滑子菇多糖的结构分析

陈健,向莹

(华南理工大学,轻工与食品学院,广东广州 510640)

摘要:本文以滑子菇中分离纯化得到一种多糖 PNP 为研究对象,通过高效凝胶渗透色谱法测定分子量及其分布,红外光谱、气相色谱法、部分酸水解、高碘酸氧化法、Smith 降解法、甲基化分析、¹HNMR、氨基酸和 β-消除反应分析多糖的结构,刚果红实验、碘-碘化钾实验对该多糖溶液行为进行研究。分析表明,PNP 的重均分子量为 20199 Da,含有木糖、甘露糖、葡萄糖和半乳糖这四种 单糖,且摩尔比为 15:3.36:14.2:1;经高碘酸氧化和 Smith 降解后表明,PNP 中没有 1→4 糖苷键,而且 1→2 键:1→3 键:1→6 键为 1.42:5.06:1; PNP 具有典型的多糖红外吸收,糖链以 β 型吡喃糖苷为主并且是一种含有蛋白质的糖缀合物的粘多糖; PNP 具有三股螺 旋结构,含有较长的侧链和分枝。

关键词: 滑子菇; 多糖; 单糖组成; 结构

文章篇号: 1673-9078(2013)7-1544-1550

Structural Analysis of Polysaccharides from Pholiota nameko

CHEN Jian, XIANG Ying

(School of Light Industry and Food Scicences, South China University of Technology, Guangzhou 510640, China)

Abstract: A new poly saccharide PNP was isolated and purified from *Pholiota nameko* and its components and structure were studied. The PNP relative molecular mass and distribution were analyzed by high-performance gel permeation chromatography, the PNP main chain structure were determined by infrared spectra (IR), gas chromatography (GC), partial acid hydrolysis, periodate oxidation, Smith degradation, methylation and GC-MS, ¹HNMR, amino acids and β -elimination reaction, and polysaccharide solution action was studied by Congo red and iodine-potassium experiment. The result indicated that the weight-average relative molecular mass of PNP was 20199 Da; PNP was composed of Xyl, Man, Glu and Gal with a molar ration of 1.5: 3.36: 14.2:1; through periodate oxidation and Smith degradation, the branches of PNP were composed of $(1\rightarrow 2)$ -linked, $(1\rightarrow 3)$ -linked and $(1\rightarrow 6)$ -linked with a molar ration of 1.42: 5.06:1, and had no $(1\rightarrow 4)$ -linked; PNP possessed typical infrared absorption of polysaccharides and sugar chain was mainly β -configuration pyranoside and a kind of contained protein gly coconjugate; PNP had triple helical structure containing a long side chain and branches.

Key words: Pholiota nameko; polysaccharides; monosaccharide composition; structure

滑子菇(Pholiota nameko)又名珍珠菇、真姬菇, 属于担子菌纲, 伞菌目、球盖菇科,鳞伞属。滑子菇 属于珍稀品种, 原产于日本, 自七十年代中叶, 始于 辽宁省南部地区, 现主产区为河北北部、辽宁、黑龙 江等低温地段, 生长在阔叶树木的枯死部位和砍伐截 面上的木材腐生菌。滑菇菌盖淡黄色到黄褐色, 边缘 略淡, 由于子实体表面附有粘液, 手摸粘滑, 故以滑 菇得名。滑菇以味道鲜美、营养价值高、对癌细胞有 强烈的抑制作用等特点而成为当今世界第五、日本第 三宗食用菌品种, 是食用、药用兼备的食用菌新秀^[1], 随着当今社会栽培技术的普及与提高, 滑子菇已成为 人们"菜篮子"中的常见蔬菜。

多糖是由 10 个以上单糖基通过苷键连接而成的。 通常多糖由几百个至几千个单聚糖聚合而成其性质已 收稿日期: 2013-03-31 作者简介: 陈健(1967-), 男, 博士, 副教授, 天然产物与分离技术 完全不同于单糖,无甜味,且强还原性消失。多糖的 一级结构与生物活性具有密切的关系,多数具有突出 生物活性的多糖都以(1→3)糖苷键连接,同时带有一 些侧链,糖基上还连接有一些特殊的功能团。对于多 糖的结构测定,测定多糖糖链的一级结构,主要解决 的问题有相对分子质量,糖链的单糖组成以及摩尔比, 糖醛酸检测,各单糖残基的D-或L-构型及吡喃环或呋 喃环形式,每个单糖残基上羟基取代情况,各个糖苷 键的α-或β-异头异构形式,糖链和非糖部分连接情况, 糖残基可能链接硫酸酯基、乙酰基、甲基的类型,主 链和支链的连接位点等。明确多糖中糖链的结构信息 对于了解多糖的性质,进一步了解糖类物质在生物体 内的活动的微观行为和本质具有重要意义。

目前,对滑子菇多糖的研究较少,特别是滑子菇 多糖结构的研究鲜见报道。本文对滑子菇多糖的分子 量、单糖组成、多糖的主干结构以及糖溶液行为进行 研究。

1 材料与方法

1.1 主要材料与仪器

主要实验材料如下:滑子菇,购于广州一德路干货市场;D354FD 树脂,广州市广联津化工有限公司生产;732 强酸性阳离子树脂,上海凯金树脂华工责任公司;Whatman DEAE-52,广州展晨生物科技有限公司进口分装;葡聚糖标准品(5200、16800、27300、4100000、6700000和1400000Da),美国Sigma公司生产;单糖标准品葡萄糖、木糖、甘露糖、半乳糖和赤藓醇,美国Sigma公司生产;其它试剂为国产分析纯。

主要实验仪器如下: DZTW 型调温电热套,北京 市永光明医疗仪器厂生产;旋转蒸发仪,上海亚荣生 化仪器生产;UV-5200 型紫外/可见分光光度计,上海 元析仪器有限公司生产;UV-2102 PC 型紫外可见分光 光度计,苏州江东精密仪器有限公司;BT-200 型恒流 泵 DBS-100 型自动部分收集器,上海沪西仪器厂生 产;冷冻干燥系统,美国 Thermo 公司生产;Vector 33 型傅里叶变换红外光谱仪,德国 Bruck 公司生产;液 相色谱系统,美国 Waters 公司生产;气相色谱系统, 美国 Aglient 公司生产。

1.2 试验方法

1.2.1 滑子菇多糖的分离纯化工艺

滑子菇打粉过40目筛,称取100g,按照水料比 30:1 加蒸馏水于5000 mL圆底烧瓶中,从沸腾开始计时3h。静置沉淀1h后,用布氏漏斗过滤,收集滤液 并浓缩。浓缩后按照1:1 体积比添加D354FD 阴离子 树脂,50 ℃水浴3h脱色,抽滤,收集滤液,按1:4 加95%乙醇,于4℃冰箱醇沉12h,4000 r/min离心 15 min,收集沉淀。将沉淀复溶,用Sevag^[2]试剂脱蛋 白,再用无水乙醇醇沉,离心,冻干。取粗多糖100 mg, 过 DEAE-52 柱,用蒸馏水、0.1、0.2、0.3 mol/L NaCl 和 0.1 mol/L NaOH 进行洗脱,蒽酮-硫酸^[3]法追踪测吸 光度,按照洗脱峰收集组分,透析,冷冻干燥得到精 多糖 PNP。

1.2.2 PNP 的相对分子质量测定

PNP 的相对分子质量用高效凝胶渗透色谱(GPC) 测定。将样品配成 2 mg/mL 的水溶液,过膜后进样。 色谱条件为: TSK-GEL G-5000PWXL 柱(7.8 mm×300 mm)与 TSK-GEL G-2500PWXL 柱(7.8 mm×300 mm) 串联,流动相为 0.01 mol/L 的 KH₂PO₄ 溶液,流速为 0.6 mL/min,柱温为 30 ℃。

1.2.3 红外光谱分析

取 2 mg PNP,与 KBr 混合研细后,在 4000~400 cm⁻¹范围内进行红外扫描。

1.2.4 单糖组成分析

多糖的水解:称取20 mg PNP于安培瓶中,加4mL 2 mol/L 的三氟乙酸,酒精灯封口,于110 ℃水解6h。 将水解液减压蒸干,加适量的甲醇溶解,再减压蒸干, 重复多次以除尽残余的三氟乙酸。

乙酰化: 往 PNP 的水解物、单糖标准品中加入 10 mg 盐酸羟胺和1 mL 吡啶, 90 ℃水浴 30 min 并振 荡,冷却至室温,加入乙酸酐1 mL,继续于 90 ℃水 浴中保持 30 min,生成具有挥发性的糖腈乙酸酯衍生 物。

色谱条件: DB-1701 毛细管柱柱(30 m×0.25 m×0.25 m); 高纯氮作载气, 流速为1 mL/min。程序升温:柱初始温度为180℃, 以2℃/min 升至220℃, 保持2min, 以5℃/min 升至250℃, 保持2min; 进样口温度为250℃, 汽化室温度为250℃, 检测器温度为300℃。

1.2.5 部分酸水解

100 mg PNP 于 0.1 mol/L 三氟乙酸, 85 ℃水解 8 h,离心,沉淀进行 GC 分析,取上清液减压蒸干。将 水解产物溶于水中,透析 3 d。将透析袋内、外溶液浓 缩,冷冻干燥,采用 GC 测其单糖组成。

1.2.6 高碘酸氧化

1.2.6.1 高碘酸氧化

▶ 高碘酸钠标准曲线: 取6支干燥试管,编号分别为0,1.....5,依次加入0、0.5、1.0、1.5、2.0 和4.0 mL的高碘酸钠(30 mmol/L)溶液,再依次补水到总体积为4 mL,混匀后各取0.1 mL,定容至25 mL,于223 nm 处测定光密度值。横坐标为高碘酸的钠毫摩尔数,纵坐标为光密度值。

取多糖样品 25 mg,用少量水溶解于 50 mL 容量 瓶中,然后加入 50 mmol/L NaIO4 15 mL,定容,使 NaIO4终浓度为 15 mmol/L。放置在暗处反应(室温), 间隔时间(0、6、12、24、36、48、60.....h)取样 0.1 mL, 用蒸馏水稀释 250倍,以蒸馏水作空白对照,在 223 nm 波长处测光密度值,直到光密度值恒定为止。加乙二 醇终止反应,高碘酸氧化完成。而后通过查标准曲线, 就可计算出高碘酸的消耗量。

1.2.6.2 甲酸生成量测定

取 2 mL上述氧化液,加 1 滴酚酞作指示剂,用 0.01 mol/L NaOH(用邻苯二氢钾标定)滴定,计算得甲酸生成量。

1.2.7 Smith 降解

经高碘酸氧化后的多糖溶液,加入 1.0 mL 乙二

醇, 混匀后室温放置2h以还原剩余的高碘酸。对自 来水透析48h, 再用蒸馏水透析24h。减压蒸干。加 入4omg NaBH4, 搅拌均匀后室温暗处放置24h以还 原多糖醛。0.1 mol/L 醋酸调 pH至5.0, 对自来水(流水) 透析48h, 再用蒸馏水透析24h, 减压蒸干。将样品 水解、乙酰化后用气相测定单糖。

1.2.8 甲基化分析

称取滑子菇多糖 PNP 样品 20 mg,用五氧化二磷 干燥后,加6 mL 的 DMSO 溶解并用 N₂封口,加热 搅拌混匀,加 NaOH 悬浊液(6 mL 的 DMSO 含有 240 mg 的 NaOH),过夜。加 3.6 mL 的 CH₃I,搅拌 8 min, 用 N₂ 吹走 CH₃I,再次甲基化,如此重复 3 次后,加 6 mL 的蒸馏水中止反应。流水和蒸馏水各透析 24 h 后,用 CHCl₃ 萃取 3 次,用无水 Na₂SO₄ 干燥 24 h, 然后蒸干约 1 mL,采用 1.5 中水解的方法进行水解, 之后加 70 mg NaBH₄搅拌 24 h,再加 732 强酸性阳离 子交换树脂搅拌混匀 10 min,抽滤,收集滤液加甲醇, 蒸干,按照 4.4.1 中乙酰化方式进行衍生化,再进行 GC-MS 分析。

1.2.9 核磁共振分析

50 mg 的滑子菇纯多糖 PNP 溶于 1.0 mL 的 D₂O 中,静置过夜,冷冻干燥后继续加 1.0 mL 的 D₂O 溶解,如此重复三次,最后用 0.8 mL 的 D₂O 溶解后置于核磁管中,于核磁共振仪上测定氢谱。

1.2.10 氨基酸种类测定

称取滑子菇 20 mg 于 18 mm×20 mm 水解玻璃试 管中,加 HCl(6 mol/L)200 μL 和 300 μL +氢萘。 真空下封管,于 110 ℃下水解 24 h。水解后在 50 mL 的容量瓶中定容。经 0.22 μm 微孔膜滤过备用。色谱 条件: PICO.TAG 氨基酸分析柱,柱温 37 ℃,紫外检 测器,波长为 254 nm,流动相 A 乙腈-水(体积比 1:1) 溶液,流动相 B 乙酸钠缓冲溶液(0.05 mol/L, pH 6.5, 含 10 mL/LN,N-二甲基甲酰胺), A:B 为 1:2。 1.2.11 β-消除反应

称取 5 mg 的滑子菇多糖 PNP,加 2.5 mL 的蒸馏 水进行溶解,再加 2.5 mL 的 NaOH 溶液(0.4 mol/L), 置于 45 ℃水浴锅中反应 3 h 后用紫外光谱进行扫描。 另取 5 mg 的滑子菇多糖 PNP 样品,加 5.0 mL 的蒸馏 水溶解,水浴 45 ℃下保温 3 h,用紫外光谱仪扫描。 1.2.12 刚果红实验

称取 5 mg PNP,加入 2 mL 蒸馏水和 2 mL 80 μmol/L 的刚果红试剂,逐渐加入 1 mol/L 的 NaOH, 使溶液中 NaOH 终浓度由 0 mol/L 逐渐升高到 0.5 mol/L,并用紫外可见记录光谱仪进行扫描,测得各 NaOH 浓度条件下的最大吸收波长。以 NaOH 浓度为 横坐标,最大吸收波长为纵坐标作图。

1.2.13 碘-碘化钾反应

取滑子菇多糖 PNP 样品 2 mg, 加 2 mL 的蒸馏水 溶解,再加 1.2 mL 碘试剂 (含 0.02% L2 的 0.2% KI 溶 液),混匀之后用紫外光谱在 300~700 nm 进行扫描。

2 结果与讨论

Fig.1 Elution patterns of polysaccharides from *Pholiota nameko* with column chromatography

如图 1 所示, 滑子菇多糖经 DEAE-52 柱层析, 用蒸馏水、0.1 mol/L NaCl、0.2 mol/L NaCl、0.3 mol/L NaCl和 0.1 mol/L NaOH 溶液洗脱, 只有用 0.1 mol/L NaCl 溶液洗脱得到一个峰, 收集 40 到 54 管, 透析后, 冻干。

2.2 PNP 的相对分子质量

图 2 是滑子菇多糖 PNP 的 GPC 图。PNP 的峰位 相对分子量 Mp 为 20537 Da, 重均相对分子量 Mw 是 20199 Da, 数均相对分子量 Mn 为 19437 Da, Z 均相 对分子量 Mz 为 20921 Da。多糖相对分子量多分散性 指数为 α, 即 Mw/Mn。α 可以作为高分子分子量分布 的表征,离1越近,分子量的分布就越窄,离1越远, 分子量的分布就越宽,也就是分散程度越大^[4]。PNP 的 α 为 1.039,接近于 1,表示滑子菇多糖的相对分子 质量分布较集中。此外,由 GPC 图可看出, PNP 是 单一多糖。活性多糖具有一定的分子质量范围,多糖 分子质量太大,不利于其跨越细胞膜进入生物体内发 挥生物学活性,而分子质量过低,也没有活性^[5-6]。

Fig.3 FT-IR spectrum of PNP

PNP 的红外吸收光谱如图 3。PNP 在处 3375 cm⁻¹ 处有吸收,这是多糖中 O-H 的伸缩振动,形宽而钝,可知羟基在分子间发生缔合,不是游离的羟基; 2925 cm⁻¹ 处的吸收的一组峰是糖类 C-H 伸缩振动,在 1400~1200 cm⁻¹ 的吸收是一组糖类的 C-H 的变角振动,由以上三组峰可初步判断该物质为糖类化合物^[7];1645 cm⁻¹处的吸收峰是-CHO 的 C=O 的伸缩振动引起的,为肽键上酰胺碳基吸收峰,PNP 是一种含有蛋白质的糖缀合物;在 1300~1000 cm⁻¹处的吸收属于吡喃环中的伸缩振动,因此 PNP 是吡喃环结构^[8]; PNP 在 892 cm⁻¹处的吸收,代表 C₁-H 竖变角振动,表明该多 糖以 β 型吡喃糖苷为主;在 798 cm⁻¹ 处的吸收表明有 甘露糖。

2.4 PNP 的单糖组成

菌类多糖糖的相对分子质量从几万到百万以上, 主要成分为葡萄糖、果糖、半乳糖、阿拉伯糖、木糖、 鼠李糖、岩藻糖、甘露糖等。不同菌类多糖的主要组 成存在差异,由几种不同种类的单糖,以一定的比例 聚合而成。图4为单糖标准品和PNP的糖腈乙酸酯衍 生物的气相色谱图,图4(a)中1~6分别为乙二醇、 赤藓醇、木糖、甘露糖、葡萄糖和半乳糖。图4(b) 显示 PNP为杂多糖,含木糖、甘露糖、葡萄糖以及半 乳糖,摩尔比为1.5:3.36:14.2:1。

2.5 部分酸水解

用较低浓度的三氟乙酸对样品进行水解,通过水 解产物的单糖组成及含量变化,判断多糖中主链和支 链的单糖组成,PNP的部分酸水解产物的单糖组成见 表1。

PNP^a 中检测到木糖、甘露糖和葡萄糖,说明主链

是由这3种组成; PNP^b检测到木糖、甘露糖、葡萄糖 和半乳糖,构成主链的核心区域; PNP^c检测到甘露糖 和葡萄糖,说明它们存在于支链货主链的末端。

Fig. 4 Gas chromatograms of standard monosaccharide

and PNP

注: a: 单糖标准品, b: PNP。

表 1 PNP 部分酸水解产物的单糖组成

Table 1 sugar composition of fractions from PNP by

partial acid hydrolysis

郭仁	摩尔含量/%					
티카꼬	木糖	甘露糖	唐 葡萄糖	半乳糖		
PNPa	5.34	8.34	86.32	-		
PNPb	9.56	3.65	72.14	4.65		
PNPc	-	17.32	82.68	-		

注: a 离心沉淀部分; b 袋内醇沉沉淀部分; c 袋外透析部分。

2.6 高碘酸氧化和 Smith 降解

高碘酸氧化是一种选择性的氧化反应,它只作用 于多糖分子中连二羟基及连三羟基处。1→6键消耗2 mol 高碘酸,生成1 mol 甲酸;1→2、1→4键只消耗 高碘酸;1→3键则不消耗高碘酸。因此,通过测定高 碘酸消耗量及甲酸生成量,便可以判断糖苷键的位置、 直链多糖的聚合度及支链多糖的分支数目等。

根据图 5 可算出, PNP 经高碘酸氧化反应 72 h 期间每摩尔糖残基消耗的高碘酸的量为 0.457 mmol 高碘酸,每摩尔的 PNP 同时也产生 0.134 mmol 的甲

Smith 降解可以将被氧化 1→2键还原,生成甘油; 若为 1→4 键,则生成赤藓醇和乙二醇;而 1→3 键则 不被氧化降解;而 1→6 键还原后产生甘油和乙二醇。 从图 6 可以看出,经 Smith 降解后,有甘油、木糖、 甘露糖、葡萄糖和半乳糖,没有赤藓醇。由此说明该 糖中不含有 1→4 键,又因为只有 1→2、1→4 和 1→6 键消耗高碘酸,而且只有 1→6键产生甲酸,可推断出 PNP 中 1→2 键与 1→6键之比为 1.42:1,因此 1→2键:1 →3 键:1→6 键为 1.42:5.06:1。多数具有突出生物活性 的多糖都以(1→3)糖苷键连接,例如灰树花多糖的基 本结构为 $\beta(1→3)$ -D-葡聚糖,并带有 β -1,6 侧链,分支 度为 33%,有较高的抗肿瘤活性^[9]。

2.7 PNP 的甲基化分析

甲基化的分析结果表明,甘露糖同时含有 1→和 1→3 糖苷键,其中1→糖苷键为主,占11.44%;木糖 只含有 1→2 糖苷键;葡萄糖的含量最多,以1→3 糖 苷键为主,同时也有 1→6 糖苷键,并且葡萄糖的 1→3 糖苷键摩尔百分比为 69.66%;半乳糖的含量最低,糖 苷键类型有 1→3 和 1→6 两种,仍然以 1→3 糖苷键 为主。

表 2 PNP 甲基化产物分析结果								
	Table 2 Methylation analysis of PNP							
	路旦	甲基化	保留时	糖苷	摩尔百分			
_	77 7	单糖键型	间/min	键类型	比/(mol%)			
1	1	2,5-Di-O-acetyl-3,4,6-tri	c 120	$1 \rightarrow$	11.44			
	1	-O-methyl-D-Man	0.130					
2	2	5-O-acetyl-3,4-di-O-	6.244	1→2	5.41			
	2	methyl-D-Xyl	0.344					
3	2	3,5-Di-O-acetyl-2,4,6-tri	7 605	1.2	61.24			
	3	-O-methyl-D-Glu	7.095	1→5	01.54			
4	4	3,5-Di-O-acetyl-2,4-di	0.1/0	1 2	5.28			
	4	-O-methyl-D-Man	8.100	1→5				
-	5	3,5,6-Tri-O-acety1-2,4-di	9 450	1→3, 1→6	2.73			
_	3	-O-methyl-D-Gal	8.430					
	6	5,6-Di-O-acetyl-2,3,4-tri	0 674	1→6	3.21			
0	0	-O-methyl-D-Gal	8.024					
	7	3,5,6-Tri-O-acety1-2,4-di	10.569	1→3,	8.32			
-	-	-O-methyl-D-Glu		l→6				
2	.8 999	'H-NMR 分析	0000-0	110000-	5 5 6 6 6 5			
	4.9		លំណុំណូណ៍លំហំ សំណូណូណ៍សំស្តាំស្តាំស្តាំស្តាំលែងសំណាំសំណាំសំណាំសំណាំសំណាំសំណាំសំណាំសំណា	800555	111120			
				1				

Fig.7 ¹H-NMR Spectroscopy of PNP

图 7 是滑子菇多糖 PNP 的¹H-NMR 谱。¹H-NMR 主要是用来确定多糖中糖苷键的构型。多糖的¹H 信 号比较集中,大多数在 δ 3.2~5.5 ppm 这个狭小的范围 内,而 δ 3.5~4.5 ppm 一般是糖环质子的信号^[10],在 δ 1.12~3.66 ppm 范围的信号为蛋白质中氨基酸残基的 β -H和 γ -CH₃、-CH₂、-CH上的 1H化学位移信号,甲 基五(六)碳糖的甲基信号在 δ 1.0 ppm 左右。因此可以 从端基质子信号的个数和化学位移推测糖的个数、种 类及糖与糖、糖与普元的连接位置等等。根据甲基质 子信号的个数和化学位移值可推测含甲基五(六)碳糖 的个数、种类及糖与糖、糖与昔元的连接位置等。一 般 α 型糖苷的异头碳上氢质子的共振信号的化学位移 大于 δ 5.0 ppm,而 β 型糖苷的化学位移低于 δ 5.0 ppm。 因此,从谱图中可以看到,异头碳上氢的化学 位移大于 δ5.0 ppm 只有一个,其化学位移为 δ5.06 ppm,其余的都小于 δ5.0 ppm,这表示滑子菇多糖 PNP 存在 α 和 β 糖苷键构型,并以 β 型为主。PNP 在异头 碳区(δ5.3~4.4)有 6 个不同强度的信号,除了 δ4.70 处 有一个宽而高的峰,是溶剂 D₂O 中的残余氢峰,另外 5 个峰表示的是 PNP 糖链中有 5 个糖残基组成的重复 单位。PNP 的氢质子在 δ0.99~δ3.66 也有共振信号,则说明 PNP 是一种含有氨基的多糖。

2.9 氨基酸分析

表 3 滑子菇多糖中氨基酸组成与含量

Table 3 Composition and content of amino acids in PNP

氨基酸	含量/%	氨基酸	含量/%
天门冬氨酸	3.46	精氨酸	4.74
谷氨酸	5.29	组氨酸	3.70
丝氨酸	9.46	苏氨酸	3.76
甘氨酸	5.27	缬氨酸	2.13
脯氨酸	1.75	蛋氨酸	3.68
丙氨酸	4.67	半胱氨酸	0.79
酪氨酸	3.45	异亮氨酸	5.59
亮氨酸	3.44	赖氨酸	7.15
苯丙氨酸	3.08		

表 3 是 PNP 中所含氨基酸的含量。氨基酸的总含量为 71.40%,其中丝氨酸的含量最高为 9.46%,半胱氨酸的含量最低,只有 0.79%。一般含有氨基的多糖大多数为酸性粘多糖,有可称为糖胺聚糖,通过 O-或 N-链接于核心蛋白的丝氨酸或天冬酰残基上,这类多糖可结合阳离子和吸引水分子而形成凝胶,粘度大。

加入 0.2 mol/L 的 NaOH 溶液于滑子菇多糖 PNP 的水溶液中,在 45 ℃水浴下反应 1.5 h 后,在定 190 nm~400 nm 下进行扫描,与不加 NaOH 的 PNP 溶液 的扫描结果进行比较。从图 8 中可知,经过稀碱处理 后的 PNP 的紫外扫描在 240 nm 处吸收增加,这是由 于经碱处理后的 O-糖苷键的会产生 α-氨基丙烯酸和 α-氨基丁烯酸导致 240 nm 处的光吸收增加,因此可以 说明在 PNP 中含有 O-糖苷键。

2.11 刚果红实验分析

刚果红(Cnogoerd)是一种酸性染料,可与具有三 股螺旋链构象的多糖形成络合物,刚果红的最大吸收 波长发生红移,在一定的 NaOH浓度范围内,表现为 最大吸收波长的特征变化(变成紫红色),当 NaOH 浓 度大于 0.3 mol/L 后,最大吸收波长急剧下降似^[11]。

图 9 PNP-刚果红复合物最大吸收波长的变化

Fig.9 Maximum absorption of PNP-Congo red complex in solution with various concentration of NaOH

NaOH终浓度在 0~0.5 mol/L 范围内, PNP 与刚果 红形成的络合物在其溶液中最大吸收波长的变化如图 9 所示。以纯的刚果红溶液为空白,随着 NaOH 浓度 的增高,这 2 种溶液的最大吸收波长逐渐减小,不过 PNP 和刚果红的复合物的最大吸收波长下降快,表明 PNP 的高度有序螺旋结构慢慢地在解离,部分转变成 自由卷曲结构,使刚果红复合物的最大吸收波长开始 下降;当碱浓度达到 0.4 mol/L 时, PNP 的螺旋结构 基本完全解离为自由卷曲构象,复合物完全被破坏, 最大吸收波长趋于稳定。这说明 PNP 存在多股螺旋构 象。

2.12 碘-碘化钾反应分析

图 10 1 11 月 12 11 的反应物系介引犯儿宿图

Fig.10 UV-Vis spectrum after PNP reacted with 12-KI 滑子菇多糖溶液与碘试剂混匀后紫外可见扫描光

现代食品科技

谱图如 10 所示,由于滑子菇多糖与 I₂-KI 的反应物最 大吸收峰在 367 nm 处,而在 565 nm 处无最大吸收^[12], 说明该多糖可能存在较长的侧链和较多的分枝。

3 结论

本文对滑子菇进行水提醇沉、脱蛋白、脱色和 DEAE52 纤维素柱层析得到一种相对分子质量分布较 集中的多糖 PNP。PNP 相对分子质量为 20199 Da, 红 外光谱分析表明 PNP 是典型的多糖结构, 其单糖组成 含有木糖、甘露糖、葡萄糖和半乳糖, 并且主链是由 木糖、甘露糖和葡萄糖组成的, 通过高碘酸氧化、Smith 降解和甲基化分析含有的 C-C 单键有 1→2 键、1→3 键和 1→6(1→)键; 采用 ¹HNMR、氨基酸和β-消 除反应分析得出 PNP 是一种粘多糖, 通过溶液的行为 研究表明 PNP 具有三股螺旋结构并且含有较长的侧 链和较多的分枝。这对滑子菇多糖产品的开发和利用 提供一定的理论依据。对于单糖的位置、排序、糖环 的大小、连接的方式等还有待进一步研究。

参考文献

[1] 丁广湖.四季种菇新技术疑难 300 解[M].北京,中国农业出版社,1997

Ding G H. 300 solutions of technology q uestion from planting mushroom [M]. Beijing, China Agriculture Press, 1997

[2] 李知敏,王伯初,周菁,等.植物多糖提取液的几种脱蛋白方法的比较分析[J].重庆大学学报(自然科学版),2004,27(4):57-59

Li Z M, Wang B C, Zhou J, et al. Companyison of three methods of removing protein from polysaccharide extract in plant [J]. Journal of Chongqing University (Natural Science Edition), 2004,27(4): 57-59

[3] 孙博航,张伟,龙志敏,等.葱酮-硫酸法测定参芪注射液中糖 含量[J].中国现代中药,2010,12(1):36-39

Sun B H, Zhang W, Long Z M, et al. The sugar content analysis of codonopsis-astragalus root injection with Anthrone-sulfuric acid method [J]. Modern Chinese Medicine, 2010, 12(1): 36-39

[4] Eva G O, Antomio J E, Pilar R. Molecular weight distribution

of polysaccharides from edible seaweeds by highperformance size-exclusion chromatography (HPSEC) [J]. Talanta, 2012, 93: 153-159

- [5] Cui F J, Tao W Y, Xu Z H, et al. Structural analysis of antitumor heteropolysaccharide GFPS1b from thecultured mycelia of Grifola frondosa [J]. Bioresource Technology, 2007, 98: 395-401
- [6] CHEN H X, WANG Z S, QU Z S, et al. Physicochemical characterization and antioxidant activity of a polysaccharide isolated from oolong tea [J]. Eur Food Res Technol, 2009, 229:629-635
- [7] Xu W T, Zhang F F, Luo Y B, et al. Antioxidant activity of a water-soluble polysaccharide purified from Pteridium aquilinum [J]. Carbohydrate Research, 2009, 344 (2): 217-222
- [8] Cai W R, Gu X H, Tang J. Extraction, purification, and characterization of the polysaccharides from Opuntia milpaalta [J]. Carbohydrate Polymers, 2008, 71(3): 403- 410
- [9] 边杉,叶波平,奚涛.灰树花多糖的研究进展[J].药物生物技 术,2004,11(1):60-63

Bian S, Ye B P, Xi T. Progress on the studies of Griflan from Grifolan Grondosa [J]. Pharmaceutical Biotechnology, 2004, 11(1): 60-63

- [10] Sun Yong Xu, Liu Ji Cheng, Yang Xiu Dong, et al. Purification, structural analysis and hydroxyl radicalscavenging capacity of a polysaccharide from the fruiting bodies of Russula virescens [J]. Process Biochemistry, 2010, 45: 874-879
- [11] 白日霞.红海藻多糖的提取和结构研究[J].天然产物研究与 开发,1999,11(4):45-48
 Bai R X. Isolation and structural identification of a

polysaccharide of red seaweed [J]. Natural Product Research and Development, 1999, 11(4): 45-48

[12] 朱彩平.枸杞多糖的结构分析及生物活性评价[D].武汉:华 中农业大学食品科学与工程,2006
Zhu C P. Study on structure and bioactivities of Lyciu Barbarum polysaccharide [D]. Wuhan: Huazhong Agriculture University Food Science and Engineering, 2006