1. Scope

1.1 These test methods cover testing procedures that estimate the ability of soft rubber materials to resist dynamic fatigue. No exact correlation between these test results and service is given or implied. This is due to the varied nature of service conditions. These test procedures do yield data that can be used for the comparative evaluation of rubber or composite rubber-fabric materials for their ability to resist dynamic fatigue.

1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

D 412 Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension
D 1349 Practice for Rubber—Standard Temperatures for Testing
D 1682 Methods of Test for Breaking Load and Elongation of Textile Fabrics
D 3183 Practice for Rubber—Preparation of Pieces for Test Purposes from Products
D 3767 Practice for Rubber—Measurement of Dimensions
D 4483 Practice for Evaluating Precision for Test Method

3. Summary of Test Methods

3.1 Three test methods are covered, using the following different types of apparatus:

3.1.1 Method A—Scott Flexing Machine.
3.1.2 Method B—DeMattia Flexing Machine.

3.1.4 The Scott flexing machine is used principally for tests of Type I, the DeMattia flexing machine for tests of Type II, while the DuPont apparatus is adapted to tests of either Type I or II, refer to 4.2.

4. Significance and Use

4.1 Tests for dynamic fatigue are designed to simulate the continually repeated distortions received in service by many rubber articles, such as tires, belts, footwear, and molded goods.

4.1.1 These distortions may be produced by extension, compressive, and bending forces or combinations thereof.

4.1.2 The effect of the distortions is to weaken the rubber until surface cracking or rupture occurs. Where rubber is combined with other flexible materials such as fabric, the effect may be evidenced by separation at the interface between the materials, caused either by breaking of the rubber or failure of the adhesion or both.

4.2 These tests are, therefore, of the following two types:

4.2.1 Type I—Tests designed to produce separation of rubber-fabric combinations by controlled bending of the specimens.

4.2.2 Type II—Tests designed to produce cracking on the surface of rubber by either repeated bending or extension as may occur in service.

5. Application

5.1 Established specifications, practices or methods of test as agreed upon between customer and supplier take precedence over those contained herein.
6. Preparation of Test Specimens
6.1 Except as may be otherwise specified herein, specimen preparation shall comply with the requirements of Practice D 3183.

7. Test Temperatures and Conditioning
7.1 The standard temperature for testing shall be as described in Practice D 1349 for the Standard Laboratory Atmosphere [23 ± 2°C (73.4 ± 3.6°F)].
7.2 Controlled temperatures outside the standard range are acceptable and often desirable. Notation of nonstandard test temperatures shall appear in the report.
7.3 Specimens shall be conditioned at the specified temperature for no less than 12 h prior to testing.

METHOD A: SCOTT FLEXING MACHINE

8. Type of Strain
8.1 The Scott flexing machine test method is used to test for ply separation in test specimens composed of plies of fabric bonded to rubber compounds (belts, tires, etc.) by controlled bending.

9. Test Specimens from Belts
9.1 The specimens shall be 209.5 mm (8.25 in.) in length by 25 ± 2 mm (1 ± 0.08 in.) in width.
9.2 The thickness shall be measured in accordance with Practice D 3767, Procedure A, recorded and reported.
9.3 Test specimens selected from samples of belts shall be cut lengthwise of the belt and their locations recorded and reported.
9.4 The seam area of a folded belt shall not be included in any of the test specimens and the folded edge shall be removed before cutting the specimens.
9.5 The specimens shall consist of four plies for routine tests, any excess plies being removed by carefully stripping so as not to weaken the remaining bonds.
9.5.1 When another number of plies are used in nonroutine tests, the number of plies shall be recorded and reported.

10. Test Specimens from Tires
10.1 Test specimens from tires shall be cut to the dimensions indicated in 10.2.3.1. If suitable test specimens cannot be cut from tires it is necessary to prepare special flexing pad samples as described in 10.2.1-10.2.3 from the cord fabric and rubber compounds that are to be tested.
10.2 Specimen thickness measurements shall be determined in accordance with Practice D 3767, Procedure A.
10.2.1 Preparing Unvulcanized Flex Specimen Pads:
10.2.1.1 Solution coated, frictioned, or bare cord fabric shall be calendered with the rubber compound to a total thickness of 1.25 mm (0.050 in.).
10.2.1.2 Six plies of this material shall be assembled using a hand roller so that the plies run in alternate directions. The first, third, and fifth plies shall have the cords lengthwise and the second, fourth, and sixth plies crosswise of the pad.
10.2.1.3 Care shall be taken that the same calendered side of each piece is facing up and that each alternate ply crosses at right angles.
10.2.1.4 The pad, which shall have a thickness of 7.6 mm (0.300 in.) shall be cut by means of a template and knife to dimensions of 125 × 202 mm (4.94 × 7.94 in.). The long edge of the template shall be held parallel with the lengthwise cords in the specimen pad.
10.2.2 Vulcanization of Flexing Pad Specimens:
10.2.2.1 The specimen pad shall be vulcanized in a steel mold having single, or multiple, cavities measuring 125 × 203 × 8.25 mm (5 × 8 × 0.325 in.).
10.2.2.2 Uniform compression shall be applied over the entire top surface of the specimen pad. This compression, together with slight stretching produced by the unvulcanized pad being cut slightly smaller than the cavity, ensures straight cords in the cured specimen pad.
10.2.2.3 In order to obtain uniform compression, it is necessary to make up the difference between the specimen pad thickness and the mold depth by means of filler layers of Holland cloth or aluminum foil placed on top of the specimen pad.
10.2.2.4 These filler layers shall be added until the total thickness of the assembly is 7.75 mm (0.305 in.).
10.2.2.5 A sheet of rubber compound containing curing ingredients and measuring 152 × 228 × 0.5 mm (6 × 9 × 0.02 in.) shall be placed on top of the specimen pad and filler layers over the cavity of the mold before the mold cover is placed in position.
10.2.2.6 The purpose of the top rubber layer is to fill the overflow space and seal the mold. In placing the specimen pad in the mold, care shall be taken to keep uppermost that side of the specimen pad having the cords running crosswise.
10.2.2.7 The total thickness of the material in the mold is then 8.25 mm (0.325 in.) and expansion will produce an undistorted specimen pad.
10.2.2.8 The mold shall be placed in a press under the conditions of pressure, temperature, and time to achieve vulcanization of the material.
10.2.2.9 After curing, the filler layers shall be removed and the specimen pad allowed to equilibrate at an ambient temperature of between 21 and 32°C (70 and 90°F) for no less than 36 h before being tested.
10.2.2.10 Specimen pads made in this manner shall be 203 × 127 × 7.0–7.1 mm (8 × 5 × 0.275–0.280 in.).
10.2.2.11 Any pads having distorted cords shall not be tested.
10.2.3 Cutting the Tire Test Specimens from the Pad:
10.2.3.1 Four strips, each 203 × 25 mm (8 × 1 in.) shall be cut from the tire specimen pad.
10.2.3.2 First cut a strip 6.3 to 12.5 mm (0.250 to 0.50 in.) in width from one longitudinal edge of the specimen. Remove and discard this piece.

---

10.2.3.3 Beginning from the first cut, remove four additional strips, taking care to cut the strips straight with smooth edges. It is recommended to use a template as a cutting guide.

10.2.3.4 In cutting the specimens, there should not be more than five or six cut longitudinal threads exposed on the two edges of a six-ply specimen. A number of cut threads beyond five or six is excessive and indicates that many of the threads of alternate plies are not parallel.

11. Number of Test Specimens

11.1 At least five specimens from each belt sample or tire and no less than four specimens from each tire specimen pad shall be tested and the results averaged as indicated in Section 16. Precision may be increased by testing a greater number of specimens.

12. Scott Flexing Machine

12.1 The essential features of the apparatus, illustrated in Fig. 1, are as follows:

12.1.1 The Scott flexing machine has five hubs and is capable of testing up to five specimens at one time. Each hub rotates on a double row, radial type, ball bearing of the grease sealed type with double shields.

12.1.2 The test specimens shall be bent around the hubs having an arc of contact of approximately 165°, and the ends shall be gripped by clamps that are oscillated, up and down, by rocker arms driven through a chain of gears by a 190 W (0.25 hp) 1750 rpm motor.

12.1.3 The action on the specimen is a flexing, back and forth, over the hub while held in tension by the loading lever and weight.

12.1.4 The specimen has a travel in one direction of 66.5 mm (2.62 in.) and a full cycle travel of 132.0 mm (5.2 in.). The speed of operation is approximately 2.7 Hz (160 cpm) with the number of cycles in each test being recorded by a counter affixed to each rocker arm.

13. Hub Size and Flexing Force

13.1 Specimens from belts shall be tested using hubs 31.7 mm (1.250 in.) in diameter with a 445 N (100 lbf) flexing force.

13.2 Specimens from tires or tire specimen pads shall be tested using hubs 14.3 mm (0.563 in.) in diameter with a 445 N (100 lbf) flexing force.

14. Procedure for Belt Specimens

14.1 Bend the belt test specimens around the hubs with the pulley side of the belt against the metal and the ends clamped in the grips.

14.2 Carefully apply the flexing load without shock, set the counter to zero, and start the machine. Allow it to run until some fine particles, dislodged by friction, may be seen on the white plate beneath the hub, which indicates that separation of the plies has started.

14.3 Frequent inspection of the specimens undergoing test is imperative if reliable results are to be expected.

14.4 When the first indication of ply separation appears, note and record the counter reading. Thereafter watch the specimen more closely and increase the frequency of the inspection to ensure proper determination of the end point.

14.5 When there is a clear separation across the width of the specimen it shall be considered to have failed. Record the minimum counter reading for this failure as the end point. Also record the location of the separation.

14.6 When a test is started, continue to completion without interruption. However, for the purpose of examining the specimen, each hub may be released momentarily from its force by means of the foot lever provided.

15. Procedure for Tire Specimens

15.1 Mount the tire test specimens with the lengthwise outer ply cords against the hub of the machine and test in a manner similar to the procedure for belts (Section 14).

15.2 After the tire specimen has been run about 10 min, but before separation begins, brush a thick coat of molten carnauba wax on the outer side of the specimen at the flexing region.

15.3 As soon as separation begins, the temperature of the flexing region increases very rapidly and the wax melts. The melting of the wax starts with a small area and gradually spreads as separation increases. This serves as a warning that complete separation will occur shortly thereafter. The interval between the melting of the wax (the time at which separation actually starts) and complete separation across the specimen may not always be the same.

NOTE 1—A specimen with a short flexing life will show complete separation soon after the wax melts, whereas a sample with a greater flexing life might require a time interval two or three times as long. However, with specimens having similar flexing life, the time interval between the melting of the wax and complete separation is fairly constant.
16. Calculation

16.1 Calculate the result of the test of any sample as the average of the number of flexing cycles required to produce complete separation of each test specimen as determined from the counter readings.

METHOD B: DEMATTIA FLEXING MACHINE

17. Type of Strain

17.1 The DeMattia flexing machine test method may be used to test rubber specimens for resistance to cracking produced either by extension or bending, depending on the relative adjustment of the stationary and movable grips, and the distance of travel of the latter. The choice of type of strain is optional but notation shall be made of the type actually used, giving full details of the relative positions of the grips and of the travel.

NOTE 2—In choosing the type of strain, it should be remembered that the phenomenon of cracking starts on the surface of the rubber and rapidly progresses inward as new surface is exposed. Since rubber is practically noncompressible but highly extensible, the rupture of the surface fibers in both types of strain must come from disturbances due to elongation. The magnitude of the extension, however, may differ and the internal distribution of force in the specimens is not the same in the two cases. The choice, therefore, will depend considerably on the purpose of the test and the kind of service for which correlation of the test results may be sought.

18. Test Specimens for Extension Fatigue Cracking

18.1 When the extension type of strain is used, the standard test specimen shall be the dumbbell shaped tension specimen described as Die C of Test Methods D 412.

18.2 The specimen thickness shall be determined in accordance with Practice D 3767, Procedure A, and recorded. The results shall be compared only when obtained using specimens of substantially the same thickness.

18.3 The molded specimens shall be prepared as described in Method A, Section 11.1, Dumbell Specimens, of Test Methods D 412.

18.4 On specimens obtained from finished products and when buffing is necessary, the procedures described in Practice D 3183 shall be followed.

18.5 Special care shall be taken to avoid any surface imperfections which might prematurely start the cracking. Any specimens with irregularities on the surface shall be discarded.

18.6 Test specimens shall be conditioned no less than 12 h at the test temperature (refer to Section 7).

19. Test Specimens for Bend Flexing

19.1 When the strain type is bending, special molded specimens of the shape shown in Fig. 2 shall be used.

19.2 The specimens shall be prepared in molds conforming to the shape and dimensions given in Fig. 2. They shall have a smooth polished surface and be free of surface irregularities and defects in the groove and adjacent area.

19.3 The thickness of the specimen shall be measured adjacent to the groove. Test results shall be compared only between test specimens that have thicknesses of 6.4 ± 0.1 mm (0.250 ± 0.005 in.) because the results of the test are dependent upon the thickness of the test specimen.

19.4 The test specimen shall be conditioned no less than 12 h at the test temperature.

20. Number of Test Specimens

20.1 At least three specimens from each molded plaque shall be tested and the results averaged. It is desirable, when possible, to test simultaneously, with each set of specimens, a set of control specimens of which the resistance to flex cracking is known.

21. DeMattia Flexing Machine

21.1 The essential features of the apparatus, one design of which is shown in Fig. 3, are as follows:

21.1.1 The machine has an adjustable stationary head or member provided with suitable grips for holding one end of each of the test specimens in a fixed position and a similar reciprocating member for holding the other end of the specimens.

21.1.2 The reciprocating member is mounted so that its motion is straight in the direction of, and in the same plane as, the center line between the grips. The travel of the moving members shall be adjustable and shall be obtained by means of a connecting rod and eccentric having a minimum length ratio of 10 to 1.

21.1.3 The eccentric shall be driven by a motor operating at constant speed under load and producing 5 Hz (300 ± 10 flexing cpm).

21.1.4 Provision shall be made for a maximum travel of the moving grips of 100 mm (4 in.).

21.1.5 The capacity of the machine shall be such that tests at the same time may be made on at least six and preferably twelve specimens.

21.1.6 The grips shall hold the specimens firmly throughout the test and those on the reciprocating member may clamp each specimen individually to facilitate proper adjustment of the specimens.
22. Clamping Specimens in the DeMattia Flexing Machine

22.1 One end of the specimen shall be clamped in the stationary grip and the other in the movable grip, care being taken to see that the long axis of the specimen is parallel to the direction of motion.

22.2 The constricted section or the circular groove of the clamped specimens shall be located symmetrically midway between the clamps. The specimens for extension fatigue cracking shall be gripped only on the enlarged ends.

22.3 The specimens may be mounted on the machine most conveniently by holding them properly spaced in parallel positions in a special mounting rack. The distance between the outer edges of the side bars of the rack shall be equal to the space between the jaws of the testing machine when positioned for holding the specimens without tension.

22.3.1 The specimen mounting rack can then be placed in the testing machine by bringing the jaws into contact with the mounting rack and tightening the clamps on the projecting ends of the specimens.

22.4 In the case of specimens for bend flexing, the free length of the specimens between the clamps shall be 76.2 + 0.3–0.0 mm (2.99 + 0.01–0.00 in.). The circular groove must be restrained so that it will become the outer surface when the specimens are bent.

23. Adjustment of the DeMattia Flexing Machine

23.1 Extension Fatigue Cracking:

23.1.1 The positions of the stationary and movable grips relative to each other and the length of the eccentric arm and connecting rod shall be adjusted so that the movable grip will approach the stationary grip 13 mm (0.5 in.) closer than necessary to relieve the elongation stress in the specimen and
so that the grips will separate a maximum distance sufficient to elongate the portion of the specimen between the gauge marks a predetermined and recorded amount.

23.1.2 The elongation of the specimens between the gauge marks shall not exceed one fourth of the ultimate breaking elongation; for highly extensible rubbers a maximum elongation of 125 % is suitable.

23.2 Bend Flexing:

23.2.1 The positions of the stationary and movable grips relative to each other and the length of the eccentric arm and connecting rod shall be adjusted so that during each stroke of the machine the grips approach each other to a distance of 19.0 ± 0.1 mm (0.750 ± 0.005 in.) and separate to a distance of 75.9 ± 0.3–0.00 mm (2.99 + 0.01–0.000 in.).

24. Procedure

24.1 After adjustment of the apparatus and specimens is completed, start the machine and record the time.

24.2 Continue the test until, by frequent inspection, the appearance of the first sign of cracking is detected. This may be evidenced as either very fine hairline cracks or as slight pinholes. At this point, again record the time.

24.3 After this time, observe the specimens very closely until the test is discontinued, and record the final time when the cracks have developed sufficiently to permit grading the degree of the cracking in all specimens as described in Section 25.

24.4 It is not desirable to run the specimens until complete rupture occurs when this can be avoided. When testing specimens of which the dynamic fatigue properties are approximately known, run the test for a predetermined number of cycles and then make the grading comparison.

25. Interpretation of Results

25.1 After the conclusion of the test, remove the specimens from the machine and evaluate them in sequence relative to the seriousness of the cracking by comparison with a standard scale of cracked specimens of the same type.

25.2 Make the comparison by visually judging the length, depth, and number of cracks.

25.3 The standard comparison scale shall consist of eleven specimens equally graded and numbered from 0 (showing no cracking) to 10 (completely cracked through).

25.4 A guide for evaluating the specimens is given in Table 1. Improved precision may be achieved by making observations with a scale having 0.5 mm (0.020 in.) increments and a low powered magnifying glass.

25.5 Record the final result as the average of the numbers obtained from all of the specimens.

25.6 Calculate the number of cycles required for the first sign of cracking and for the final result by multiplying the observed time, expressed in minutes, by the rate of 5 Hz (300 cpm).

25.7 Compare the test results only between specimens of similar configuration, tested in the same manner under identical conditions.

25.8 The test results may be expressed as:

25.8.1 A severity comparison of the various samples at a definite number of flexing cycles,

Table 1 Evaluation of DeMattia Bend Flexing Specimens

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No cracking has occurred.</td>
</tr>
<tr>
<td>1</td>
<td>Cracks at this stage appear as pin pricks to the naked eye. Grade as 1 if the pin pricks are less than 10 in number and less than 0.5 mm in length.</td>
</tr>
<tr>
<td>2</td>
<td>Assess as Grade 2 if either of the following applies: (1) The pin pricks are in excess of 10 in number, or (2) The number of cracks is less than 10 but one or more cracks have developed beyond the pin prick stage, that is, they have perceptible length without much depth, but their length is still less than 0.5 mm.</td>
</tr>
<tr>
<td>3</td>
<td>Assess as Grade 3 if one or more of the pin pricks have become obvious cracks with a length greater than 0.5 mm but not greater than 1.0 mm.</td>
</tr>
<tr>
<td>4</td>
<td>The length of the largest crack is greater than 1.0 mm but not greater than 1.5 mm (0.06 in.).</td>
</tr>
<tr>
<td>5</td>
<td>The length of the largest crack is greater than 1.5 mm but not greater than 3.0 mm (0.12 in.).</td>
</tr>
<tr>
<td>6</td>
<td>The length of the largest crack is greater than 3.0 mm but not greater than 5.0 mm (0.20 in.).</td>
</tr>
<tr>
<td>7</td>
<td>The length of the largest crack is greater than 5.0 mm but not greater than 8.0 mm (0.31 in.).</td>
</tr>
<tr>
<td>8</td>
<td>The length of the largest crack is greater than 8.0 mm but not greater than 12.0 mm (0.47 in.).</td>
</tr>
<tr>
<td>9</td>
<td>The length of the largest crack is greater than 12.0 mm but not greater than 15.0 mm (0.60 in.).</td>
</tr>
<tr>
<td>10</td>
<td>The length of the largest crack is greater than 15.0 mm. This indicates complete failure of the specimen.</td>
</tr>
</tbody>
</table>

25.8.2 The number of flexing cycles required to attain a definite severity rating, or

25.8.3 A comparison of the number of cycles required to attain progressive degrees of severity ratings.

NOTE 3—In the latter case (25.8.3), where several degrees of severity ratings are observed, the data may be compared numerically or graphically as desired, expressing the number of flexing cycles either in kilocycles or logarithms of kilocycles.

26. Precision and Bias

26.1 This precision and bias section has been prepared in accordance with Practice D 4483. Please refer to this practice for terminology and other statistical calculation details.

26.2 The precision results in this precision and bias section give an estimate of the precision of this test method with the materials (rubbers, etc.) used in the particular interlaboratory program as described in 26.3. The precision parameters should not be used for acceptance or rejection testing of any group of materials without documentation that the parameters are applicable to the particular group of materials and the specific testing protocols of the test method.

26.3 A Type I interlaboratory test program was evaluated in 1993 with three compounds (materials) tested in five laboratories on two separate test days one week apart. Both repeatability and reproducibility are therefore short-term; a period of a few days separates replicate test results. A test result is the mean (average) value of three determinations (or test specimens) of the flex life in kilocycles to first cracking.

26.4 The results of the precision evaluation are given in Table 2.

26.5 The precision of the test method may be expressed in the format of the following statements that use an appropriate value of r, R, (r), and (R) to be used in the decisions about the
TABLE 2 Type 1—Precision Results: Method B

<table>
<thead>
<tr>
<th>Material</th>
<th>Mean</th>
<th>Within Laboratories</th>
<th>Between Laboratories</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sr</td>
<td>r</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SR</td>
<td>R</td>
</tr>
<tr>
<td>CPD A</td>
<td>11.3</td>
<td>2.90</td>
<td>8.11</td>
</tr>
<tr>
<td>CPD C</td>
<td>20.0</td>
<td>3.71</td>
<td>10.40</td>
</tr>
<tr>
<td>CPD B</td>
<td>21.0</td>
<td>5.91</td>
<td>16.50</td>
</tr>
</tbody>
</table>

^ Units = Kilocycles to first cracking.

p = 5, q = 3, and n = 2.

Laboratory 5, Material B values replaced.

Test results. The appropriate value is that value of r or R, associated with a mean level in Table 2, closest to the mean level under consideration at any given time for any test result for a material in routine testing operations.

26.5.1 Repeatability—The repeatability, r, of this test method has been established as the appropriate value tabulated in Table 2. Two single test results, obtained under normal test method procedures, that differ by more than this tabulated r (for any given level) must be considered as derived from different or nonidentical sample populations.

26.5.2 Reproducibility—The reproducibility, R, of this test method has been established as the appropriate value tabulated in Table 2. Two single test results obtained in two different laboratories, under normal test method procedures, that differ by more than the tabulated R (for any given level) must be considered to have come from different or non-identical sample populations.

26.5.3 Repeatability and reproducibility expressed as a percentage of the mean level, (r) and (R), have equivalent application statements as above for r and R. For the (r) and (R) statements, the difference in the two single test results is expressed as a percentage of the arithmetic mean of the two test results (in absolute units).

26.6 This precision evaluation program had an inadequate number of laboratories for a satisfactory evaluation of the testing precision.

26.7 Bias—In test method terminology, bias is the difference between an average test value and the reference (or true) test property value. Reference values do not exist for this test method since the value (of the test property) is exclusively defined by the test method. Bias, therefore, cannot be determined.

METHOD C: E. I. DUPONT DE NEMOURS AND CO. FLEXING MACHINE

27. Test Specimens for Flex Cracking

27.1 Specimens shall be prepared from the unvulcanized rubber compounds to be tested. They shall have a fabric base to prevent stretching during test and shall be strips 25 × 100 mm (1 × 4 in.), cut at right angles to the grooves from vulcanized test slabs prepared as described below:

27.1.1 The unvulcanized stock shall be prepared in sheets having a thickness of 4.3 to 4.5 mm (0.170 to 0.175 in.).

27.1.2 A slab 75 × 190 mm (3 × 7.5 in.) shall be cut so that the grain of the stock runs parallel to the 75 mm (3 in.) side.

27.1.3 The slab shall then be backed with a layer of frictioned belt fabric. Cut the fabric 146 × 190 mm (5.75 × 7.5 in.) so that the warp is parallel to the 146 mm (5.75 in.) side and prepare as follows:

27.1.3.1 The upper surface of this fabric shall be covered with a 5.1 mm (0.020 in.) layer of tie gum (rubber tread stock).

27.1.3.2 After the tie gum has been put on the frictioned fabric, two 3 mm (0.125 in.) diameter steel rods 190 mm (7.375 in.) long, covered with a paper soda straw shall be placed on the tie gum side of the fabric so that the center of the rod is approximately 24 mm (0.938 in.) from each side of the 190 mm (7.5 in.) edges.

27.1.3.3 The 24 mm (0.938 in.) of projecting fabric shall be folded over and rolled down so that the finished fabric will have a dimension of approximately 100 × 190 mm (4 × 7.5 in.).

27.1.3.4 The surface of the slab of 75 × 190 mm (3 × 7.5 in.) and also the tie gum shall be freshened with hexane and permitted to dry before assembly to ensure good adhesion.

27.1.3.5 Semicured white letters may be placed along the side of the slab for the identification of the test specimens, which shall be subsequently cut out and assembled for flexing.

27.1.3.6 Before vulcanizing, the stock shall be allowed to equilibrate for no less than 16 h after mixing.

27.1.3.7 The fabric shall conform to the following requirements:

<table>
<thead>
<tr>
<th>Raw Fabric, Silver Hard Duck:</th>
<th>Warp Filler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads per cm (in.)</td>
<td>11 × 7.4 (27.5 × 18.8 )</td>
</tr>
<tr>
<td>Ply</td>
<td>7 × 4</td>
</tr>
<tr>
<td>Crimp, %</td>
<td>25 × 4</td>
</tr>
<tr>
<td>Breaking Resistance (ASTM Grab Method)^4</td>
<td>2700 × 1300 (600 × 290)</td>
</tr>
<tr>
<td>12-h exposure in an atmosphere having a relative humidity of 65 % at 21°C, N (lbf)</td>
<td>1.45 (0.057)</td>
</tr>
<tr>
<td>Thickness, mm (in.)</td>
<td>1.2 ± 0.1 (0.049 ± 0.003)</td>
</tr>
<tr>
<td>Mass in g/m² (oz/yd²)</td>
<td>950 (28)</td>
</tr>
<tr>
<td>Frictioned Fabric (frictioned both sides):</td>
<td>1220 (36)</td>
</tr>
<tr>
<td>Mass in g/m² (oz/yd²)</td>
<td>1.2 ± 0.1 (0.049 ± 0.003)</td>
</tr>
</tbody>
</table>

^ The grab test method is described in Methods of Test D 1682.

27.1.4 The fabric shall be frictioned on both sides with a conventional gum friction compound. The slab shall be placed in the mold shown in Fig. 4 with the rubber side of the slab next to the mold corrugations and vulcanized as required for the particular compound.

27.1.5 After the vulcanized slab has been allowed to cool in air, the two steel rods shall be removed. This produces a cured slab with a fabric backing 190 × 100 mm (7.5 × 4 in.) and 4.8 mm (0.188 in.) in thickness at the smooth portion and 5.9 mm (0.233 in.) in thickness at the corrugated portion.

27.1.6 There are seven transverse V shaped grooves 4 mm (0.156 in.) in width and 1.1 mm (0.045 in.) in depth. The angle of the “V” is 120°.

27.1.7 Notation shall be made of the time and temperature of vulcanization.

28. Number of Test Specimens

28.1 At least three specimens from each slab shall be tested and the results averaged.

28.2 The accuracy of the final value may be increased by testing a greater number of specimens.
28.3 Since the test is primarily comparative, a set of control specimens, from samples of which the qualities are known, should be tested simultaneously whenever possible.

28.4 Flex-cracking results shall be compared only between specimens having thicknesses within ±0.04 mm (±0.0015 in.) between themselves.

29. DuPont Flexing Machine

29.1 The DuPont flexing machine, shown in Fig. 5, consists of four pulleys around which a test belt is run. The belt shall be composed of 21 test pieces acting as links held together with chain master links.

29.2 The machine may be arranged as shown so that three separate belts may be run at the same time. Facing the front of the machine, the upper left hand pulley is driven by a 373 W (0.5 hp) motor. This driving pulley shall have a speed of 860 rpm.

29.3 The upper right hand pulley is mounted in an angular balance arm which supports a 6.8 kg (15 lb) mass. The mass is 280 mm (11 in.) and the pulley 123 mm (4.85 in.) from the supporting pin, producing a belt tension of approximately 76 N (17 lbf).

29.4 The angle between the two sections of the balance arm is 166°, as shown in Fig. 5. This angle results in less change in tension on the belt as the belt increases in length.

29.5 The center and lower pulleys are idlers. All pulleys are 75 mm (3 in.) in diameter without flanges and have faces 45 mm (1.75 in.) wide with 0.8 mm (0.031 in.) crowns and are mounted on sealed ball bearings.

29.6 The bottom and center pulleys are on the same vertical line and their centers shall be 365 mm (14.375 in.) apart. The driving pulley shall be located 160 mm (6.25 in.) to the left of the center pulley and 245 mm (9.625 in.) above it.

29.7 The balance pulley shall be located 154 mm (6.05 in.) to the right of the center pulley when the weight arm section, 280 mm (11 in.), is horizontal.

29.8 The specimen belt runs over the driving pulley, under the center pulley, over the right hand or balance pulley, and under the bottom pulley back to the driving pulley.

29.9 In order to record when a belt breaks, the lever arm contacts a switch which stops an electric clock or running time meter.

30. Procedure

30.1 Assemble 21 test specimens into a test belt by means of master chain links.¹

31. Evaluation of Results

31.1 Evaluate the results of the test as given in Section 25, except record the number of flexures in terms of total belt revolutions at the end of the test calculated by multiplying the observed flexing time expressed in minutes by the assumed belt speed of 1.6 Hz (95 rpm).

31.2 Make a detailed permanent record of the cracking in each specimen by indicating on a suitable form the location, number, and intensity of the nicks and cracks. Dots may be used for nicks and straight lines for cracks. Very light marks may be used for first indications with heavier marks to indicate increased depth and width of failure.

32. Report

32.1 For each of the three alternative test methods, the report shall include the following:

32.1.1 The results of the test expressed in accordance with Section 16, 25, or 31.

32.1.2 Statement of the purpose of the test and the method used, including a description of the specimen,

32.1.3 All observed and recorded data,

32.1.4 Description of the sample,

32.1.5 Date of manufacture or vulcanization, if known,

32.1.6 Date of test, and

32.1.7 Temperature of the test room.

33. Keywords

33.1 crack growth; DeMattia flexing machine; DuPont flexing machine; flex fatigue; flexing; flexing fatigue; ply separation; rubber products; Scott flexing machine