</td>
<td>D 202</td>
<td>...</td>
</tr>
<tr>
<td>Analysis of Ash for Cations by Atomic Absorption Spectrophotometry</td>
<td>73-81</td>
<td>D 1193 and D 2576</td>
<td>...</td>
</tr>
<tr>
<td>Ash Content</td>
<td>82-85</td>
<td>D 202</td>
<td>T 413</td>
</tr>
<tr>
<td>Dirt in Pulp</td>
<td>42 and 43</td>
<td>D 202</td>
<td>T 213</td>
</tr>
<tr>
<td>Fiber Analysis</td>
<td>24 and 25</td>
<td>D 202 and D 1030</td>
<td>...</td>
</tr>
<tr>
<td>Fiber Length of Pulp</td>
<td>44 and 45</td>
<td>D 202</td>
<td>T 232, T 233</td>
</tr>
<tr>
<td>Freeness (Canadian Standard Freeness)</td>
<td>56 and 57</td>
<td>D 202</td>
<td>T 227</td>
</tr>
<tr>
<td>Kappa Number/Permanganate Number</td>
<td>28 and 29</td>
<td>...</td>
<td>T 236, UM 251</td>
</tr>
<tr>
<td>Laboratory Processing of Pulp (Beater Method)</td>
<td>54 and 55</td>
<td>...</td>
<td>T 200</td>
</tr>
<tr>
<td>Moisture in Pulp</td>
<td>32-34</td>
<td>D 202</td>
<td>...</td>
</tr>
</tbody>
</table>

1.3.2 Handsheet characteristics determinable by these procedures appear in the following sections:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Section</th>
<th>ASTM Method Reference</th>
<th>TAPPI Method Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Resistance (Porosity)</td>
<td>60 and 61</td>
<td>D 202</td>
<td>T 205</td>
</tr>
<tr>
<td>Apparent Density</td>
<td>66 and 67</td>
<td>D 202</td>
<td>T 205</td>
</tr>
<tr>
<td>Bursting Strength</td>
<td>62 and 63</td>
<td>D 202 and D 774</td>
<td>T 205</td>
</tr>
<tr>
<td>Folding Endurance (M.I.T.)</td>
<td>54 and 55</td>
<td>D 202 and D 2176</td>
<td>T 205</td>
</tr>
<tr>
<td>Forming Handsheets for Physical Tests of Pulp</td>
<td>58 and 59</td>
<td>...</td>
<td>T 205</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>68 and 69</td>
<td>D 202 and D 828</td>
<td>T 205</td>
</tr>
</tbody>
</table>

Note 2—Methods for Ash, Silica, selected cations from Ash, Heat Stability, α, β, and γ Cellulose, Viscosity, Total Chlorine, Tear, and Dissipation Factor and Relative Permittivity, will be considered for addition as methods are developed.

1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

1 These test methods are under the jurisdiction of ASTM Committee D09 on Electrical and Electronic Insulating Materials and are the direct responsibility of Subcommittee D09.19 on Dielectric Sheet and Roll Products.

3. Terminology

3.1 Definitions of Terms Specific to This Standard:

3.1.1 pulp, ornado such a fibrous material that is made by chemical or mechanical treatment, or both, of wood, cotton, hemp, or other cellulosic fiber to achieve substantially separate fibers that are suitable for a sheet-forming process.

Note: 3—Electrical insulation made from pulp may be papers or boards used for capacitors, transformer coils, creped papers, etc. It may also be pulp applied directly onto electrical conductors.

4. Summary of Test Methods

4.1 These test methods describe the specific procedures for testing the properties of pulp, both in its original bulk form and after it has been formed into a handsheet in the testing laboratory.

5. Reagents

5.1 Purity of Reagents—Use reagent grade chemicals in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

5.2 Purity of Water—Unless otherwise indicated, references to water shall be understood to mean water conforming to Specification D 1193, Type III.

6. Sampling

6.1 Terminology regarding sampling and evaluation terminology shall conform to those in the sampling sections of Test Methods D 202.

6.2 Obtain the sample of pulp from the lot to be evaluated in a manner that will maximize the probability that a representative sample is collected. Where practicable, use one of the sampling plans shown in Test Methods D 202. Protect the material sample from contamination during handling and transporting to a laboratory for testing. The instructions for preparation of specimens are given in the sections pertaining to the individual property tests. Take the sample for moisture content in accordance with TAPPI T 210.

6.3 Condition samples in a container suitable for preventing moisture variation over the period of testing. When test specimens are drawn, determine the moisture content of the material to allow correction of weights to moisture-free equivalent weight.

7. Report

7.1 At the completion of any or all of the following tests, report the test results (as defined in 6.1) of the pulp properties with identifying units as follows:

7.1.1 Identification of the pulp sampled and tested by lot number, type, grade, etc.,

7.1.2 Dates of testing,

7.1.3 Location of the testing laboratory and the person responsible for the testing,

7.1.4 Remarks indicating method or procedures used and the deviation, if any, from the standard test procedures,

7.1.5 Indication of the variance in test measurements (as defined in 6.1) such as high, low, standard deviation, etc., and

7.1.6 Any information particular to the cited procedure.
7.2 Report the test results (as defined in 6.1) as calculated or observed values rounded to the nearest unit in the last right-hand place of figures used in the material specification to express the limiting value. (See the rounding method of Practice E 29.)

AQUEOUS EXTRACT CONDUCTIVITY

8. **Significance and Use**

8.1 The conductivity of the water extract of electrical grade pulp results from electrolytic impurities in the pulp which may be present as ionizable acids, bases, salts, or a combination of these. The presence of electrolytic impurities in electrical insulation is undesirable as they tend to lower insulation resistance and have corrosion-producing tendencies under conditions of applied potential. When comparing test data it should be noted that the extract conductivity of pulps, especially those of high purity, may change with time after manufacturing. This test is useful for routine acceptance testing, the comparison of different pulps, and research work.\(^\text{10}\)

9. Procedure

9.1 Follow Test Methods D 202 except use a specimen weight equivalent to 1 g of moisture-free pulp.

AQUEOUS EXTRACT pH

10. **Significance and Use**

10.1 The extract pH determination measures the degree to which a pulp alters the hydrogen-hydroxyl equilibrium of pure water. The test gives a measure of the active acidity or alkalinity of the pulp extract. The presence of active acidic or alkaline contaminants in a pulp may result in their being incorporated into the electrical insulation made from the pulp, and can lead to a deterioration of the insulation in service. This test is useful for routine acceptance testing, the comparison of different pulps, and research work.\(^\text{7}\)

11. Procedure

11.1 Follow Test Methods D 202 except use a specimen weight equivalent to 1 g of moisture-free pulp.

AQUEOUS EXTRACTABLE ACIDITY-ALKALINITY

12. **Significance and Use**

12.1 The extract acidity-alkalinity determination for a pulp measures the quantity of extracted ionizable material, which alters the hydrogen-hydroxyl equilibrium of pure water. The presence of active acidic or alkaline contaminants in a pulp may result in their being incorporated into the electrical insulation made from the pulp, and can lead to a deterioration of the insulation in service. This test is useful for routine acceptance testing, the comparison of different pulps, and research.\(^\text{8}\)

WATER-EXTRACTABLE CHLORIDES

14. **Significance and Use**

14.1 The occurrence of significant amounts of chloride ion in a pulp may lead to the incorporation of the ion in the electrical insulation made from the pulp. The presence of chloride ions may adversely affect the electrical properties and service life of the insulation. This test is useful for routine acceptance testing, the comparison of different pulps, and research testing.

15. Procedure

15.1 Follow Test Methods D 202 except use a specimen weight equivalent to 4 g of moisture-free pulp. For pulps with higher levels of chloride (greater than 30 ppm) 10 min of masceration as in the above method for aqueous extract conductivity may be used to hasten the extraction followed by 1 h refluxing as in Test Methods D 202. When the chloride content is less than 30 ppm, masceration is not permitted. The appropriate extraction time must be determined to give complete extraction of the chloride for each pulp type. Times greater than 1 h may be necessary.

NEUTRAL AQUEOUS EXTRACTABLE HARDNESS PULP

16. **Terminology**

16.1 Definitions of Terms Specific to This Standard:

16.1.1 *aqueous extractable hardness*, \(n\)—the amount of calcium and magnesium present in pulp and which may be extracted by hot neutral water under prescribed conditions.

16.1.2 *hardness*, \(n\)—a characteristic of water that represents the total concentration of calcium and magnesium in the water expressed as parts per million (ppm) \(\text{CaCO}_3\).

17. **Significance and Use**

17.1 Cellulose pulps may contain varying amounts of aqueous extractable hardness as supplied to the purchaser. The dissolved hardness from the pulp may accumulate in process water used in wet-forming methods and may interfere with the action of process additives and affect product quality adversely.

17.2 Method A is the preferred method and shall be used for reference purposes.

METHOD A

18. **Procedure**

18.1 *Extraction*:

18.1.1 Prepare extracts of the pulp specimens in accordance with the Test Methods D 202 method for aqueous extract conductivity, except:

18.1.2 Use a specimen weight equivalent to 2.0 g of moisture-free pulp. Determine the moisture content of the pulp sample on a separate specimen taken at the same time as the test specimen.

18.1.3 The extraction volume shall be 200 mL.
18.1.4 Run a blank determination concurrently with the test specimen determination.
18.1.5 Following extraction and filtration, collect the clear filtrate and adjust the volume to exactly 200 mL.
18.2 Determine the calcium and magnesium concentration of the extract in accordance with Test Method D 2576.

19. Calculation

19.1 Calculate the hardness of the extracts as follows:

\[
\text{Hardness, ppm} = 100 \frac{2.497(P_1 - P_a) + 4.117(P_2 - P_b)}{V_v}
\]

where:

- \(P_1 \) = ppm calcium in the pulp extract,
- \(P_a \) = ppm calcium in the blank,
- \(P_2 \) = ppm magnesium in the pulp extract, and
- \(P_b \) = ppm magnesium in the blank.

METHOD B

20. Procedure

20.1 Follow the procedure of Method A for the preparation of the extract.
20.2 Take two 100-mL aliquots of the extract and titrate for total hardness following the “low total hardness” procedure of the nonreferee volumetric method of Test Method D 1126.

21. Calculation

21.1 Calculate the hardness of the specimen extract as follows:

\[
\text{Hardness, ppm} = 500 \left(V_1 + V_2 - V_a - V_b \right)
\]

where:

- \(V_1 \) = standard EDTA solution for titration of first aliquot of extract, mL
- \(V_2 \) = standard EDTA solution for titration of second aliquot of extract, mL
- \(V_a \) = standard EDTA solution for titration of first blank aliquot, mL, and
- \(V_b \) = standard EDTA solution for titration of second blank aliquot, mL.

22. Report

22.1 Report the results as neutral aqueous extractable hardness, ppm, expressed as calcium carbonate according to the appropriate method of Test Methods D 3376.

23. Precision and Bias

23.1 The precision of this test has not been determined. No statement can be made about the bias of this test since standard material is not available.

FIBER ANALYSIS

24. Significance and Use

24.1 The fiber composition of a pulp (fiber source and pulping treatment) strongly affects the ultimate product characteristics. Fiber analysis is useful both as a specification and as a control test, and may be used in referee testing or research.
PENTOSAN CONTENT OF PULP

30. Significance and Use
30.1 The pentosan content of a pulp strongly affects the dissipation factor—temperature relationship of electrical insulation made from it. It also may be an indicator of lot-to-lot uniformity and is one of several factors related to the bonding power of a pulp, and the amount of energy required to refine the pulp.

31. Procedure
31.1 Follow TAPPI T 223.

MOISTURE IN PULP

32. Significance and Use
32.1 Pulp is purchased on the basis of moisture content. In addition, the moisture content may be used for consistency control, and it may affect the energy of repulping and the biological degradation of the pulp. This test is useful for control purposes and specifications.

33. Procedure
33.1 Follow TAPPI T 210.

34. Report
34.1 This method gives the percentage moisture content of the pulp. Report percent water and percent moisture-free fiber (equal to 100 minus percent water).

SHIVE COUNT

35. Terminology
35.1 Definitions of Terms Specific to This Standard:
35.1.1 shive, n—a particle in pulp or paper that is a bundle of cellulosic fibers bonded together in a parallel arrangement.

Note 5—Dark single fibers are not to be counted as shives. Count only bundles of fibers regardless of color.

35.1.2 shive count, n—the quantitative expression of the concentration of shives in a quantity of pulp or paper. For this method the shive count is restricted to the number of shives that exceed 1.5 mm in length that are present after a specified processing of the pulp to form handsheets for evaluation.

36. Significance and Use
36.1 Several grades of electrical insulating paper are most effectively manufactured using pulps having a low shive count. Shives in wood pulp to be used for direct application to electrical conductors can be detrimental to the insulating characteristics and strength of the insulating wall. This test is useful for control purposes, specifications, and the comparison of different pulps.

37. Apparatus
37.1 Disintegrator, Sheet Machine, Press, Blotters, etc., in accordance with TAPPI T 205.
37.2 Steel Rule, graduated in 0.5 mm.
37.3 Balance, to weigh up to 100 g with 0.1-g accuracy.
37.4 Specimen Viewer with white opaque glass and a fluorescent or incandescent light source.
37.5 Transparent Cylinder, 0.6 L.

38. Procedure
38.1 From the sample obtained as specified in Section 6, take a quantity of pulp equivalent to 30 g of moisture-free pulp. Soak this pulp in 0.5 L of water for 4 h at a temperature of 20 to 30°C.

38.2 Tear the pulp into smaller pieces (approximately 1 in. or 25 mm square) and dilute to 2.0 L. Caution—Tear, do not cut the pulp.

38.3 Using the TAPPI disintegrator, disintegrate for 10 minute minimum. This time should be sufficient to disperse the pulp completely. A technique for checking the dispersion is as follows:

38.3.1 Take a small sample of the slurry from the disintegrator (about 2 or 3 mL) and dilute to 0.6 L in a clear cylinder. Stopper the cylinder and mix the suspension by rotating the cylinder end over end. Observe the suspension by looking through it toward a strong light source. The suspension should be free of clumps or agglomerates of fibers, but may contain shives. If the suspension contains clumps or agglomerates, subject the pulp to additional 5-min periods of disintegration until it is free of clumps and agglomerates.

38.4 Dilute the disintegrated pulp with water to result in a consistency of 0.3 % or 3 g/L.

38.5 Clean the sheet machine thoroughly.

38.6 Form handsheets in accordance with TAPPI T 205 and couch but do not dry the sheets.

38.7 Make at least five handsheets for viewing.

38.8 On each of five handsheets, mark out six viewing areas. Each viewing area shall be 625 mm². This step can be facilitated by having previously made a transparent plastic overlay grid with these areas cut out.

38.9 With the viewer and the steel rule, count the shives that exceed 1.5 mm in length that are viewed within each of the six areas. Record the total number of shives in each handsheet.

39. Calculation
39.1 Add the total shives found in all five handsheets. This sum multiplied by 53 yields the shive count expressed as shives per square metre.

39.2 The shive count may be calculated for shives per kilogram if the handsheet area is 0.02 m². Shives per kilogram is the product of total shives counted times 888. This multiplier is valid only for the standard handsheets in accordance with TAPPI T 205 with a grammage of 60 ± 1.2 g/m² and an area of 0.02 m².

40. Report
40.1 Report the disintegration time if more than 10 min.
40.2 Report the shive count as shives per square metre or as shives per kilogram as agreed upon between the supplier and the purchaser.
41. **Precision and Bias**

41.1 **Precision**—From a round-robin test involving 3 laboratories, a coefficient of variation between laboratories in the order of 300 was obtained, at a level of 5000 to 8000 shives/m².

41.2 **Bias**—No statement of bias can be made because of the unavailability of standard reference material.

42. **Significance and Use**

42.1 Dirt content is one indication of the quality of the pulp. This measure gives only a visual indication of contamination. The nature of foreign particles is very significant in determining whether the contamination is detrimental to the end-product use. TAPPI T 445 may be appropriate for identification of the particulate contamination. This test is useful for control purposes and the comparison of different pulps.

43. **Procedure**

43.1 Follow TAPPI T 213.

44. **Significance and Use**

44.1 The fiber length is a means of comparing pulps. The fiber length distribution may affect the forming characteristics, which in turn influence the physical characteristics of the end-product. This method is useful for control purposes, the comparison of different pulps, and research.

45. **Procedure**

45.1 Follow TAPPI T 232, T 233.

RESISTANCE OF PULP TO DISINTEGRATION (STANDARD RPG)

Note: 6—The method described herein is essentially an adaptation of TAPPI UM 252, with several significant changes. The method is complete and no reference to UM 252 is required in its use.

46. **Terminology**

46.1 **Definitions of Terms Specific to This Standard:**

46.1.1 **Resistance to disintegration, n**—the amount of work (expressed as revolutions per gram of pulp) required under standard conditions to bring a sample of pulp to a state of complete dispersion of single fibers.

47. **Significance and Use**

47.1 Resistance to disintegration is important in that it is a measure of repulpability. The method is useful for control purposes and the comparison of different pulps.

48. **Apparatus**

48.1 **Disintegrator**—TAPPI standard disintegrator in accordance with T 205; equipped with a 2 L standard vessel, timer/timer controlled power source, 1-s maximum time division.
50.2.1 Make a handsheet from 500 mL of the diluted stock, couch it, and dry it on the hot plate (between the blotters), and mark the handsheet with the slurry specimen number. It is not necessary to press, or air-dry the handsheet, as it will only be used for visual inspection.

50.2.2 Repeat the stock dilution, inspection, and sheet marking for the 11 remaining slurry specimens.

50.2.3 Subject the remaining stock to a further disintegration of 20 min; then sample and prepare a handsheet in accordance with 50.2 and 50.2.1. This further 20-min disintegration will yield stock and handsheet specimens that are considered to be fully disintegrated reference specimens.

50.3 Place the No. 1 sheet (first slurry sample) on the light box, and inspect it. Note the appearance of the sheet as in 50.2. The sheet may be compared with the reference sheet made in accordance with 50.2.3 which is considered to be fully disintegrated.

50.3.1 Compare the remaining 11 sheets, noting at which point complete disintegration is obtained, and at which no change is observed in later specimen handsheets.

50.4 Repeat 50.1.1-50.3.1 except 50.2.3, using disintegration period such that complete disintegration will be achieved in not less than four but not more than ten disintegration periods.

52. Report

52.1 Report the mean of two resistance to disintegration determinations, giving the mean, and range to two significant figures.

52.1.1 Report if the disintegrator was run at any speed other than 3000 rpm.

53. Precision and Bias

53.1 The precision of this test has not been determined. No statement can be made about the bias of this test since a standard material is not available.

LABORATORY PROCESSING OF PULP (BEATER METHOD)

54. Significance and Use

54.1 The beater method is used to evaluate the relative refining behavior of pulp. The refining behavior is characterized by the change with time of freeness (or slowness), and the development of physical sheet properties (see sections below). This test is useful for control tests, the comparison of different pulps, and research.

55. Procedure

55.1 Follow TAPPI T 200.

FREENESS (CANADIAN STANDARD FREENESS)

56. Significance and Use

56.1 Freeness (or slowness) is a measure of the drainage rate of a pulp slurry. Drainage rate is commonly used to indicate the degree of refining of a pulp.

Note 10—Other drainage rate measures used in the paper industry include:

(a) Schopper Riegler Freeness (Slowness) SCAN MS:65 Drainability of Pulp by Schopper Riegler Method.
(b) Drainage Time of Pulp. TAPPI Standard Method T 221.
(c) Drainage Time for Insulating Board. TAPPI Standard Method T 1002.
(d) Freeness of Pulp (Williams Tester). TAPPI Useful Method UM 203.

57. Procedure

57.1 Follow TAPPI T 227.

FORMING HANDSHEETS FOR PHYSICAL TESTS OF PULP

58. Significance and Use

58.1 The forming of handsheets permits the comparison of pulps with respect to their physical properties at different degrees of refining.

59. Procedure

59.1 Follow TAPPI T 205.

AIR RESISTANCE (POROSITY)

60. Significance and Use

60.1 Air resistance measurements on handsheets allow the comparison of pulps with respect to the development of air resistance with degree of refining. Air resistance is related to the dielectric strength and absorbency of electrical insulations.
61. Procedure
61.1 Make pulp handsheets for testing in accordance with Section 59.
61.2 Test for air resistance in accordance with Test Methods D 202.

BURSTING STRENGTH

62. Significance and Use
62.1 Bursting strength has considerable use as a control test to indicate general physical strength. This method is useful for comparing the potential bursting strength of different pulps at specified degrees of refining.

63. Procedure
63.1 Make pulp handsheets in accordance with Section 59.
63.2 Test for bursting strength in accordance with Test Methods D 202 and D 774.

FOLDING ENDURANCE (M.I.T.)

64. Significance and Use
64.1 Folding endurance of paper is a measure of its toughness and brittleness. It is sensitive to changes in the paper, and may be used as a measure of thermal aging. This method is useful for comparing the potential folding strength of different pulps at specified degrees of refining.

65. Procedure
65.1 Make pulp handsheets in accordance with Section 59.
65.2 Test for folding endurance in accordance with Test Methods D 202 and D 2176.

APPARENT DENSITY

66. Significance and Use
66.1 Many physical and electrical properties of paper are related to the apparent density. The ease with which a sheet of desired density can be obtained is an important measure of the usefulness of a pulp. This method is useful for comparing the potential density of insulations made from different pulps of specified degrees of refining.

67. Procedure
67.1 Make pulp handsheets in accordance with Section 59.
67.2 Determine density in accordance with Test Methods D 202, Method B.

TENSILE PROPERTIES

68. Scope
68.1 This test method includes procedures for determination of tensile strength, elongation, and tensile energy absorption (TEA) on pulp handsheets. Any or all of the three properties may be determined, as may be desired.

69. Significance and Use
69.1 This test is useful in determining the potential tensile properties of products which will be made from the pulp being studied; and the effects of refining operations on the potential tensile properties.

70. Procedure
70.1 Prepare pulp handsheets in accordance with Section 59.
70.2 Determine the specified tensile properties of the handsheets in accordance with the method for Tensile Properties as given in Test Methods D 202, except use an initial test span of 51 ± 3 mm (2.0 ± 0.1 in.) and a speed of 6 mm/min (0.25 in./min) when determining TEA.

71. Report
71.1 Report in accordance with Section 7 and the applicable sections of Test Methods D 202.

72. Precision and Bias
72.1 Refer to the applicable sections of Test Methods D 202.

ANALYSIS OF ASH FOR CATIONS BY ATOMIC ABSORPTION SPECTROMETRY

73. Significance and Use
73.1 The ash of pulp for electrical insulation may contain cations such as sodium, potassium, calcium, and magnesium. The presence of these cations may affect the dielectric characteristics and service performance of electrical paper made from the pulp. Cations may react with process constituents in the paper-making process, forming undesirable precipitates.
73.2 This test determines sodium, potassium, calcium, and magnesium from one dissolved ash specimen.

74. Interferences
74.1 The analysis of calcium, magnesium, potassium, and sodium in unbleached wood pulp should not be subject to interferences, and may be analyzed without the addition of an interference suppressant.

75. Apparatus and Materials
75.1 Use apparatus and chemicals as specified in Test Method D 2576.

76. Reagents
76.1 Water—Use reagent water conforming to the requirements in Specification D 1193, for Reagent Water Type I, whenever water is specified in this method.
76.2 Hydrochloric Acid (sp gr 1.19)—Concentrated hydrochloric acid (HCl).
76.3 Hydrochloric Acid (1 + 99)—Add 1 volume of HCl (sp gr 1.19) to 99 volumes of water.
76.4 Stock Solutions—Purchased solutions will have the expiration date on the label. Solutions prepared in the testing laboratory should be stable for 1 year, if kept in well-stoppered polyethylene bottles.
76.4.1 Calcium (1 mL = 1.0 mg Ca, equivalent to 1000 mg/L Ca)—Weigh 2.497 g of calcium carbonate (CaCO₃) and transfer it to a 500-mL Erlenmeyer flask. Add 10 mL of water. Pour 10 mL of HCl (sp gr 1.19) slowly down the side of the
flask. Add an additional 200 mL of water, and heat until solution is complete. Cool and dilute to 1 L.

76.4.2 Magnesium (1 mL = 0.1 mg Mg, equivalent to 100 mg/L Mg)—Dissolve 1.0135 g of magnesium sulfate heptahydrate (MgSO₄·7H₂O) in 200 mL of water, and dilute to 1 L.

76.4.3 Potassium (1 mL = 1 mg K, equivalent to 1000 mg/L K)—Dissolve 1.907 g of potassium chloride (KCl) in 1 L of water.

76.4.4 Sodium (1 mL = 1 mg Na, equivalent to 1000 mg/L Na)—Dissolve 2.542 g of sodium chloride (NaCl) in 1 L of water.

76.5 Standard Solutions—Dilute the stock solutions with HCl (1 + 99) to prepare the standards to be used for calibration. These solutions should be made immediately before use, since they have limited stability.

77. Calibration

77.1 Prepare at least three standard solutions containing known concentrations of each of the metal ions to be determined, by diluting the stock solutions as described in 76.5. Prepare the standards so that they bracket the expected values for the diluted unknown. The standards and the diluted unknown must be made up to fall within the linear concentration range of the element.

77.2 Atomize the standards through the instrument, following the instruction manual for the instrument, and using the following wavelength settings:

<table>
<thead>
<tr>
<th>Metal</th>
<th>Wavelength, nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>422.7</td>
</tr>
<tr>
<td>Magnesium</td>
<td>285.2</td>
</tr>
<tr>
<td>Potassium</td>
<td>766.5</td>
</tr>
<tr>
<td>Sodium</td>
<td>589.0 or 589.6</td>
</tr>
</tbody>
</table>

77.3 If the instrument is equipped with a direct concentration readout, adjust the readout to give the concentration of the standards.

77.4 If the instrument does not have a direct concentration readout, prepare a calibration curve by plotting on linear graph paper the absorbance against standard concentration for each standard.

78. Procedure

78.1 Ash the pulp specimen as specified in Sections 82-85.

78.2 Add 5 mL of HCl (1 + 1) [add 1 volume of HCl sp gr 1.19 to 1 volume of water] to the ash. Swirl the mixture to dissolve the ash.

78.3 Wash a slow, very retentive ashless filter paper with HCl (1 + 1).

78.4 Filter the ash solution through the ashless filter paper directly into a 100-mL volumetric flask. Wash the filter paper with several small aliquots of HCl (1 + 1). Dilute to volume with water.

78.5 Prepare a blank solution in accordance with 78.1-78.4, omitting the ash specimen.

78.6 Determine the concentrations of calcium, magnesium, potassium, and sodium in each solution by atomizing the solutions through the atomic absorption spectrophotometer. This should be done immediately after the instrument is calibrated with the standards. The linear concentration ranges are as follows:

<table>
<thead>
<tr>
<th>Metal</th>
<th>Linear Concentration Range, mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>0.3 to 15.0</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.05 to 3.5</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.04 to 4.0</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.02 to 2.0</td>
</tr>
</tbody>
</table>

78.7 The measuring range can be increased by dilution of the specimen solution. In unbleached sulfate wood pulps, it is often found that dilution is unnecessary for analysis of potassium, but that for analysis of calcium, magnesium or sodium, a dilution of 1 + 19 with water is required before analysis. The lower limits of measurement are largely dependent on the equipment, as described in Method D 2576.

79. Calculation

79.1 Calculate the cation contents of the pulp specimen as follows:

\[
\text{Cation content, } \mu\text{g/g} = (A - B) \times D \times 100/C \tag{7}
\]

where:

- \(A \) = cation in unknown solution, mg/L,
- \(B \) = cation in blank solution, mg/L,
- \(C \) = weight of moisture-free pulp specimen, g, and
- \(D \) = dilution factor.

80. Report

80.1 Report in accordance with Section 7, and include the results in micrograms per gram of moisture-free pulp for the cations that were determined.

81. Precision and Bias

81.1 The cation content of intralaboratory duplicate samples should agree within 10%.

81.2 Interlaboratory results may show differences of up to 30% for magnesium, and up to 300% for potassium, sodium, and calcium.

81.3 Bias is unknown.

82. Significance and Use

82.1 The ash content of pulp depends upon the type of fiber, treatment at the pulp mill, and the washing of the pulp. It is a general indicator of quality.

82.2 The ash content may affect the electrical properties and the heat stability of the paper made from the pulp. This test is useful for routine acceptance testing, comparison of different pulps, and research.

83. Procedure

83.1 Determine the ash content as specified in Test Methods D 202, and Method A (TAPPI T 413).

84. Report

84.1 Report in accordance with Section 7 and Test Methods D 202 (TAPPI T 413).

11 Whatman filter paper, No. 42, has been found satisfactory for this test method.
85. Precision and Bias

85.1 The results of duplicate ash determinations should be suspect if they differ by more than the following:

<table>
<thead>
<tr>
<th>Weight of Ash, mg</th>
<th>Maximum Acceptable Difference, mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 50</td>
<td>3</td>
</tr>
<tr>
<td>Over 20 to 50</td>
<td>2</td>
</tr>
<tr>
<td>Up to 20</td>
<td>1</td>
</tr>
</tbody>
</table>

85.2 Precision between laboratories is 0.13 % ash content.

85.3 Precision estimates are based on a round-robin test among five laboratories.

85.4 Bias is unknown.

86. Keywords

86.1 air resistance ash analysis; ash content; apparent density; bulk characteristics; bursting strength; cellulose; cellulose fiber; conductivity; dirt; disintegration; extractable acidity-alkalinity; extractable chlorides; fiber analysis; fiber length of pulp; folding endurance; freeness (Canadian Standard Freeness); handsheet characteristics; handsheet machine; Kappa/Permanganate number; moisture; pentosan content; pH; pulps; shive count; solvent soluble matter; tensile strength; water