

EX Incremental Rotary Encoder

Shaft or hollow shaft

measuring monitoring analysing

Max. speed: 6000 rpm

Shaft/hollow shaft: Ø 12 mm

Output: RS422 or push-pull

Cable connection

Pulse count: max. 5000 pulses

Max. pulse frequency: 300 kHz

■ Supply: 10-30 V_{DC}

• EEx d IIC T6

Max. temperature: +60°C

Protection type: IP 64

POLAND, SWITZERLAND, USA, VENEZUELA

ARGENTINA, AUSTRIA, BELGIUM, BRAZIL, CANADA,

KOBOLD Messring GmbH

Description

KOBOLD rotary encoders are used to measure length, position, rotational speed and angle. They convert mechanical motion to electrical signals. Incremental rotary encoders output a frequency signal which can represent speed, length or position.

A rotatable disc, on which a grating is attached, is mounted between an LED and a receiver. The light emitted from the LED is modulated by the grating and hits the receiver, which outputs a sinusoidal signal that is proportional to the light received. The sinusoidal signal is processed by specially designed electronics. Standard control systems - including all KOBOLD counters - require digital, square-wave signals at the input. Thus the signal is conditioned in the rotary encoder and is outputed through different output circuits depending on the field of application.

Areas of application:

- Petrochemical industry
- Chemical industry
- Electricity supply

Technical Details:

Max. speed: 6000 rpm

Moment of inertia of rotor: approximately 15 x 10-6 kgm²

Initial torque: < 0.05 Nm

Radial shaft loadability: 20 N (shaft model)

Axial shaft loadability: 10 N (shaft model)

Shaft/hollow shaft: Ø 12 mm, stainless steel

Mechanical connection: synchro flange with hollow shaft

clamping flange with shaft

Impact resistance: 1000 m/s², 6 ms
Vibration resistance: 1000 m/s², 10 - 2000 Hz

Operating

temperature range: -20 to +60 °C

Output circuit: push-pull without inversion

or RS422 with inversion (TTL-compatible) short-circuit-proof

Electrical connection: 2 m PVC cable, radial

Ex approval: EEx d IIC T6

(pressure resistant encapsulation)

Max. pulse frequency: 300 kHz

Signal level low:

Rise/fall time:

Supply: $10-30 V_{DC}$ (push-pull)

 $5 V_{DC} \pm 5\%$ (RS422)

Current consumption: max. 125 mA (push-pull)

max. 100 mA (RS 422)

Permissible load/channel: max. ± 30 mA (push-pull)

max. ± 20 mA (RS422)

Signal level high: min. U_B - 3 V (push-pull)

min. 2.5 V (RS422) max. 2.5 V (push-pull)

max. 0.5 V (RS422)

max. 1 μs (push-pull) max. 200 ns (RS 422)

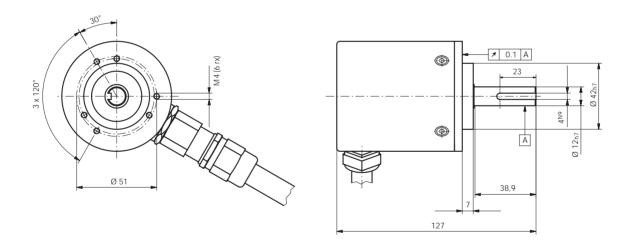
Pulses per revolution: 10, 20, 25, 30, 50, 60, 100, 120,

125, 127, 150, 180, 200, 216, 240, 250, 254, 256, 300, 314, 360, 375, 400, 500, 512, 600, 625, 720, 745, 750, 762, 800, 900, 927, 1000, 1024, 1250, 1270, 1400, 1500, 1800, 2000, 2048, 2250, 2400, 2500, 3000,

3600, 4000, 4096, 5000

Protection type: IP 64

Weight: approximately 1.2 kg


Order details (Example: ZDI-E H25 G 3 0750)

Model	Description	Туре	Output circuit	Electrical connection	Pulse count
ZDI-E	EX incremental rotary encoder	H25= synchro flange/ hollow shaft Ø 12 mm W15= clamping flange shaft Ø 12 mm	G=push-pull without inversion R= RS422 with inversion	5 = 2 m PVC cable, radial Y =special connection	For example: 001007505000

Dimensions:

Please refer to our brochure A2...

...for humidity measurement technology