Standard Test Method for
Adhesion of Tire Cords and Other Reinforcing Cords to Rubber Compounds by H-Test Procedure

1. Scope

1.1 This test method covers the measurement of adhesion of reinforcing cords that are bonded to rubber compounds. This test method is applicable to textile cord structures from both natural and manmade fibers, other than steel. For adhesion testing of steel tire cords, refer to Test Method D 2229.

1.2 This test method is primarily used to evaluate tire cords, using a suitable tire cord adhesive and a suitable rubber compound. This test method is also used to evaluate (1) tire cord adhesives, and (2) the process of adhesive reaction on the cord using one consistent form of tire cord and one consistent rubber compound. This test method may be used to evaluate cords in industrial hose and belting products and other cord reinforced rubber products.

1.3 This test method is written in SI units. The inch-pound units which are provided in this test method are not necessarily exact equivalents of the SI units. Either system may be used in this test method.

1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
D 76 Specification for Tensile Testing Machines for Textiles
D 123 Terminology Relating to Textiles
D 1566 Terminology Relating to Rubber
D 2229 Test Method for Adhesion Between Steel Tire Cords and Rubber
D 4393 Test Method for Strap Peel Adhesion of Reinforcing Cords or Fabrics to Rubber Compounds
D 6477 Terminology Relating to Tire Cords, Bead Wire, Hose Reinforcing Wire, and Fabrics

3. Terminology

3.1 Definitions:
3.1.1 For definitions of terms relating to tire cord, bead wire, hose reinforcing wire, and tire cord fabrics, refer to Terminology D 6477.
3.1.2 For definitions of other textile terms used in this standard, refer to Terminology D 123.
3.1.3 For definitions of other terms relating to rubber, refer to Terminology D 1566.

4. Summary of Test Method

4.1 A cord specimen is sandwiched between two layers of rubber compound test stock in a form resembling an “H,” placed in a heated mold, and cured at a specified temperature and pressure. The test specimen sandwich is then cut to create an H-test specimen consisting of a single cord with each end embedded in the center of a tab end of the rubber test block (Fig. 1). The test specimen is placed in the grips of the tensile tester, and then the grips are separated. The maximum force obtained is the H-test adhesion force.

5. Significance and Use

5.1 Test Method D 4776 for the determination of the H-test adhesion of reinforcing cords to rubber compounds may be used for the acceptance testing of commercial shipments of reinforcing cords but caution is advised since information about between-laboratory precision is incomplete. Comparative tests as directed in 5.1.1 may be advisable.

5.1.1 In cases of dispute arising from the differences in reported test results when using Test Method D 4776 for acceptance testing of commercial shipments, the purchaser and the supplier should conduct comparative tests to determine if there is statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens which are as homogeneous as possible and which are from a lot of material of the type in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using Student’s t-test for unpaired data and an acceptable probability level chosen by the two parties before testing begins. If a bias is found, either its cause must be found and corrected or the purchaser and the
supplier must agree to interpret future test results in light of the known bias.

5.2 This test method is used to measure the force required to extract the cord from a rubber compound test block.

5.3 This test method is designed to test the adhesion of textiles that are bonded to rubber compounds. Variables that may contribute to differences in results of this test method include adhesive type, adhesive application procedure, adhesive cure, fiber type, construction of cords, rubber type, rubber cure, and rubber thickness.

5.3.1 The deleterious effect of ozone in combination with atmospheric moisture on the ability of adhesives to bond with rubber requires assiduous protection of cords prior to embedment.

5.4 The expected range of values which characterize acceptable adhesion can be determined in any cord-rubber combination with experience. For this reason, the purchaser normally establishes a minimum level of adhesion to be obtained by the supplier in either the supplier’s laboratory or the purchaser’s laboratory using either the supplier’s standard rubber compound or the purchaser’s rubber compound.

5.5 Another procedure for testing adhesion of cords to rubber compounds is Test Methods D 4393. This procedure has been used extensively in the trade for acceptance testing. Results obtained by this method cannot be used interchangeably since there is no overall correlation between them.

6. Apparatus and Materials

6.1 Tensile Testing Machine—Although a constant-rate-of-extension (CRE) tensile testing machine is preferred, a constant-rate-of-traverse (CRT type, pendulum type) may be used. The specification and methods of calibration and verification of these machines shall conform to Specification D 76. The testing machine shall be equipped with an autographic recorder (rectilinear coordinates preferred) or an interface computer. There is a distinct difference between the CRE and CRT type testing machines. Consequently, they cannot be used interchangeably unless a mathematical correlation has been established and agreed upon by the purchaser and supplier.

6.2 Curing Press, capable of maintaining a minimum pressure of 3.5 MPa (500 psi) over the total area of the mold surface, equipped with 300 by 300 mm (12 by 12 in.) platens or larger, and capable of a platen temperature control within ±3°C (±5°F) of the temperature specified for curing the rubber compound.

6.3 Molds—The design of the molds shall be as shown in Fig. 2. The dimensions of the test specimen are controlled by the specifications and tolerances of the mold. The dimensions of the mold (6.40 mm [0.250 in.] embedment) in Fig. 2a shall be used for cords with a dtex of 1100/2 or less. The dimensions of the mold (9.52 mm [0.375 in.] embedment) in Fig. 2b shall be used for cords with a dtex larger than 1100/2. The slot size for each mold shall be 1.17 mm ± 0.13 mm (0.46 in. ± 0.005 in.).

6.4 Specimen Grips—The design of the specimen grips shall be as shown in Fig. 3. Two grips are required.

6.5 Tensioning Masses—The masses may be of the hook type, or designed in such a manner that they can be clamped to the cord. In any event, the total mass shall be 50 g.

6.6 Sheeted Rubber Compound, (sometimes called skim stock), supported on a non hygroscopic backing, such as a plasticizer-free plastic material. Polyethylene film has been found to be satisfactory. The thickness of the rubber stock required to fill the mold properly shall be determined by experience. As a guide, the thickness of the rubber stock should be not less than 8% greater than one-half of the mold cavity depth. In any event, the thickness is agreed upon between the purchaser and supplier.

6.6.1 Rubber stock properties are best maintained by storage in a cool, dry atmosphere. Excessive rubber stock moisture may lower adhesion of some fiber/rubber composites.

6.6.2 Rubber compounds exhibit wide variations in shelf life (properties suitable for good adhesion results) dependent upon both composition and storage condition. Rubber compounds are usually replaced after three months; however, some may require replacement within a few weeks. In any event, storage conditions and shelf life should be specified by the supplier of the rubber compound.

6.7 Timers, having 60 min capacity, ½ min intervals.

6.8 Marking Pen, silver ink for rubber.

6.9 Shears, for trimming.

6.10 Gloves, of temperature resistant material.

6.11 Mold Release Lubricant, A suitable mold release

Available from Fisher Pen Co., Forest Park, IL.
lubricant may be applied to the empty mold to facilitate test block removal. Excess lubricant shall be wiped from the mold and particularly from the slots provided for the cords. The lubricant should not be applied when exposed cord is in the area, and should only be used when absolutely necessary. Use of mold release lubricant should be reported on the test report.

NOTE 1—The use of mold release lubricant is not recommended. The mold should be covered permanently with Teflon® or, preferably, with a stainless steel reinforced nonstick coating such as Excalibur®.

7. **Sampling**

7.1 **Lot Sample**—As a lot sample for acceptance testing, take at random the number of primary sampling units directed in an applicable material specification or other agreement between the purchaser and the supplier. Consider shipping cases of cord to be the primary sampling units. Exercise caution in sampling and handling so that samples receive minimum exposure to ambient atmosphere and light prior to rubber embedment. This can be accomplished by storing the sample in a sealed, black plastic bag. Rayon is particularly sensitive to moisture pick-up (which negatively affects adhesion) and should be handled accordingly.

NOTE 2—A realistic specification or other agreement between the purchaser and the supplier requires taking into account the variability between primary shipping units and within primary shipping units so as to provide a sampling plan with meaningful producer’s risk, consumer’s risk, acceptable quality level, and limiting quality level.

7.2 **Laboratory Sample**—Take at random the number of packages per shipping case in the lot sample directed in an applicable material specification or other agreement between the purchaser and the supplier.

7.3 **Test Specimens**—Prepare 15 specimens, or other number as agreed upon between the purchaser and the supplier, from each sample as directed in Section 8.

8. **Preparation of Test Specimens**

8.1 Cut the rubber stock in strips 6 mm (0.25 in.) wide and 150 mm (6.0 in.) long, leaving the protective film attached. This may be done with shears or with a clicker die.

8.1.1 Some laboratories have fabricated larger molds to accommodate a greater number of test specimens. In those laboratories, the length of the rubber stock must be adjusted accordingly.

8.2 A mold preheated to the curing temperature is preferred.

NOTE 3—When a preheated mold is used, the specimens must be loaded and placed in the curing press within 3 min. The use of a preheated mold...
will alter the curing conditions (time and temperature) of the rubber.

8.3 Remove the protective film from the rubber test strips, then place the individual rubber test strips in the mold cavities with the protective film side on top.

8.4 Place the cords in the cord slots by cutting cord test specimens allowing sufficient overhang for attaching masses and tie a knot in both ends. Take care to prevent the loss of cord twist. The portion of the cord that is embedded in rubber must not be touched by the bare hand. Attach a 50 g mass on one knotted end of the test cord. Two cords may be tied together and used to fill adjacent slots; a 100 g mass is used in this case (Fig. 4). Place one end of the knotted test specimen so that it is snubbed firmly against the cord slots on one side of the mold.

8.5 After all the cord slots are filled, remove the protective film from the additional strips of rubber and place them in the mold cavities on top of the cords. The side from which the protective film was removed will be down. Identify each specimen with a silver ink marking pen.

8.6 Place the cover plat on the mold, then remove the masses and place the mold in a preheated press. Adjust the pressure to a minimum of 3.5 MPa (500 psi) with reference to the mold surface. Vulcanize for the specified time at the specified pressure and temperature. Immediately remove the mold assembly from the hot curing press.

8.7 Remove mold cover plate then carefully remove the constructed rubber and cord test pad from the test mold cavity and cool at room temperature. Condition prepared specimens at 24 ± 1°C (75 ± 2°F) and 55 ± 2% relative humidity for 4 h minimum, 4 days maximum, unless otherwise agreed between purchaser and supplier. (Immediate testing is sometimes preferred).

8.8 Cut the cord test pad using shears, a sharp knife, or clicker die to produce individual H-test adhesion specimens consisting of a single cord with each end embedded in the center of a rubber tab approximately 25 mm (1 in.) in length (Fig. 1). Trim off excess rubber flash.

9. Procedure

9.1 Perform test in the standard atmosphere for testing tire cords, which is 24 ± 1°C (75 ± 2°F) and 55 ± 2% relative humidity.

9.2 Prepare tensile tester with test grips described in Fig. 3; ensure axial alignment. Set the gage distance between the grips to 1.5 mm (0.0625 in.). Set the crosshead speed to 125 ± 10 mm/min (5 ± 0.5 in/min).

9.3 Insert the H-test adhesion specimen in the clamps, having one leg of the “H” in the upper clamp, and the other leg in the lower grip.

9.4 Activate the crosshead. Observe and record the cord pull-out adhesion force to the nearest 0.5 N (0.1 lbf) by means of an automatic recorder, or interfaced computer.

9.5 Repeat, until the number of test specimens, as agreed upon between the purchaser and supplier, have been tested for each laboratory sample.

9.6 When elevated temperature testing is required, test as directed in 9.2-9.5, except enclose the specimen grips in an oven attached to the tensile tester. Heat the specimens in the oven, controlled at the specified temperature for not less than 15 min and not more than 60 min total elapsed time for testing of any one specimen.

9.6.1 As an alternate procedure, the specimens may be heated in an oven adjacent to the tensile testing machine and then removed, one at a time, and tested within 15 s after removal. The technique for heating and testing the specimens must be agreed upon by the purchaser and the supplier.

10. Report

10.1 Report the following information:

10.1.1 State that the tests were performed as directed in Test Method D 4776. Describe the products sampled and the method of sampling used.

10.1.2 Cord identification and construction.

10.1.3 Adhesive identity, cord percent dip pick-up, and curing conditions (time, temperature, pressure), when known.

10.1.4 Test condition temperature.

10.1.5 Rubber stock identification and gage (thickness).

10.1.6 Type tensile tester used.

10.1.7 Average of the number of specimen determinations per sample, to the nearest 0.5 N (0.1 lbf).

11. Precision and Bias

11.1 The precision of the procedure in Test Method D 4776 for measuring adhesion of tire cords and other reinforcing cords to rubber compounds by h-test procedure is being determined and will be available on or before December 2003. It is not feasible to specify the precision of the procedure at this time because the results of the previous round robin as reported in prior revisions of this test method are suspect and plans currently underway to conduct another round robin.

12. Keywords

12.1 adhesion; reinforcements (textiles); rubber; tire cord