

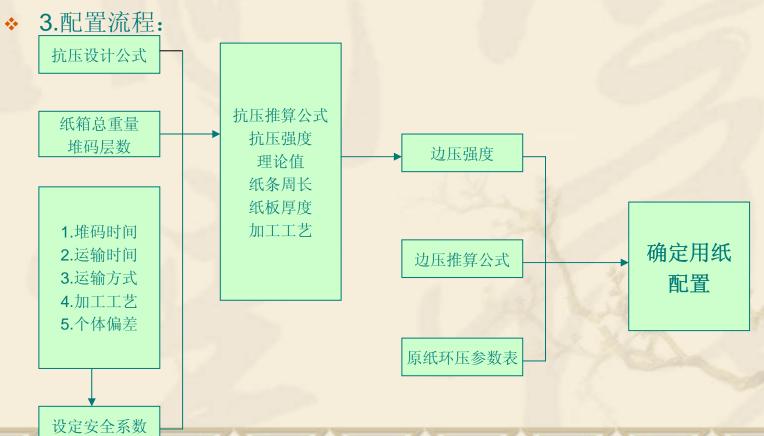
二.抗压强度的推算公式

- ❖ 1.以瓦楞纸板的边压强度和厚度作为瓦楞纸板的参数,以箱体周长,长宽比和高度作为标志结构的因素计算。
- * 公式为:
- \bullet B=5.874×E× (T×C) ^{1/2}
- ❖ B表示纸箱的抗压,单位N
- ❖ 5.874为系数
- ❖ E表示纸板的边压强度,单位N/m
- ❖ T表示纸板的厚度,单位m
- ❖ C表示纸箱的周长,单位m

纸板边压强度的推算方法

- ❖ 瓦楞纸板的边压强度等于组成纸板各层原纸的横向环压强度之和。
- ❖ 其中对于楞纸,其环压值为原纸环压强度乘以对应的瓦楞的楞率。
- ❖ 单瓦楞纸板Es=(L1+L2+r×F)
- ❖ 双瓦楞纸板Ed=(L1+L2+L3+r×Fr+r1×F1)
- ❖ 三瓦楞纸板Et = (L1+L2+L3+L4+r×Fr+r1×F1+r2×F2)
- * 式中表示:
- ❖ L1、L2、L3、L4分别为瓦楞纸板面纸、里纸及中隔纸的环压强度 (N/m)
- ❖ r、r1 、r2 分别表示瓦楞的楞率 (以公司实际数据为准)
- ❖ F、F1、F2分别表示芯纸的环压强度(N/m)

*


楞型	Α	В	С	E
楞率r	1.56	1.42	1.48	1.34
纸板厚度	4.5	3.0	4.0	1.8

纸箱抗压强度值修正表

印刷工艺修正(瓦楞板为印刷底材)						
印刷工艺	单色印刷	双色及三色印刷	四色套印,满版面实地			
抗压强度调整	减6%~8%,文字内容 越多,印刷面积越大, 减幅越大	减10%~15%,文字内容越多, 印刷面积越大,减幅越大	四色套印减20%,满版面实 地减20%,满版面实地加多 色减30%,			
长宽高尺寸及比例						
高度及长宽比	长宽比大于2	箱高超过65cm				
抗压强度调整	减20%,	减8%				
开孔方式						
开孔方式及位置	纸箱侧唛各加一通气孔	两侧唛各一个手提孔	两侧唛各一个手提孔,正唛 一个手提孔			
抗压强度调整	减10%	减20%	减30%			
模切工艺						
模切工艺	平压平	圆压平	圆压圆			
抗压强度调整	减5%	减20%	减25%			

四.纸箱抗压的用纸配置方法

- ❖ 1.客户对纸箱抗压值、纸箱印刷加工工艺有明确的要求,则可通过抗压强度 推算公式推算出纸箱的边压强度,再根据边压强度推算公式反推出满足客户 抗压要求的原纸配置。
- ◆ 2.客户提供纸箱重量、运输、堆码及印刷加工工艺等方面的信息,则可通过 推算出纸箱的抗压要求,边压要求,最终确认用纸的配置。

抗压强度计算公式

- ❖ 纸箱的抗压强度由纸箱装箱后的总重量,堆码层数和安全系数决定。
- ❖ 计算公式:
- $P=G\times(n-1)\times K$
- ❖ 其中: P表示纸箱空箱抗压
- ❖ G表示单个装箱后的总重量
- ❖ n 表示纸箱装机后的堆码层数
- ❖ K 表示安全系数

安全系数的设计方法

- ❖ 纸箱在流通过程中,还受到堆放时间,温湿环境,内装物水份,振动冲击等因素对纸
- * 箱抗压强度的影响。
- ❖ 设定的安全系数即考虑上述因素后, 抗压强度下降后仍能满足下层纸箱的承载能力。
- ❖ 一般内装物为运输流通过程较简短的内销品时,安全系数设为3~5左右。
- ❖ 内装物如本身排放出水分,为易损物品,堆放时间较长,流通环节较多,或者保管条
- ❖ 件恶劣时,安全系数设为5~8。
- ❖ 安全系数的计算方法:
- ❖ a: 温湿度变化导致的降低率
- ❖ b: 堆放时间导致的降低率
- ❖ C: 堆放方式导致的降低率
- ❖ d: 装卸过程导致的降低率
- ❖ e: 其他

表四 安全系数设计参数表

装箱后温湿度环境变化						
温湿环境	装箱后从出厂到销售过 程中,存储于干燥阴凉 环境	装箱后通过陆路流 通,但纸箱所处的温 湿环境变化较大	装箱后入货柜, 走海运出口			
抗压强度减损率	10%	30%	60%			
装箱后堆码时间长短						
堆码时间	堆码时间不超过1个 月	堆码1~2个月	堆码时间3个 月以上			
抗压强度减损率	15%	30%	40%			

装箱后堆放方法							
堆放方法	堆码	纸箱堆放时不能箱角 完全对齐,但堆放整 齐	纸箱杂乱堆放				
抗压强度减损率	5%	20%	30%				
装卸流通过程	装卸流通过程						
装卸流通情况	流通过程中仅装卸一次, 且装卸时很少受到撞击	虽经多次装卸,但 装卸时对纸箱撞击 较少	从工厂到超市需经过 多次装卸,且运输装 卸过程中经常受撞击				
抗压强度减损率	10%	20%	50%				
其它需考虑的因素	其它需考虑的因素						
其它影响因素	糊料加入了防水耐潮的添加剂(安全系数设计时可 从温湿环境对抗压的影响 中减去)	内装物本身为贵重易损物件,对纸箱的保护性要求非常高.					
抗压强度减损率	—10%	60%					

纸箱抗压测试

- ◆ 纸箱抗压测试方法是将纸箱置于压力试验机上,以一定的速度在其顶部(或底部)均匀地施加压力,以此评定纸箱承受外部压力的能力,也是纸箱对内装物的保护能力。
- ❖ 纸箱对温湿度不同,纸箱的水分含量也不同,而水分则对抗压强度产生很大影响,一般最好在恒温恒湿 标准环境中处理,需在12小时以上。
- ❖ 快速测试纸箱抗压值:数字式水份测试仪。抗压仪
- ❖ 测试方法是:测试出纸箱的抗压强度及纸板水分含量,而后根据《水分含量及抗压关系对照表》进行推算。
- * 水分含量与抗压关系对照表

纸板含水量%	8	9	10	11	12	13	14	15	16
抗压强度指数%	100	90	81	73	66	59	53	48	43

- ❖ 举例:
- ❖ 有一款式样未经温湿平衡处理的纸箱,测得其空箱抗压强度为6250N,纸板水份含量为10%,试推算其 正确的抗压值。
- ❖ 通过查表得:纸箱水分为10%时,此时抗压强度的真实值81,则抗压强度为:6250/81%=7716N
- ❖ 则可知式样经过温湿平衡处理后的抗压强度为7716N。

影响纸箱抗压的因素

- ❖ 1) 瓦楞纸板的边压强度
- ❖ 纸箱的抗压强度高低主要取决于纸板的边压强度,而边压强度则与组成瓦楞纸板的各层原纸的横向环压强度,楞型组合及纸板的粘合强度有关。
- ❖ 2)纸箱长,宽,高尺寸及比例
- ❖ 箱高在10cm~35cm时,抗压强度随高度增加而稍有下降。
- ❖ 箱高在35cm~65cm时, 其抗压强度几乎不变。
- ❖ 箱高大于65cm之间时,抗压强度随高度增加而下降。主要原因是高度增加,其不稳定性 也会相应增加。
- ◆ 一般讲: 纸箱长宽比在1~1.8的范围内,长宽比对抗压的影响仅为±5%,其中长宽比 RL=1.2~1.5时,纸箱的抗压值最高。长宽比为2:1时,抗压强度下降约20%。
- ❖ 3)堆码时间及堆码方式
- ❖ 纸箱的抗压强度随堆码时间的延长而降低。在一个月中,抗压会下降30%,一年后下降 50%。
- ❖ 堆码方式:以上下平行式最合理,而砖砌式及风车式则应尽量避免。
- ❖ 4) 纸箱开孔方式
- ❖ 开孔越大, 抗压减损越大; 开孔离顶, 底越近, 离中心往左右越远, 抗压越低;
- ❖ 对称开孔比开不对称孔的抗压强度减损要小。
- ❖ 侧面各1个孔降低20%,两侧面及正面个1个孔,降低30%。

影响纸箱抗压的因素

- ❖ 5)纸箱印刷工艺
- ❖ 单色印刷使纸箱抗压强度降低6%~8%,双色及三色印刷使纸箱抗压强度降低10%~15%,
- ❖ 四色套印及整版面实地印刷使纸箱抗压强度降低2%,
- ❖ 6)模切工艺
- ❖ 平压平模切对抗压强度影响较小,圆压圆及圆压平模切对抗压影响则大一些。
- ◆ 如果印刷机与模切连动,可导致纸箱抗压强度较少25%以上。
- ❖ 7) 纸箱内衬设计
- ❖ 内衬增加会使抗压强度提高,但是内衬设计成直角比设计成圆角更利于提高抗压强度。
- ❖ 8) 纸箱堆放温湿环境
- ◆ 纸箱对温湿环境比较敏感,温度对纸箱的抗压强度影响较小,但是湿度则非常明显。
- ❖ 在温度30℃,湿度80%RH时,开始急剧下降,当温度45℃,湿度95%RH时,抗压强度下降幅度可达60%以上。